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Abstract. Learning from reinforcements is a promising approach for creating intelligent agents.
However, reinforcement learning usually requires a large number of training episodes. We present
and evaluate a design that addresses this shortcoming by allowing a connectionist Q-learner to ac-
cept advice given, at any time and in a natural manner, by an external observer. In our approach,
the advice-giver watches the learner and occasionally makes suggestions, expressed as instruc-
tions in a simple imperative programming language. Based on techniques from knowledge-based
neural networks, we insert these programs directly into the agent’s utility function. Subsequent
reinforcement learning further integrates and refines the advice. We present empirical evidence
that investigates several aspects of our approach and show that, given good advice, a learner
can achieve statistically significant gains in expected reward. A second experiment shows that
advice improves the expected reward regardless of the stage of training at which it is given, while
another study demonstrates that subsequent advice can result in further gains in reward. Finally,
we present experimental results that indicate our method is more powerful than a naive technique
for making use of advice.

Keywords: Reinforcement learning, advice-giving, neural networks, Q-learning, learning from
instruction, theory refinement, knowledge-based neural networks, adaptive agents

1. Introduction

A successful and increasingly popular method for creating intelligent agents is to
have them learn from reinforcements (Barto, Sutton, & Watkins, 1990; Lin, 1992;
Mahadevan & Connell, 1992; Tesauro, 1992; Watkins, 1989). However, these ap-
proaches suffer from their need for large numbers of training episodes. Several
methods for speeding up reinforcement learning have been proposed; one promis-
ing approach is to design a learner that can also accept advice from an external
observer (Clouse & Utgoff, 1992; Gordon & Subramanian, 1994; Lin, 1992; Maclin
& Shavlik, 1994). Figure 1 shows the general structure of a reinforcement learner,
augmented (in bold) with an observer that provides advice. We present and evaluate
a connectionist approach in which agents learn from both experience and instruc-
tion. Our approach produces agents that significantly outperform agents that only
learn from reinforcements.

To illustrate the general idea of advice-taking, imagine that you are watching an
agent learning to play some video game. Assume you notice that frequently the
agent loses because it goes into a “box canyon” in search of food and then gets
trapped by its opponents. One would like to give the learner broad advice such
as “do not go into box canyons when opponents are in sight.” This approach is
more appealing than the current alternative: repeatedly place the learner in similar
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Figure 1. In basic reinforcement learning the learner receives a description of the current envi-
ronment (the state), selects an action to choose, and receives a reinforcement as a consequence
of selecting that action. We augment this with a process that allows an observer to watch the
learner and suggest advice based on the learner’s behavior.

circumstances and expect it to learn this advice from direct experience, while not
forgetting what it previously learned.

Recognition of the value of advice-taking has a long history in Al. The general idea
of a program accepting advice was first proposed nearly 40 years ago by McCarthy
(1958). Over a decade ago, Mostow (1982) developed a program that accepted and
“operationalized” high-level advice about how to better play the card game Hearts.
Recently, after a decade-long lull, there has been a growing amount of research on
advice-taking (Gordon & Subramanian, 1994; Huffman & TLaird, 1993; Maclin &
Shavlik, 1994; Noelle & Cottrell, 1994). For example, Gordon and Subramanian
(1994) created a system that deductively compiles high-level advice into concrete
actions, which are then refined using genetic algorithms.

Several characteristics of our approach to providing advice are particularly inter-
esting. One, we allow the advisor to provide instruction in a quasi-natural language
using terms about the specific task domain; the advisor does not have to be aware of
the internal representations and algorithms used by the learner in order to provide
useful advice. Two, the advice need not be precisely specified; vague terms such
as “big,” “near,” and “old” are acceptable. Three, the learner does not follow the
advice blindly; rather, the learner judges the usefulness of the advice and is capable
of altering the advice based on subsequent experience.

In Section 2 we present a framework for using advice with reinforcement learners,
and in Section 3 we outline an implemented system that instantiates this framework.
The fourth section describes experiments that investigate the value of our approach.
Finally, we discuss possible extensions to our research, relate our work to other
research, and present some conclusions.

2. A General Framework for Advice-Taking

In this section we present our design for a reinforcement learning (RL) advice-
taker, following the five-step framework for advice-taking developed by Hayes-Roth,
Klahr, and Mostow (1981). In Section 3 we present specific details of our imple-
mented system, named RATLE, which concretizes the design described below.
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Step 1. Request/receive the advice. To begin the process of advice-taking,
a decision must be made that advice is needed. Often, approaches to advice-taking
focus on having the learner ask for advice when it needs help (Clouse & Utgoff,
1992; Whitehead, 1991). Rather than having the learner request advice, we allow
the external observer to provide advice whenever the observer feels it is appropriate.
There are two reasons to allow the observer to determine when advice is needed:
(1) it places less of a burden on the observer; and (ii) it is an open question how to
create the best mechanism for having an agent recognize (and express) its need for
general advice. Other RL methods (Clouse & Utgoff, 1992; Whitehead, 1991) focus
on having the observer provide information about the action to take in a specific
state. However, this can require a lot of interaction between the human advisor
and computer learner, and also means that the learner must induce the generality
of the advice.

Step 2. Convert the advice into an internal representation. Once the
observer has created a piece of advice, the agent must try to understand the advice.
Due to the complexities of natural language processing, we require that the external
observer express its advice using a simple programming language and a list of
task-specific terms. We then parse the advice, using traditional methods from the
programming-languages literature (Levine, Mason, & Brown, 1992).

Table 1 shows some sample advice that the observer could provide to an agent
learning to play a video game. The left column contains the advice as expressed in
our programming language, the center column shows the advice in English, and the
right column illustrates the advice. (In Section 3 we use these samples to illustrate
our algorithm for integrating advice.)

Step 3. Convert the advice into a usable form. After the advice has been
parsed, the system transforms the general advice into terms that it can directly un-
derstand. Using techniques from knowledge compilation (Dietterich, 1991), a learner
can convert (“operationalize”) high-level advice into a (usually larger) collection
of directly interpretable statements (Gordon & Subramanian, 1994; Kaelbling &
Rosenschein, 1990; Nilsson, 1994). We only address a limited form of operational-
ization, namely the concretization of imprecise terms such as “near” and “many.”
Terms such as these allow the advice-giver to provide natural, yet partially vague,
instructions, and eliminate the need for the advisor to fully understand the learner’s
Sensors.

Step 4. Integrate the reformulated advice into the agent’s knowledge
base. In this work we employ a connectionist approach to RL (Anderson, 1987;
Barto, Sutton, & Anderson, 1983; Lin, 1992). Hence, to incorporate the observer’s
advice, the agent’s neural network must be updated. We use ideas from knowledge-
based neural networks (Fu, 1989; Omlin & Giles, 1992; Shavlik & Towell, 1989)
to directly install the advice into the agent. In one approach to knowledge-based
neural networks, KBANN (Towell, Shavlik, & Noordewier, 1990; Towell & Shavlik,
1994), a set of propositional rules is re-represented as a neural network. KBANN
converts a ruleset into a network by mapping the “target concepts” of the ruleset to
output units and creating hidden units that represent the intermediate conclusions
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Table 1. Samples of advice in our advice language (left column).

Advice English Version Pictorial Version
IF An Enemy 18 (Near A West) A If an enemy is near and .
An Obstacle 15 (Near A North)  west and an obstacle ::-:-_
THEN is near and north, hide f}‘
. A ‘e
MULTIACTION behind the obstacle. . >"‘;.-“‘
MoveEast
MoveNorth
END
END;
WHEN Surrounded A When the agent is sur-
OKtoPushEast A rounded, pushing east R
An Enemy 15 Near is po§51ble, and an en- >» F_‘E:::, Lig ©
REPEAT emy is near, then keep ’ i i
MULTIACTION pushing (moving the
PushEast obstacle out of the way)
MoveEast and moving east until .
END there is nothing more
UNTIL = OKtoPushEast v to push or the agent is
= Surrounded no longer surrounded.
END;
IF An Enemy 15 (Near A East) Do not move toward a
THEN nearby enemy.
DO_NOT MoveEast
END;

(for details, see Section 3). We extend the KBANN method to accommodate our
advice-giving language.

Figure 2 illustrates our basic approach for adding advice into the reinforcement
learner’s action-choosing network. This network computes a function from sensa-
tions to the utility of actions. Incorporating advice involves adding to the existing
neural network new hidden units that represent the advice.

Step 5. Judge the value of the advice. The final step of the advice-taking
process is to evaluate the advice. We view this process from two perspectives:
(1) the learner’s, who must decide if the advice is useful; and (ii) the advisor’s, who
must decide if the advice had the desired effect on the behavior of the learner. Our
learner evaluates advice by continued operation in its environment; the feedback
provided by the environment offers a crude measure of the advice’s quality. (One
can also envision that in some circumstances — such as a game-learner that can
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Hidden Units
for Advice

Figure 2. Adding advice to the RL agent’s neural network by creating new hidden units that
represent the advice. The thick links on the right capture the semantics of the advice. The
added thin links initially have near-zero weight; during subsequent backpropagation training the
magnitude of their weights can change, thereby refining the original advice. Details and an example
appear in Section 3.
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Figure 8. Interaction of the observer, agent, and our advice-taking system. The process is a cycle:
the observer watches the agent’s behavior to determine what advice to give, the advice-taking
system processes the advice and inserts it into the agent, which changes the agent’s behavior,
thus possibly causing the observer to provide more advice. The agent operates as a normal Q-
learning agent when not presented with advice.

play against itself (Tesauro, 1992) or when an agent builds an internal world model
(Sutton, 1991) — it would be possible to quickly estimate whether the advice im-
proves performance.) The advisor judges the value of his or her advice similarly
(i.e., by watching the learner’s post-advice behavior). This may lead to the advisor
giving further advice — thereby restarting the advice-taking process.

3. The RATLE System

Figure 3 summarizes the approach we discussed in the previous section. We im-
plemented the RATLE (Reinforcement and Advice-Taking Learning Environment)



256 R. MACLIN AND J. W. SHAVLIK

system as a mechanism for evaluating this framework. In order to explain RATLE,
we first review connectionist Q-learning (Sutton, 1988; Watkins, 1989), the form of
reinforcement learning that we use in our implementation, and then KBANN (Towell
& Shavlik, 1994), a technique for incorporating knowledge in the form of rules into
a neural network. We then discuss our extensions to these techniques by showing
how we implement each of the five steps described in the previous section.

Background — Connectionist Q-Learning

In standard RL, the learner senses the current world state, chooses an action to exe-
cute, and occasionally receives rewards and punishments. Based on these reinforce-
ments from the environment, the task of the learner is to improve its action-choosing
module such that it increases the total amount of reinforcement it receives. In our
augmentation, an observer watches the learner and periodically provides advice,
which RATLE incorporates into the action-choosing module of the RL agent.

In Q-learning (Watkins, 1989) the action-choosing module uses a utility function
that maps states and actions to a numeric value (the utility). The utility value of
a particular state and action is the predicted future (discounted) reward that will
be achieved if that action is taken by the agent in that state and the agent acts
optimally afterwards. It is easy to see that given a perfect version of this function,
the optimal plan is to simply choose, in each state that is reached, the action with
the largest utility.

To learn a utility function, a Q-learner typically starts out with a randomly chosen
utility function and stochastically explores its environment. As the agent explores,
it continually makes predictions about the reward it expects and then updates its
utility function by comparing the reward it actually receives to its prediction. In
connectionist Q-learning, the utility function is implemented as a neural network,
whose inputs describe the current state and whose outputs are the utility of each
action.

The main difference between our approach and standard connectionist Q-learning
is that our agent continually checks for pending advice, and if so, incorporates that
advice into 1ts utility function. Table 2 shows the main loop of an agent employing
connectionist Q-learning, augmented (in italics) by our process for using advice.
The resulting composite system we refer to as RATLE.

Background — Knowledge-Based Neural Networks

In order for us to make use of the advice provided by the observer, we must incor-
porate this advice into the agent’s neural-network utility function. To do so, we
extend the KBANN algorithm (Towell & Shavlik, 1994). KBANN is a method for
incorporating knowledge, in the form of simple propositional rules, into a neural
network. In a KBANN network, the units of the network represent Boolean concepts.
A concept is assumed to be true if the unit representing the concept is highly ac-
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Table 2. Steps of the RATLE algorithm. Our additions to the standard connectionist Q-learning
loop are Step 6 and the subroutine Incorporate Advice (all shown in italics). We follow Lin’s (1992)
method exactly for action selection and Q-function updating (Steps 2 and 5). When estimating
the performance of a network (“testing”), the action with the highest utility is chosen in Step 2
and no updating is done in Step 5.

Agent’s Main Loop Incorporate Advice
1. Read sensors. 6a. Parse advice.
2. Stochastically choose an action, where the probabil-  6b. Operationalize any fuzzy
ity of selecting an action is proportional to the log of terms.
its predicted utility (i.e., its current Q value). Retain ~ 6c. Translate advice into nel-
the predicted utility of the action selected. work components.
3. Perform selected action. 6d. Insert translated advice di-
4. Measure reinforcement, if any. rectly into RL agent’s
5. Update utility function — use the current state, the neural-network based util-
current Q-function, and the actual reinforcement to ity function.

obtain a new estimate of the expected utility; use the  6e. Return.
difference between the new estimate of utility and
the previous estimate as the error signal to propagate
through the neural network.
6. Advice pending? If so, call IncorporateAduvice.
7. Go to 1.

tive (near 1) and false if the unit is inactive (near 0). To represent the meaning
of a set of rules, KBANN connects units with highly weighted links and sets unit
biases (thresholds) in such a manner that the (non-input) units emulate AND or oR
gates, as appropriate. Figure 4 shows an example of this process for a set of simple
propositional rules.

In RATLE, we use an imperative programming language, instead of propositional
rules, to specify advice. In order to map this more complex language, we make use
of hidden units that record state information. These units are recurrent and record
the activation of a hidden unit from the previous activation of the network (i.e.,
they “remember” the previous activation value). We discuss how these units are
used below.

Implementing the Five-Step Framework

In the remainder of this section we describe how we implemented the advice-taking
strategy presented in the last section. Several worked examples are included.
Step 1. Request/receive the advice. To give advice, the observer simply
interrupts the agent’s execution and types his or her advice. Advice must be ex-
pressed in the language defined by the grammar in Appendix B.
Step 2. Convert the advice into an internal representation. We built
RATLE’s advice parser using the standard Unix compiler tools lez and yacc (Levine

et al., 1992).



258 R. MACLIN AND J. W. SHAVLIK
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Figure 4. Sample of the KBANN algorithm: (i) a propositional rule set in Prolog notation; (ii) the
rules viewed as an AND-OR dependency graph; (iii) each proposition is represented as a unit (extra
units are also added to represent disjunctive definitions, e.g., b), and their weights and biases are
set so that they implement AND or OR gates, e.g, the weights b — ¢ and ¢ — a are set to 4 and
a’s bias (threshold) to 6 (the bias of an OR node is 2); (iv) low-weighted links are added between
layers as a basis for future learning (e.g., an antecedent can be added to a rule by increasing one
of these weights).

Our advice-taking language has two main programming constructs: IF-THEN rules
and loops (both WHILE and REPEAT). The loop constructs also have optional forms
that allow the teacher to specify more complex loops (e.g., the REPEAT may have
an entry condition). Each of these constructs may specify either a single action or,
via the MULTIACTION construct, a “plan” containing a sequence of actions. The
observer may also specify that an action should not be taken as a consequent (as
opposed to specifying an action to take). Examples of advice in our language appear
in Table 1 and in Appendix A.

The IF-THEN constructs actually serve two purposes. An IF-THEN can be used to
specify that a particular action should be taken in a particular situation. It can
also be used to create a new intermediate term; in this case, the conclusion of the
IF-THEN rule is not an action, but instead is the keyword INFER followed by the
name of the new intermediate term. This allows the observer to create descriptive
terms based on the sensed features. For example, the advisor may want to define
an intermediate term NotLarge that is true if an object is Small or Medium, and
then use the derived term NotLarge in subsequent advice.

In order to specify the preconditions of the IF-THEN and looping constructs, the
advisor lists logical combinations of conditions (basic “sensors” and any derived
features). To make the language easier to use, we also allow the observer to state
“fuzzy” conditions (Zadeh, 1965), which we believe provide a natural way to artic-
ulate imprecise advice.

Step 3. Convert the advice into a usable form. As will be seen in Step 4,
most of the concepts expressible in our grammar can be directly translated into a
neural network. The fuzzy conditions, however, require some pre-processing. We
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must first “operationalize” them by using the traditional methods of fuzzy logic
to create an explicit mathematical expression that determines the fuzzy “truth
value” of the condition as a function of the sensor values. We accomplish this re-
representation by applying the method of Berenji and Khedkhar (1992), adapted
slightly (Maclin, 1995) to be consistent with KBANN’s mapping algorithm.

Though fuzzy logic is a powerful method that allows humans to express advice
using intuitive terms, it has the disadvantage that someone must explicitly define
the fuzzy terms in advance. However, the definitions need not be perfectly correct,
since we insert our fuzzy conditions into the agent’s neural network and, thus, allow
their definitions to be adjusted during subsequent training.

At present, RATLE only accepts fuzzy terms of the form:

quantifier object 1S/ ARE descriptor

where the quantifier is a fuzzy term specifying number (e.g., A, No, Few, Many),
the object is the type of object being sensed (e.g., Blocks, Trees, Enemies) and the
descriptor is a property of the referenced objects (e.g., Near, Big). For example, a
fuzzy condition could be “Many Trees ARE Near.”

Currently we use only sigmoidal membership functions. To operationalize a fuzzy
condition, RATLE determines a set of weights and a threshold that implement the
given sigmoidal membership function, as a function of the current sensor readings.
The exact details depend on the structure of a given domain’s sensors (see Maclin,
1995, for additional details) and have not been a major focus of this research. The
result of this process essentially defines a perceptron; hence, operationalized fuzzy
conditions can be directly inserted into the agent’s neural network during Step 4.

Step 4. Integrate the reformulated advice into the agent’s knowledge
base. After RATLE operationalizes any fuzzy conditions, it proceeds to insert all of
the advice into the agent’s current neural-network utility function. To do this, we
made five extensions to the standard KBANN algorithm: (i) advice can contain multi-
step plans, (ii) it can contain loops, (iii) it can refer to previously defined terms,
(iv) it may suggest actions to not take, and (v) it can involve fuzzy conditions
(discussed above). We achieve each of these extensions by following the general
approach illustrated earlier in Figure 2.

Consider, as an example of a multi-step plan, the first entry in Table 1. Figure 5
shows the network additions that represent this advice. RATLE first creates a hidden
unit (labeled A) that represents the conjunction of (i) an enemy being near and
west and (ii) an obstacle being near and north. Tt then connects this unit to the
action MoveFEast, which is an existing output unit (recall that the agent’s utility
function maps states to values of actions); this constitutes the first step of the
two-step plan. RATLE also connects unit A to a newly added hidden unit called
Statel that records when unit A was active in the previous state. It next connects
Statel to a new input unit called Statel_;. This recurrent unit becomes active
(“true”) when Statel was active for the previous input (we need recurrent units
to implement multi-step plans). Finally, it constructs a unit (labeled B) that is
active when Statel_; is true and the previous action was an eastward move (the
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Other Outputs ~ MoveEast MoveNorth

IF An Enemy 15 (Near A West) A
An Obstacle 1s (Near A North)
THEN

MULTIACTION
MoveEast
MoveNorth Enemy Obstacle
END Near,North
END;

) )
M oveNorth_1 Salel_l

)
Other Inputs MoveEast 1

Figure 5. On the left is the first piece of advice from Table 1. On the right is RATLE’s translation
of this piece of advice. The shaded ellipse represents the original hidden units. Arcs show units
and weights that are set to implement a conjunction. RATLE also adds zero-weighted links (not
shown here — see Figure 4d) between the new units and other parts of the current network; these
links support subsequent refinement.

network’s input vector records the previous action taken in addition to the current
sensor values). When active, unit B suggests moving north — the second step of
the plan. (In general, RATLE represents plans of length N using N — 1 state units.)

RATLE assigns a high weight! to the arcs coming out of units A and B. This means
that when either unit is active, the total weighted input to the corresponding output
unit will be increased, thereby increasing the utility value for that action. Note,
however, that this does not guarantee that the suggested action will be chosen when
units A or B are active. Also, notice that during subsequent training the weight
(and thus the definition) of a piece of advice may be substantially altered.

The second piece of advice in Table 1 also contains a multi-step plan, but this
time it is embedded in a REPEAT. Figure 6 shows RATLE’s additions to the network
for this advice. The key to translating this construct is that there are two ways to
invoke the two-step plan. The plan executes if the WHEN condition is true (unit ')
and also if the plan was just run and the UNTIL condition is false. Unit D is active
when the UNTIL condition i1s met, while unit E is active if the UNTIL is unsatisfied
and the agent’s two previous actions were pushing and then moving east.

A third issue for RATLE is dealing with advice that involves previously defined
terms. This frequently occurs, since advice generally indicates new situations in
which to perform existing actions. There are two types of new definitions: (i) new
preconditions of actions, and (ii) new definitions for derived features. We process
the two types differently, since the former involve real-valued outputs while the
latter are essentially Boolean-valued.

For new preconditions of actions, RATLE adds a highly weighted link from the
unit representing the definition to the output unit representing the action. This
is done so that in the situations where the advice is applicable, the utility of the
action will then be higher that it would otherwise be. When the advisor provides
a new definition of a derived feature, RATLE operates as shown in Figure 7. It first
creates a new hidden unit that represents the new definition, then makes an ORr
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PushEast ~ MoveEast

WHEN Surrounded A
OKtoPushEast A
An Enemy 1s Near
REPEAT
MULTIACTION
PushEast
MoveEast
END
UNTIL = OKtoPushEast v Surrounded OKtoPushEast Enemy
ear

— Surrounded
END;

Other Inputs PushEast ; MoveEast_;

Figure 6. On the left is the second piece of advice from Table 1. On the right is RATLE’s translation
of it. Dotted lines indicate negative weights. These new units are added to the existing network
(not shown).

Old Definition Surrounded
Surrounded N
New Definition
{
I
/1N 7T

Figure 7. Incorporating the definition of a term that already exists.

node that combines the old and new definitions. This process is analogous to how
KBANN processes multiple rules with the same consequent.

A fourth issue is how to deal with advice that suggests not doing an action. This
is straightforward in our approach, since we connect hidden units to “action” units
with a highly weighted link. For example, for the third piece of advice shown in
Table 1, RATLE would create a unit representing the fuzzy condition “An Enemy 15
(Near and East)” and then connect the resulting unit to the action MoveEast with a
negatively weighted link. This would have the effect of lowering MoveEast’s utility
when the condition is satisfied (which is the effect we desire). This technique avoids
the question of what to do when one piece of advice suggests an action and another
prohibits that action. Currently the conflicting pieces of advice (unless refined)
cancel each other, but this simple approach may not always be satisfactory.

Maclin (1995) fully describes how each of the constructs in RATLE’s advice lan-
guage is mapped into a neural-network fragment.
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4. Experimental Study

We next empirically judge the value of using RATLE to provide advice to an RL
agent.

4.1. Testbed

Figure 8a illustrates the Pengo task. We chose Pengo because it has been previously
explored in the AT literature (Agre & Chapman, 1987; Lin, 1992). The agent in
Pengo can perform nine actions: mouving and pushing in each of the directions East,
North, West and South; and doing nothing. Pushing moves the obstacles in the
environment. A moving obstacle will destroy the food and enemies it hits, and
will continue to slide until it encounters another obstacle or the edge of the board.
When the obstacle is unable to move (because there is an obstacle or wall behind

@® ‘o (b)
[ J - . | /@
A Agent

@ Food @
—| . Enemy —|
. | D Obstacle . ™~

‘ Empty ‘

=]
@

ACTIONS
No Action MoveEast PushEast MoveNorth

(c) (d)

FITTTTITI
MoveEast
T

Sector 1,E Sector 1,NE Previous Action
SENSOR INPUTS

Figure 8. Our sample test environment: (a) sample configuration; (b) sample division of the
environment into sectors; (c) distances to the nearest occluding object along a fixed set of arcs
(measured from the agent); (d) a neural network that computes the utility of actions.
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it), the obstacle disintegrates. Food is collected when touched by the agent or an
enemy.

Each enemy follows a fixed policy. It moves randomly unless the agent is in sight,
in which case it moves toward the agent. Enemies may move off the board (they
appear again after a random interval), but the agent is constrained to remain on
the board. Enemies do not push obstacles.

The initial mazes are generated randomly using a maze-creation program (Maclin,
1995) that randomly lays out lines of obstacles and then creates connections between
“rooms.” The percentage of the total board covered by obstacles is controlled by a
parameter, as are the number of enemies and food items. The agent, enemies, and
food are randomly deposited on the board, with the caveat that the enemies are
required to be initially at least a fixed distance away from the agent at the start.

The agent receives reinforcement signals when: (i) an enemy eliminates the agent
by touching the agent (—1.0), (ii) the agent collects one of the food objects (+0.7),
or (iil) the agent destroys an enemy by pushing an obstacle into it (40.9).

We do not assume a global view of the environment, but instead use an agent-
centered sensor model. It is based on partitioning the world into a set of sectors
around the agent (see Figure 8b). Each sector is defined by a minimum and max-
imum distance from the agent and a minimum and maximum angle with respect
to the direction the agent 1s facing. The agent calculates the percentage of each
sector that is occupied by each type of object — food, enemy, obstacle, or wall. To
calculate the sector occupancy, we assume the agent is able to measure the dis-
tance to the nearest occluding object along a fixed set of angles around the agent
(see Figure 8c). This means that the agent is only able to represent the objects
in direct line-of-sight from the agent (for example, the enemy to the south of the
agent is out of sight). The percentage of each object type in a sector is just the
number of sensing arcs that end in that sector by hitting an object of the given
type, divided by the maximum number of arcs that could end in the sector. So for
example, given Figure 8b, the agent’s percentage for “obstacle” would be high for
the sector to the east. The agent also calculates how much of each sector is empty
and how much is occluded. These percentages constitute the input to the neural
network (see Figure 8d). Note that the agent also receives as input, using a 1-of-N
encoding, the action the agent took in the previous state.?

4.2. Methodology

We train the agents for a fixed number of episodes for each experiment. An episode
consists of placing the agent into a randomly generated, initial environment, and
then allowing it to explore until it is captured or a threshold of 500 steps is reached.
We report our results by training episodes rather than number of training actions
because we believe episodes are a more useful measure of “meaningful” training
done — an agent having collected all of the food and eliminated all of the enemies
could spend a large amount of time in useless wandering (while receiving no re-
inforcements), thus counting actions might penalize such an agent since it gets to



264 R. MACLIN AND J. W. SHAVLIK

experience fewer reinforcement situations. In any case, for all of our results the re-
sults appear qualitatively similar when graphed by the number of training actions
(i.e., the agents all take a similar number of actions per episode during training).

Each of our environments contains a 7x7 grid with approximately 15 obstacles,
3 enemies, and 10 food items. We use three randomly generated sequences of initial
environments as a basis for the training episodes. We train 10 randomly initial-
ized networks on each of the three sequences of environments; hence, we report
the averaged results of 30 neural networks. We estimate the future average total
reinforcement (the average sum of the reinforcements received by the agent)® by
“freezing” the network and measuring the average reinforcement on a testset of
100 randomly generated environments; the same testset is used for all our experi-
ments.

We chose parameters for our Q-learning algorithm that are similar to those in-
vestigated by Lin (1992). The learning rate for the network is 0.15, with a discount
factor of 0.9. To establish a baseline system, we experimented with various num-
bers of hidden units, settling on 15 since that number resulted in the best average
reinforcement for the baseline system. We also experimented with giving this sys-
tem recurrent units (as in the units RATLE adds for multi-step and loop plans),
but these units did not lead to improved performance for the baseline system, and,
hence, the baseline results are for a system without recurrent links. However, recall
that the input vector records the last action taken.

After choosing an initial network topology, we then spent time acting as a user
of RATLE, observing the behavior of the agent at various times. Based on these
observations, we wrote several collections of advice. For use in our experiments,
we chose four sets of advice (see Appendix A), two that use multi-step plans (re-
ferred to as ElimEnemies and Surrounded), and two that do not (SimpleMoves and
NonLocalMoves).

4.3. Results

In our first experiment, we evaluate the hypothesis that our approach can in fact
take advantage of advice. After 1000 episodes of initial learning, we judge the
value of (independently) providing each of the four sets of advice to our agent using
RATLE. We train the agent for 2000 more episodes after giving the advice, then
measure its average cumulative reinforcement on the testset. (The baseline is also
trained for 3000 episodes). Table 3 reports the averaged testset reinforcement; all
gains over the baseline system are statistically significant*. Note that the gain is
higher for the simpler pieces of advice SimpleMoves and NonLocal Moves, which do
not incorporate multi-step plans. This suggests the need for further work on taking
complex advice; however, the multi-step advice may simply be less useful.

Each of our pieces of advice to the agent addresses specific subtasks: collecting
food (SimpleMoves and NonLocalMoves); eliminating enemies (ElimEnemies); and
avoiding enemies, thus surviving longer (SimpleMoves, NonLocalMoves, and Sur-
rounded). Hence, it is natural to ask how well each piece of advice meets its intent.
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Table 3. Testset results for the baseline and the four different types of advice. Each of the four
gains over the baseline is statistically significant.

Advice Added Average Total Reinforcement on the Testset
None (baseline) 1.32
SimpleMoves 1.91
NonLocalMoves 2.01
ElimEnemies 1.87
Surrounded 1.72

Table 4. Mean number of enemies captured, food collected, and number of actions taken (survival
time) for the experiments summarized in Table 3.

Advice Added Enemies Captured Food Collected Survival Time
None (baseline) 0.15 3.09 32.7
SimpleMoves 0.31 3.74 40.8
NonLocalMoves 0.26 3.95 39.1
ElimEnemies 0.44 3.50 38.3
Surrounded 0.30 3.48 46.2

Table 4 reports statistics on the components of the reward. These statistics show
that the pieces of advice do indeed lead to the expected improvements. For exam-
ple, our advice ElimEnemies leads to a much larger number of enemies eliminated
than the baseline or any of the other pieces of advice.

In our second experiment we investigate the hypothesis that the observer can
beneficially provide advice at any time during training. To test this, we insert the
four sets of advice at different points in training (after 0, 1000, and 2000 episodes).
Figure 9 contains the results for the four pieces of advice. They indicate the learner
does indeed converge to approximately the same expected reward no matter when
the advice is presented.

Our third experiment investigates the hypothesis that subsequent advice will lead
to further gains in performance. To test this hypothesis, we supplied each of our
four pieces of advice to an agent after 1000 episodes (as in our first experiment),
supplied one of the remaining three pieces of advice after another 1000 episodes, and
then trained the resulting agent for 2000 more episodes. These results are averaged
over 60 neural networks instead of the 30 networks used in the other experiments
in order to obtain statistically significant results. Table 5 shows the results for this
test.

In all cases, adding a second piece of advice leads to improved performance. How-
ever, the resulting gains when adding the second piece of advice are not as large as
the original gains over the baseline system. We suspect this occurs due to a combi-
nation of factors: (i) there is an upper limit to how well the agents can do — though
it is difficult to quantify; (ii) the pieces of advice interact — they may suggest dif-
ferent actions in different situations, and in the process of resolving these conflicts,
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Figure 9. Average total reinforcement for our four sample pieces of advice as a function of amount
of training and point of insertion of the advice.

Table 5. Average testset reinforcement for each of the possible pairs of our four sets of advice.
The first piece of advice is added after 1000 episodes, the second piece of advice after an additional
1000 episodes, and then trained for 2000 more episodes (total of 4000 training episodes). Shown in
parentheses next to the first pieces of advice are the performance results from our first experiment
where only a single piece of advice was added. All of the resulting agents show statistically
significant gains in performance over the agent with just the first piece of advice.

Second Piece of Advice

First Piece of Advice SimpleMoves NonLocalMoves ElimEnemies Surrounded
SimpleMowves (1.91) - 2.17 2.10 2.05
NonLocalMoves (2.01) 2.27 - 2.18 2.13
ElimEnemies (1.87) 2.01 2.26 - 2.06
Surrounded (1.72) 2.04 2.11 1.95 -

the agent may use one piece of advice less often; and (iii) the advice pieces are
related, so that one piece may cover situations that the other already covers. Also
interesting to note is that the order of presentation affects the level of performance
achieved in some cases (e.g., presenting NonLocalMoves followed by SimpleMoves
achieves higher performance than SimpleMoves followed by NonLocalMoves).
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Table 6. Average total reinforcement results for the advice NonLocalMoves using two forms of
replay. The advice is inserted and then the network is trained for 1000 episodes. Replay results
are the best results achieved on 1000 episodes of training (occurring at 600 episodes for Action
Replay and 500 episodes for Sequence Replay). Results for the RATLE approach without replay
are also shown; these results are for 1000 training episodes.

Training Method Average Total Testset Reinforcement
Standard RATLE (no replay) 1.74
Action-Replay Method 1.48
Sequence-Replay Method 1.45

In our fourth experiment we evaluate the usefulness of combining our advice-
giving approach with Lin’s “replay” technique (1992). Lin introduced the replay
method to make use of “good” sequences of actions provided by a teacher. In
replay, the agent trains on the teacher-provided sequences frequently to bias its
utility function towards these good actions. Thrun (1994, personal communication)
reports that replay can in fact be useful even when the remembered sequences
are not teacher-provided sequences — in effect, by training multiple times on each
state-action pair the agent is “leveraging” more value out of each example. Hence,
our experiment addresses two related questions: (i) does the advice provide any
benefit over simply reusing the agent’s experiences multiple times?, and (ii) can
our approach benefit from replay, for example, by needing fewer training episodes
to achieve a given level of performance? Our hypothesis was that the answer to
both questions is “yes.”

To test our hypothesis we implemented two approaches to replay in RATLE and
evaluated them using the NonLocalMoves advice. In one approach, which we will
call Action Replay, we simply keep the last N state-action pairs that the agent
encountered, and on each step train with all of the saved state-action pairs in a
randomized order. A second approach (similar to Lin’s), which we will call Se-
quence Replay, is more complicated. Here, we keep the last N sequences of actions
that ended when the agent received a non-zero reinforcement. Once a sequence
completes, we train on all of the saved sequences, again, in a randomized order. To
train the network with a sequence, we first train the network on the state where
the reinforcement was received, then the state one step before that state, then two
steps before that state, etc., on the theory that the states nearest reinforcements
best estimate the actual utility of the state. Results for keeping 250 state-action
pairs and 250 sequences® appear in Table 6; due to time constraints we trained
these agents for only 1000 episodes.

Surprisingly, replay did not help our approach. After examining networks during
replay training, we hypothesize this occurred because we are using a single network
to predict all of the Q values for a state. During training, to determine a target
vector for the network, we first calculate the new Q value for the action the agent
actually performed. We then activate the network, and set the target output vector
for the network to be equal to the actual output vector, except that we use the new
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Table 7. Average testset reinforcement using the strawman approach to using advice compared
to the RATLE method.

Advice STRAWMAN RATLE
SimpleMoves 1.63 1.91
NonLocalMoves 1.46 2.01
ElimEnemies 1.28 1.87
Surrounded 1.21 1.72

prediction for the action taken. For example, assume the agent takes action two
(of three actions) and calculates that the Q value for action two should be 0.7. To
create a target vector the agent activates the network with the state (assume that
the resulting output vector is [0.4,0.5,0.3]), and then creates a target vector that is
the same as the output vector except for the new Q value for the action taken (i.e.,
[0.4,0.7,0.3]). This causes the network to have error at only one output unit (the
one associated with the action taken). For replay this is a problem because we will
be activating the network for a state a number of times, but only trying to correctly
predict one output unit (the other outputs are essentially allowed to take on any
value), and since the output units share hidden units, changes made to predict one
output unit may affect others. If we repeat this training a number of times, the
Q values for other actions in a state may become greatly distorted. Also, if there
is unpredictability in the outcomes of actions, it is important to average over the
different results; replay focuses on a single outcome. One possible solution to this
problem is to use separate networks for each action, but this means the actions
will not be able to share concepts learned at the hidden units. We plan to further
investigate this topic, since replay intuitively seems to be a valuable technique for
reducing the amount of experimentation an RL agent has to perform.

Our final experiment investigates a naive approach for using advice. This simple
strawman algorithm follows the observer’s advice when it applies; otherwise it uses
a “traditional” connectionist Q-learner to choose its actions. We use this strawman
to evaluate if it is important that the agent refine the advice it receives. When
measured on the testset, the strawman employs a loop similar to that shown in
Table 2. One difference for the strawman’s algorithm is that Step 6 in Table 2’s
algorithm is left out. The other difference is that Step 2 (selecting an action) is
replaced by the following:

Evaluate the advice to see if it suggests any actions:
If any actions are suggested, choose one randomly,
Else choose the action that the network predicts has maximum utility.

The performance of this strawman is reported in Table 7. 1In all cases, RATLE
performs better than the strawman; all of these reinforcement gains are statistically
significant. In fact, in two of the cases, FlimFEnemies and Surrounded, the resulting
method for selecting actions is actually worse than simply using the baseline network
(whose average performance is 1.32).
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4.4. Discussion

Our experiments demonstrate that: (i) advice can improve the performance of an
RIL agent; (ii) advice produces the same resulting performance no matter when it
is added; (iii) a second piece of advice can produce further gains; and (iv) it is
important for the agent to be able to refine the advice it receives. In other experi-
ments (not reported here), we demonstrate that an agent can quickly overcome the
effects of “bad” advice (Maclin, 1995). We corroborated our Pengo results using a
second testbed (Maclin, 1995). A significant feature of our second testbed is that
its agent’s sensors record the complete state of the environment. Thus, the re-
sults in our second testbed support the claim that the value of advice in the Pengo
testbed is not due solely to the fact that the teacher sees the complete state, while
the learner only has line-of-sight sensors (and, hence, is trying to learn a partially
observable Markov decision process; Monahan, 1982).

One key question arises from our Pengo results: will the baseline system eventu-
ally achieve the same level of performance that the advice-taking system achieves?
After all, Q-learning converges to the optimal Q function when a @Q table is used
to represent the function (Watkins & Dayan, 1992). However, a backpropagation-
trained network may only converge to a local minimum in the weight space defining
the @ function. To further answer the performance-in-the-limit question, we will
address a more general one — what effect do we expect advice to have on the agent?

When we introduce “good” advice into an agent, we expect it to have one or
more of several possible effects. One possible effect of advice is that the advice will
change the network’s predictions of some of the Q values to values that are closer
to the desired “optimal” values. By reducing the overall error the agent may be
able to converge more quickly towards the optimal @ function. A second related
effect is that by increasing (and decreasing) certain Q values the advice changes
which states are explored by the agent. Here, good advice would cause the agent
to explore states that are useful in finding the optimal plan (or ignoring states that
are detrimental). Focusing on the states that are important to the optimal solution
may lead to the agent converging more quickly to a solution. A third possible
effect is that the addition of advice alters the weight space of possible solutions
that the learner is exploring. This is because the new weights and hidden units
change the set of parameters that the learner was exploring. For example, the
advice may construct an intermediate term (represented by a hidden unit) with
very large weights, that could not have been found by gradient-descent search. In
the resulting altered weight space the learner may be able to explore functions that
were unreachable before the advice is added (and these functions may be closer to
the optimal).

Given these possible effects of good advice, we can conclude that advice can both
cause the agent to converge more quickly to a solution, and that advice may cause
the agent to find a better solution than it may have otherwise found. For our
experiments, we see the effect of speeded convergence in the graphs of Figure 9,
where the advice, generally after a small amount of training, leads the agent to



270 R. MACLIN AND J. W. SHAVLIK

The Beltline

6‘
g% 0@"&
&

Midvale Blvd.

University Ave.

Figure 10. A sample problem where good advice can fail to enhance performance. Assume the
goal of the agent is to go from Work to Home, and that the agent will receive a large reward
for taking Nakoma Road, and a slightly smaller reward for taking University Avenue followed by
Midvale Boulevard. If the agent receives advice that University followed by Midvale is a good
plan, the agent, when confronted with the problem of going from Work to Home will likely follow
this plan (even during training, since actions are selected proportional to their predicted utility).
Thus it may take a long time for the learner to try Nakoma Road often enough to learn that it
is a better route. A learner without advice might try both routes equally often and quickly learn
the correct utility value for each route.

achieve a high level of performance quickly. These graphs also demonstrate the
effect of convergence to a better solution, at least given our fixed amount of training.
Note that these effects are a result of what we would call “good” advice. Tt is
possible that “bad” advice could have equally deleterious effects. So, a related
question is how do we determine whether advice i1s “good” or not?

Unfortunately, determining the “goodness” of advice appears to be a fairly tricky
problem, since even apparently useful advice can lead to poor performance in cer-
tain cases. Consider for example, the simple problem shown in Figure 10. This
example demonstrates a case where advice, though providing useful information,
could actually cause the agent to take longer to converge to an optimal policy. Ba-
sically, the good advice “masks” an even better policy. This example suggests that
we may want to rethink the stochastic mechanism that we use to select actions. In
any case, it appears that defining the properties of “good” advice is a challenging
topic for future work. As a first (and admittedly vague) approximation we would
expect advice to be “good” when it causes one of the effects mentioned above: (i) it
reduces the overall error in the agent’s predicted Q values, (ii) it causes the agent
to pick actions that lead to states that are important in finding a solution, or (iii) it
transforms the network so that the agent is able to perform gradient descent to a
better solution.

5. Future Work

Based on our initial experience, we intend to expand our approach in a number
of directions. One important future topic is to evaluate our approach in other
domains. In particular, we intend to explore tasks involving multiple agents working
in cooperation. Such a domain would be interesting in that an observer could give
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advice on how a “group” of agents could solve a task. Another domain of interest
is software agents (Riecken, 1994). For example, a human could advise a software
agent that looks for “interesting” papers on the World-Wide Web.

We see algorithmic extensions as fitting into the three categories explained below.

Broadening the Advice Language

Our experience with RATLE has led us to consider a number of extensions to our
current programming language. Examples include:

e Prefer action — let the teacher indicate that one action is “preferred” in a
state. Here the advisor would only be helping the learner sort through its
options, rather than specifically saying what should be done.

e Forget advice — permit the advisor to retract previous advice.

e Add/Subtract condition from advice — allow the advisor to add or remove
conditions from previous rules, thereby fine-tuning advice.

e Reward/Punish state — let the teacher specify “internal” rewards that the
agent is to receive in certain states. This type of advice could be used to give
the agent a set of internal goals.

¢ Remember condition — permit the advisor to indicate propositions that the
learner should remember (e.g., the location of some important site, like a good
place to hide, so that it can get back there again). We would implement this us-
ing recurrent units that record state information. This remembered information
could then be used in future advice.

We also plan to explore mechanisms for specifying multi-user advice when we ex-
plore domains with multiple agents.

Improving the Algorithmic Details

At present, our algorithm adds hidden units to the learner’s neural network when-
ever advice is received. Hence, the network’s size grows monotonically. Although
recent evidence (Weigend, 1993) suggests overly large networks are not a problem
given that one uses proper training techniques, we plan to evaluate techniques for
periodically “cleaning up” and shrinking the learner’s network. We plan to use
standard neural-network techniques for removing network links with low saliency
(e.g., Le Cun, Denker, & Solla, 1990).

In our current implementation, a plan (i.e., a sequence of actions) can be inter-
rupted if another action has higher utility (see Figure 5). Recall that the advice
only increases the utility of the actions in the plan, and that the learner can choose
to execute another action if it has higher utility. Once a plan is interrupted, it
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cannot be resumed from the point of interruption because the necessary state unit
is not active. We intend to evaluate methods that allow plans to be temporarily in-
terrupted; once the higher-utility tasks complete, the interrupted plan will resume.
We anticipate that this will involve the use of exponentially decaying state units
that record that a plan was being executed recently.

The networks we use in our current implementation have numeric-valued output
units (recall that they represent the expected utility of actions). Hence, we need
to more thoroughly investigate the setting of the weights between the Boolean-
valued advice nodes and the numeric-valued utility nodes, a topic not relevant to
the original work with KBANN, since that research only involved Boolean concepts.
Currently, advice simply increases the utility of the recommended actions by a
fixed amount. Although subsequent training can alter this initial setting, we plan
to more intelligently perform this initial setting. For example, we could reset the
weights of the network so that the suggested action always has the highest utility
in the specified states. This approach would guarantee that the suggested action
will have the highest utility, but can be faulty if the action is already considered
the best of several bad choices. In this case the alternate approach would simply
leave the current network unchanged, since the advised action is already preferred.
But the teacher may be saying that the action is not only the best choice, but that
the utility of the action is high (i.e., the action is “good” in some sense). Therefore,
simply requiring that the action be the “best” choice may not always capture the
teacher’s intentions. This approach also requires that RATLE find an appropriate set
of weights to insure that the suggested action be selected first (possibly by solving
a non-linear program).

In another form of reinforcement learning, the agent predicts the utility of a state
rather than the utility of an action in a state (Sutton, 1988); here the learner has
a model of how its actions change the world, and determines the action to take
by checking the utility of the states that are reachable from the current state.
Applying RATLE to this type of reinforcement-learning system would be difficult,
since RATLE statements suggest actions to take. In order to map a statement
indicating an action, RATLE would first have to determine the set of states that
meet the condition of the statement, then calculate the set of states that would
result by following the suggested action. RATLE would then increase the utility of
the states that follow from the suggested action. Other types of advice would be
more straightforward under this approach. For example, if the teacher gave advice
about a goal the agent should try to achieve (i.e., as in Gordon and Subramanian’s,
1994, approach), RATLE could determine the set of states corresponding to the goal
and simply increase the utility of all of these states.

Finally, our system maintains no statistics that record how often a piece of advice
was applicable and how often it was followed. We intend to add such statistics-
gatherers and use them to inform the advisor that a given piece of advice was seldom
applicable or followed. We also plan to keep a record of the original advice and
compare its statistics to the refined version. Significant differences between the two
should cause the learner to inform its advisor that some advice has substantially
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changed (we plan to use the rule-extraction techniques described below when we
present the refined advice to the advisor).

Converting Refined Advice into a Human-Comprehensible Form

One interesting area of future research is the “extraction” (i.e., conversion to a
easily comprehensible form) of learned knowledge from our connectionist utility
function. We plan to extend previous work on rule extraction (Craven & Shavlik,
1994; Towell & Shavlik, 1993) to produce rules in RATLE’s language. We also plan
to investigate the use of rule extraction as a mechanism for transfering learned
knowledge between RL agents operating in the same or similar environments.

6. Related Work

Our work relates to a number of recent research efforts. This related work can be
roughly divided into five groups: (i) providing advice to a problem solver, (ii) giv-
ing advice to a problem solver employing reinforcement learning, (iii) developing
programming languages for interacting with agents, (iv) creating knowledge-based
neural networks, and (v) refining prior domain theories.

Providing advice to a problem solver

An early example of a system that makes use of advice is Mostow’s (1982) Foo
system, which operationalizes general advice by reformulating the advice into search
heuristics. These search heuristics are then applied during problem solving. In Fo0O
the advice 1s assumed to be correct, and the learner has to convert the general
advice into an executable plan based on its knowledge about the domain. Our
system is different in that we try to directly incorporate general advice, but we
do not provide a sophisticated means of operationalizing advice. Also, we do not
assume the advice is correct; instead we use reinforcement learning to refine and
evaluate the advice.

More recently, Laird, Hucka, Yager, and Tuck (1990) created an advice-taking
system called ROBO-S0AR. In this system, an observer can provide advice when-
ever the system is at an impasse by suggesting which operators to explore in an
attempt to resolve the impasse. As with FOO, the advice presented is used to guide
the learner’s reasoning process, while in RATLE we directly incorporate the advice
into the learner’s knowledge base and then refine that knowledge using subsequent
experience. Huffman and Laird (1993) developed the INSTRUCTO-SOAR system
that allows an agent to interpret simple imperative statements such as “Pick up
the red block.” INSTRUCTO-SOAR examines these instructions in the context of
its current problem solving, and uses SOAR’s form of explanation-based learning to
generalize the instruction into a rule that can be used in similar situations. RATLE
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differs from INSTRUCTO-SOAR in that we provide a language for entering general
advice rather than attempting to generalize specific advice.

Providing advice to a problem solver that uses reinforcement learning

A number of researchers have introduced methods for providing advice to a rein-
forcement learning agent. Lin (1992) designed a technique that uses advice ex-
pressed as sequences of teacher’s actions. In his system the agent “replays” the
teacher actions periodically to bias the agent toward the actions chosen by the
teacher. Qur approach differs in that RATLE inputs the advice in a general form,;
also, RATLE directly installs the advice into the learner rather than using the advice
as a basis for training examples.

Utgoff and Clouse (1991) developed a learner that consults a set of teacher actions
if the action i1t chose resulted in significant error. This system has the advantage
that it determines the situations in which 1t requires advice, but is limited in that it
may require advice more often than the observer i1s willing to provide it. In RATLE
the advisor provides advice whenever he or she feels they have something to say.

Whitehead (1991) examined an approach similar to both Lin’s and Utgoff &
Clouse’s that can learn both by receiving advice in the form of critiques (a reward
indicating whether the chosen action was optimal or not), as well as learning by
observing the actions chosen by a teacher. Clouse and Utgoff (1992) created a
second system that takes advice in the form of actions suggested by the teacher.
Both systems are similar to ours in that they can incorporate advice whenever
the teacher chooses to provide it, but unlike RATLE they do not accept broadly
applicable advice.

Thrun and Mitchell (1993) investigated a method for allowing RL agents to make
use of prior knowledge in the form of neural networks. These neural networks are
assumed to have been trained to predict the results of actions. This proves to be
effective, but requires previously trained neural networks that are related to the
task being addressed.

Gordon and Subramanian (1994) developed a system that is closely related to
ours. Their system employs genetic algorithms, an alternate approach for learning
from reinforcements. Their agent accepts high-level advice of the form 1¥ conditions
THEN ACHIEVE goal. It operationalizes these rules using its background knowledge
about goal achievement. Our work primarily differs from Gordon and Subrama-
nian’s in that RATLE uses connectionist QQ-learning instead of genetic algorithms,
and in that RATLE’s advice language focuses on actions to take rather than goals to
achieve. Also, we allow advice to be given at any time during the training process.
However, our system does not have the operationalization capability of Gordon and
Subramanian’s system.
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Developing robot-programming languages

Many researchers have introduced languages for programming robot-like agents
(Chapman, 1991; Kaelbling, 1987; Nilsson, 1994). These systems do not generally
focus on programming agents that learn to refine their programs. Crangle and
Suppes (1994) investigated how a robot can understand a human’s instructions,
expressed in ordinary English. However, they do not address correction, by the
learner, of approximately correct advice.

Incorporating advice into neural networks

Noelle and Cottrell (1994) suggest an alternative approach to making use of advice
in neural networks. One way their approach differs from ours is that their connec-
tionist model itself performs the process of incorporating advice, which contrasts
to our approach where we directly add new “knowledge-based” units to the neural
network. Our approach leads to faster assimilation of advice, although theirs is
arguably a better psychological model.

Siegelman (1994) proposed a technique for converting programs expressed in a
general-purpose, high-level language into a type of recurrent neural networks. Her
system 1s especially interesting in that it provides a mechanism for performing
arithmetic calculations, but the learning abilities of her system have not yet been
empirically demonstrated.

Gruau (1994) developed a compiler that translates Pascal programs into neural
networks. While his approach has so far only been tested on simple programs,
his technique may prove applicable to the task of programming agents. Gruau’s
approach includes two methods for refining the networks he produces: a genetic
algorithm and a hill-climber. The main difference between Gruau’s system and
ours is that the networks we produce can be refined using standard connectionist
techniques such as backpropagation, while Gruau’s networks require the develop-
ment of a specific learning algorithm, since they require integer weights (-1,0,1) and
incorporate functions that do not have derivatives.

Diederich (1989) devised a method that accepts instructions in a symbolic form.
He uses the instructions to create examples, then trains a neural network with
these examples to incorporate the instructions, as opposed to directly installing the
instructions.

Abu-Mostafa (1995) uses an approach similar to Diederich’s to encode “hints”
in a neural network. A hint is a piece of knowledge provided to the network that
indicates some important general aspect for the network to have. For example,
a hint might indicate to a network trying to assess people as credit risks that a
“monotonicity” principle should hold (i.e., when one person is a good credit risk,
then an identical person with a higher salary should also be a good risk). Abu-
Mostafa uses these hints to generate examples that will cause the network to have
this property, then mixes these examples in with the original training examples. As
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with Diederich’s work, our work differs from Abu-Mostafa’s in that RATLE directly
installs the advice into the network.

Suddarth and Holden (1991) investigated another form of “hint” for a neural
network. In their approach, a hint is an extra output value for the neural network.
For example, a neural network using sigmoidal activation units to try to learn the
difficult XoRrR function might receive a hint in the form of the output value for the
OR function. The OR function is useful as a hint because it is simple to learn. The
network can use the hidden units it constructs to predict the OR value when learning
XOR (i.e., the hint serves to decompose the problem for the network). Suddarth and
Holden’s work however only deals with hints in the form of useful output signals,
and still requires network learning, while RATLE incorporates advice immediately.

Our work on RATLE is similar to our earlier work with the FSKBANN system
(Maclin & Shavlik, 1993). FSKBANN uses a type of recurrent neural network in-
troduced by Elman (1990) that maintains information from previous activations
using the recurrent network links. FSKBANN extends KBANN to deal with state
units, but it does not create new state units. Similarly, other researchers (Frasconi,
Gori, Maggini, & Soda, 1995; Omlin & Giles, 1992) insert prior knowledge about
a finite-state automaton into a recurrent neural network. Like our FSKBANN work,
this work does not make use of knowledge provided after training has begun, nor
do they study RL tasks.

Lin (1993) has also investigated the idea of having a learner use prior state knowl-
edge. He uses an RL agent that has as input not only the current input state, but
also some number of the previous input states. The difference between Lin’s ap-
proach and ours is that we use the advice to determine a portion of the previous
information to keep, rather than trying to keep all of it, thereby focusing learning.

Refining prior knowledge

There has been a growing literature on automated “theory refinement” (Fu, 1989;
Ginsberg, 1988; Ourston & Mooney, 1994; Pazzani & Kibler, 1992; Shavlik & Tow-
ell, 1989), and it is from this research perspective that our advice-taking work
arose. Our new work differs by its novel emphasis on theory refinement in the con-
text of multi-step problem solving in multi-actor worlds, as opposed to refinement
of theories for categorization and diagnosis. Here, we view “domain theories” as
statements in a procedural programming language, rather than the common view
of a domain theory being a collection of declarative Prolog statements. We also
address reinforcement learning, rather than learning-from-examples. Finally, un-
like previous approaches, we allow domain theories to be provided piecemeal at
any time during the training process, as the need becomes apparent to the advisor.
In complex tasks it is not desirable to simply restart learning from the beginning
whenever one wants to add something to the domain theory.
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7. Conclusions

We present an approach that allows a connectionist, reinforcement-learning agent
to take advantage of instructions provided by an external observer. The observer
communicates advice using a simple imperative programming language, one that
does not require that the observer have any knowledge of the agent’s internal work-
ings. The reinforcement learner applies techniques from knowledge-based neural
networks to directly insert the observer’s advice into the learner’s utility function,
thereby speeding up its learning. Importantly, the agent does not accept the advice
absolutely nor permanently. Based on subsequent experience, the learner can refine
and even discard the advice.

Experiments with our RATLE system demonstrate the validity of this advice-
taking approach; each of four types of sample advice lead to statistically significant
gains in expected future reward. Interestingly, our experiments show that these
gains do not depend on when the observer supplies the advice. Finally, we present
results that show our approach is superior to a naive approach for making use of
the observer’s advice.

In conclusion, we have proposed an appealing approach for learning from both
instruction and experience in dynamic, multi-actor tasks. This work widens the
“information pipeline” between humans and machine learners, without requiring
that the human provide absolutely correct information to the learner.
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Appendix A

Four Sample Pieces of Advice

The four pieces of advice used in the experiments in Section 4 appear below. Recall
that in our testbed the agent has two actions (moving and pushing) that can be
executed in any of the four directions (East, North, West, and South). To make it
easier for an observer to specify advice that applies in any direction, we defined the
special term dir. During parsing, diris expanded by replacing each rule containing it
with four rules, one for each direction. Similarly we have defined a set of four terms
{ahead, back, sidel, side2}. Any rule using these terms leads to eight rules — two
for each case where ahead is East, North, West and South and back is appropriately
set. There are two for each case of ahead and back because sidel and side2 can
have two sets of values for any value of ahead (e.g., if ahead is North, side! could
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be East and side2 West, or vice-versa). Appendix A in Maclin (1995) contains the
definitions of the fuzzy terms (e.g., Near, Many, An, and East).

IF An Obstacle 15 (NextTo A dir)

THEN INFER OkPushdir END;

IF No Obstacle 1s (NextTo A dir) A

No Wall 1s (NextTo A dir)

THEN INFER OkMovedir END;

IF An Enemy 15 (Near A dir)
THEN DO_NOT Movedir END;

IF OkMovedir A A Food 1s (Near A dir) A

No Enemy 15 (Near A dir)
THEN Movedir END;

IF OkPushdir A An Enemy 15 (Near A dir)

THEN Pushdir END

No Wall 1s (NextTo A dir)

THEN INFER OkMovedir END;
IF OkMovedir A Many Enemy ARE (- dir) A

No Enemy 1s (Near A dir)
THEN Movedir END;

IF OkMovedir A No Enemy 15 (dir A Near) A

A Food 15 (dir A Near) A

An Enemy 15 (dir A {Medium V Far})

THEN Movedir END

IF No Obstacle 1s (NextTo A dir) A

No Wall 1s (NextTo A dir)

THEN INFER OkMovedir END;
IF OkMoveahead A An Enemy 1s (Near A back) A
An Obstacle 15 (NextTo A sidel)

THEN
MULTIACTION
Moveahead
Movesidel
Movesidel
Moveback
Pushside2
END

END

SimpleMoves

NonLocalMoves
IF No Obstacle 15 (NextTo A dir) A

ElimEnemaies

Grab food next to you; run from
enemies next to you; push obsta-
cles at enemies behind obstacles.
[This leads to 20 rules.]

Run away if many enemies in a
direction (even if they are not
close), and move towards foods
even if there is an enemy in that
direction (as long as the enemy
is a ways off ). [12 rules.]

When an enemy is closely behind
you and a convenient obstacle is
nearby, spin around the obsta-
cle and push it at the enemy.
[12 rules.]
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Surrounded
IF An Obstacle 1s (NextTo A dir) When surrounded by obstacles
THEN INFER OkPushdir END; and enemies, push obstacles out
IF An Enemy 15 (Near A dir) V of the way and move through the
A Wall 1s (NextTo A dir) V holes. [13 rules.]

An Obstacle 15 (NextTo A dir)
THEN INFER Blockeddir END;
IF BlockedEast A BlockedNorth A
BlockedSouth A BlockedWest
THEN INFER Surrounded END;
WHEN Surrounded A OkPushdir A An Enemy 15 Near
REPEAT
MULTIACTION Pushdir Movedir END
UNTIL = OkPushdir
END

Appendix B
The Grammar for RATLE’s Advice Language

The start nonterminal of the grammar is rules. Grammar rules are shown with
vertical bars (|) indicating alternate rules for nonterminals (e.g., rules, rules, and
ante). Names like IF, THEN, and WHILE are keywords in the advice language.
Additional details can be found in Maclin (1995).

A piece of advice may be a single construct or multiple constructs.
rules  « rule | rules; rule

The grammar has three main constructs: IF-THENS, WHILES, and REPEATS.
rule + IF ante THEN conc else END
| WHILE ante DO act postact END
| pre REPEAT act UNTIL ante postact END

else  + e | ELSE act
postact « e | THEN acl
pre + ¢ | WHEN anle

A MULTIACTION construct specifies a series of actions to perform.
conc ¢ act | INFER Term_Name | REMEMBER Term_Name
act ¢ cons | MULTIACTION clist END
clist  + cons | cons clist
cons ¢ Term_Name | DO.NOT Term_Name | ( corist )
corlst + Term_Name | Term _Name V corlst

Antecedents are logical combinations of terms and fuzzy conditionals.
ante  + Term_Name | ( ante ) | = ante
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| ante A ante | ante V ante
| Quantifier_-Name Object_Name 15 desc

The descriptor of a fuzzy conditional is a logical combination of fuzzy terms.
desc  + Descriptor_Name | = desc | { dlist } | ( dezpr)
dlist ¢+ Descriptor_Name | Descriptor_Name , dlist
dexpr < desc | dexpr A dexpr | dexpr V dezpr

Notes

1. Through empirical investigation we chose a value of 2.0 for these weights. A topic of our future
research is to more intelligently select this value. See the discussion in Section 5.

2. The agent needs this information when employing multiple-step plans (see Section 3). We
include this information as input for all of the agents used in our experiments so that none will
be at a disadvantage.

3. We report the average total reinforcement rather than the average discounted reinforcement
because this is the standard for the RL community. Graphs of the average discounted reward
are qualitatively similar to those shown in the next section.

4. All results reported as statistically significant are significant at the p < 0.05 level (i.e., with
95% confidence).

5. We also experimented with keeping only 100 pairs or sequences; the results using 250 pairs
and sequences were better.
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