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Abstract. In this paper we differentiate between hard and soft label propagation
for classification of relational (networked) data. The latter method assigns proba-
bilities or class-membership scores to data instances, then propagates these scores
throughout the networked data, whereas the former works by explicitly propagat-
ing class labels at each iteration. We present a comparative empirical study of
these methods applied to a relational binary classification task, and evaluate two
approaches on both synthetic and real–world relational data. Our results indicate
that while neither approach dominates the other over the entire range of input data
parameters, there are some interesting and non–trivial tradeoffs between them.

1 Introduction

Many relational classification algorithms work by iteratively propagating information
through relational graphs. The main idea behind iterative approaches is that “earlier”
inferences or prior knowledge about data instances can be used to make “later” infer-
ences about related entities. Examples include relaxation labeling for hypertext catego-
rization[1], belief propagation for probabilistic relational models [2], relevance propa-
gation models for information retrieval on the web [3], iterative label propagation [4,
5], relational neighbor classifiers [6–8].

While there are various ways to propagate information through relational graphs, in
this paper we differentiate between two general classification approaches: In the first,
hard class label assignments are made at each iteration step. In this paper we call this
approach label propagation1 (LP). The second approach, which we call Score Propaga-
tion (SP), propagates soft labels such as class membership scores or probabilities. To
illustrate the difference between these approaches, assume that we want to find fraudu-
lent transaction given a relational graph of transactions (such as in Figure 1) and some
known fraudulent nodes. For each transaction we could estimate the probability of it be-
ing fraudulent using information about the nodes it connects and their neighbors. The
SP algorithm propagates these probabilities throughout the system, and then makes a
final inference by projecting the probabilities onto class labels. The LP algorithm, on
the other hand, estimates these probabilities at the first step, finds the entities with the

1 We note that sometimes the term “label propagation” is also used to describe soft–label prop-
agation.



highest probability of being fraudulent, labels them as fraudulent, and then iterates this
procedure.

Intuitively, one could think that the LP algorithm described above would not per-
form as well as soft label propagation, since it makes hard “commitments” that cannot
be undone later when more information is propagated through the network. The main
finding of this paper is that this not always the case. We present results of extensive
experiments for a simple binary classification task, using both synthetic and real–world
data. For synthetic data we empirically evaluate the difference in performance of both
algorithms for a wide range of input parameters. We find that LP is usually a better
choice if the overlap between the classes is not strong. More interestingly, we found
that even when the performance of two algorithms are similar in terms of their AUC
(area under the curve) score, two algorithms might have significantly different accuracy
for an allowed false positive rate, e.g., they have different ROC (Receiver–Operator
Characteristics) curves. The other important observation is that for certain data param-
eters the LP algorithm is much more robust to the presence of noise in the initial class
label assignment. In other words, our results suggests that for noisy data, propagating
hard labels instead of scores might be a better choice.

In addition to our experiments on synthetic data, we tested both algorithms on CoRA
data–set of hierarchically categorized computer science papers. We constructed a sep-
arate classification problem for each CoRA sub–topic in Machine Learning category.
Despite certain differences between our results for CoRA and synthetic data, we ob-
served that hard label propagation scheme is indeed more robust with respect to noise,
for the majority of the topics considered. Our CoRA experiments also reproduced the
different ROC behavior for certain topics, although this difference was not as large as
in the case of synthetic data.

The rest of this paper is organized as follows: in the next section we describe the
binary classification problem and synthetic data used in our experiments. We introduce
hard and soft label propagation algorithms in Section 3. Section 4 describes related
work. The results of experiments on synthetic and CoRA data are presented in Sec-
tions 5 and 6 respectively. Concluding remarks are made in section 7.

2 Classification Problem

Most relational classification techniques rely on both intrinsic and relational attributes
of the data for making inferences. For instance, if the task is to classify scientific papers
into topics, both intrinsic features (e.g., frequency of certain keywords) and relational
attributes (e.g., common author, references, etc.) may be used. In this paper we are
mainly interested in relational aspect of classification, so we ignore intrinsic attributes
of data instances and instead examine the effects of relational structures on classifi-
cation accuracy. Thus, the data is represented by an undirected graph, where nodes
correspond to data instances and edges represent relationships between them. Now we
state the classification problem that we are interested in. Assume a relational graph as
schematically illustrated in Figure 1. We want to find the set A of nodes that belong to
class A (the shaded region), given the relational graph and a small subset A0 ∈ A of
labeled A instances. We denote the nodes not in A as class B, and the corresponding



Fig. 1. Schematic representation of networked data.

set as B. In general, class B itself might comprise other classes that will be reflected
in the topology of the network. This is the case for the CoRA data studied in Sec-
tion 6. For the synthetic data, however, we will assume a homogenous structure for
each class. Specifically, within each class, we randomly distribute links between pairs
of nodes with probability pa,b

in so that the relational structures within the classes are
characterized by Erdos–Renyi graphs G(NA; pa

in) and G(NB ; pb
in)2. NA and NB are

the number of nodes in respective classes. Then we randomly establish links across the
classes (blue edges in Fig. 1), by assigning a probability pout to each of NANB possi-
ble links. The average number of links per node (connectivities) within and across the
classes are given by zaa = pa

inNA, zbb = pb
inNB , zab = poutNB and zba = poutNA. If

the sizes of two classes are not equal then zab 6= zba.
Note that our construction of the synthetic relational graph enforces the homophily

condition which means that better-connected nodes are likely to be in the same class.
Hence, we should expect the difficulty of the classification task to be strongly affected
by the ratio of connectivities within and across the classes. We will use zab/zaa ≡
zout/zin to characterize the degree of homophily. A small value of this ratio means
that the classes are well–separated (strong homophily) so most classification algorithms
should do a good job of assigning correct class labels. For large values of zout/zin,
on the other hand, the difference between link patterns within and across the classes
decreases, making it more difficult to classify nodes correctly. We examine the effects
of class overlap in the experiments described in Section 5.

3 Algorithms

The score propagation mechanism employed in this paper is very similar to suspicion
scoring model of Macskassy and Provost [9], as well as to relevance propagation tech-
niques from information retrieval literature [3, 10]. The label propagation algorithm, on
the other hand, can be viewed a discrete (binary) analogue of the score propagation
scheme. Below we describe both approaches in more details.

2 Erdos–Renyi graph G(N; p) is constructed by independently linking each pair of N nodes with
probability p.



3.1 Score Propagation

By score propagation we mean a type of iterative procedure that propagates continuous–
valued class membership scores from labeled class instances to unlabeled ones. In our
example the initially labeled set contains only nodes of type A. Hence, we associate a
single score with each node that describes its relative likelihood of being in class A.
These scores are updated iteratively, allowing the influence of labeled nodes to spread
throughout the data. The main assumption behind this scheme is that nodes with higher
scores are more likely to be member of the sought class.

There are many possible ways to implement the a propagation mechanism. Here we
employ a scheme described by the following equation:

st+1
i = s0

i + αis
t
i + β

∑
j

Wijs
t
j (1)

Here s0
i is a static contribution that might depend on node’s intrinsic attributes, αi and

βi are parameters of the model, and Wij = 1 if nodes i and j are connected and
Wij = 0 otherwise. For instance, in the relevance propagation models in information
retrieval, s0

i is the content-based self-relevance score of a node, αi = const < 1, and
βi = (1−αi)/zi, where zi is the connectivity of node i. In the suspicion scoring model
of Ref. [9], s0

i = 0, αi = α for all i, and β = (1− α)/
∑

i,j Wij .
Our experiments with variants of SP schemes suggest that they all behave in qualita-

tively similar ways. For this paper, we report results for a simple parameter-free version
obtained by setting s0

i = αi = 0, and βi = 1/zi. The resulting updating scheme is:

st+1
i =

1
zi

∑
j

Wijs
t
j (2)

In other words, at each time step the class membership score of a node is set to the
average scores of its neighbors at the previous step. We note the resemblance of this
model to the random walk model of Ref. [11].

Initially, the scores of labeled A nodes are fixed to 1, while the rest of the nodes
are assigned score 0. Because of clamping, the former nodes act as diffusion sources,
so that the average score in the system increases with time and in fact converges to 1.
Therefore, we stop the iteration after the average score exceeds some threshold, chosen
to be 0.9 in the experiments reported below. We observed that the final ranking of the
nodes according is not sensitive to the choice of this threshold.

3.2 Label Propagation

For label propagation (LP) we developed a simple mechanism that is in some sense
the discrete (binary) analogue of the SP scheme. Let us assign binary state variables
σi = {0, 1} to all nodes so that σi = 1 (or σi = 0) means that the i–th node is labeled
as type A (or is unlabeled). At each step of iteration, for each unlabeled node, we
calculated the fraction of the labeled nodes among its neighbors, ωt

i =
∑

j Wijσ
t
j/zi,

and then label the nodes for which the fraction is the highest. This procedure is then
repeated for Tmax steps.



The label propagation algorithm above can be viewed as a combination of the scor-
ing propagation scheme from the previous section and a nonlinear (step-function-like)
transformation applied after each iteration. This nonlinear transformation constitutes a
simple inference process where the class-membership scores of a subset of nodes are
projected into class labels. This happens at every inference step. Indeed, assume that
starting from the initially given labels, we iterate the SP scheme of Equation 2 once.
Then, obviously, s1

i = ω1
i . That is, the nodes with maximum fractions of labeled nodes

among neighbors also have the highest score. The step-like transformation then assigns
score 1 to all the nodes sharing the maximum score, and sets the score of the remaining
nodes to zero, thus acting as a filter.

While ranking nodes in the SP scheme is straightforward, we need a different rank-
ing mechanism for the LP scheme. Note that the only parameter of the LP classification
scheme is the iteration length Tmax. In particular, by choosing different Tmax one ef-
fectively controls the number of labeled instances. Hence, setting Tmax is in a sense
analogous to setting a classification threshold for the SP mechanism. This suggests the
following natural criterion for ranking: Rank the nodes according to the iteration time
step when they were labeled as type A, so that a node that is classified earlier in the
iteration has a lower rank (i.e., is more likely to belong to the class A). The justification
of this approach is again based on the homophily condition: nodes that are similar to
the initially labeled nodes will tend to be better connected with them, hence they will
be labeled earlier in the iteration.

4 Related Work

Before presenting our experimental results, we would like to clarify the connection of
the models in section 3 with existing work. The score propagation model Equation 2 is
a special case of the suspicion scoring model of Macskassy and Provost [9]. One subtle
difference is that Ref. [9] uses annealing to guarantee convergence, by decreasing α
with time. Another aspect of the work in [9] is adaptive data access based on the iterative
runs of the scoring scheme. Specifically, after a first run of the SP scheme, they choose
the top K nodes and query them against a secondary database and augment the network
with new links. Then they run the SP scheme again to generate new rankings. Since
in our model the relational graph is given initially, we do not perform iterations over
many SP schemes. We note, however, that our LP algorithm is analogous of performing
multiple iterations over the score propagation scheme where each SP run includes only
one iteration of Equation 2.

Recently there has been a growing interest in the web-based information retrieval
community in using both link and content information for web queries [12]. The SP
model is strongly related to relevance propagation schemes from web-based infor-
mation retrieval [3, 10]. One of the differences is that our model does not have the
self–relevance term that describes a node’s content. Also, the graph in our model is
undirected, while for web mining the link directionality plays an important role (see
also [13]).

The classification problem considered here is related to semi-supervised learning
with partially labeled data. Recently, several algorithms that combine both labeled and



unlabeled data have been suggested [11, 14, 15]. Remarkably, these approaches too are
based on the homophily assumption that nearby data points are likely to belong to the
same class. Given a dataset with partially labeled examples, [15] construct a fully
connected graph so that the weight of the edge between two points depends on the
distance d(x1, x2). They then suggests a “soft” label propagation scheme where the
information about the labeled nodes is propagated throughout the constructed graph.
Because of their problem formulation, they were able to avoid the actual propagation
step and instead solve a linear system of equation. Despite obvious similarities, there
are also important differences with the model considered here. First, the scores in our
model are not interpretable as probabilities. Also, the algorithm in Ref [15] works only
if there are initially labeled data points from both clusters (for binary classification),
while in our case we do not have that constraint.

5 Experiments with Synthetic Data

We evaluated the performance of the SP and LP algorithms using ROC curve analysis,
and particularly, AUC (Area Under the ROC Curve) scores. In our experiments with
synthetic data, we used equal class sizes, NA = NB = 500 for one of the experiments,
and skewed class distribution with NA = 200 and NB = 2000 in all the others. We
run 100 trials for each choice of parameters, and calculated both the average and the
standard deviation of AUC score over the trials.

5.1 Class Overlap

In the first set of experiments, we examine the effect of class overlap on classification
accuracy. As we already mentioned, the class overlap can be measured by the ratio
zout/zin. In Figure 2 we plot the AUC score against the ratio zout/zin for three different
values of zin. The top panel shows the results for equal class sizes, NA = NB = 500,
with the number of initially labeled instances N0

A = 100, e.g., 20% of all A nodes.
Starting from near-perfect AUC scores at the ratio 0.1 for zin = 5 , the accuracy of
both SP and LP degrades gradually while increasing the ratio zout/zin, and, as we
expected, falls to 0.5 for zin ≈ zout. We also note that there is a crossover region in the
performances of both algorithms: at zout/zin = 0.1, LP attains slightly higher AUC
score than SP, while for zout/zin ≥ 0.5 the SP algorithm peforms better. This pattern
is amplified by larger within–class connectivity. Indeed, for zin = 20 both algorithms
attain perfect AUC score for ratios up to 0.3, and then, for zout/zin > 0.3, LP clearly
outperforms SP up until the crossover point at 0.7, with the difference in the AUC
scores as high as 0.1 at certain points. More interestingly, the crossover point where
SP starts to perform equally and then better shifts right with increasing within-class
link density. This suggests that for sufficiently dense graphs, the LP algorithm is a
better choice if the class overlap is not very large. For sparse graphs and relatively large
overlap, however, SP performs better.

A similar picture holds in the presence of class skew (bottom panel in Fig. 2). The
number of nodes in each class are NA = 200 and NB = 2000, with again 20% of A
nodes initially labeled (i.e., N0

A = 40). The only difference from the equal class size
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Fig. 2. AUC score vs the ratio zin/zout for different values of zin. The top and bottom panels are
for equal and skewed class distributions respectively.

scenario is that the ratio at which the performance of both algorithms falls to a random
level is now shifted towards higher values of zout (note that the horizontal axis ranges
from 1 to 10). The reason for this is that for a given zout, the average number of type A
neighbors for type B nodes is zba = zoutNA/NB . One should expect the ranking to be
random at the overlap level when a B node has roughly same number of A neighbors
as A nodes, themselves. Hence, we can estimate this ratio as zout/zin ∼ NB/NA. For
the class skew of 10 one gets zout/zin ∼ 10, which agrees well with the experiment.

5.2 ROC analysis

We now describe differences in the performance of both algorithms observed in the
ROC curves for zin = 5 and three different choices of class overlap: zout = {5, 10, 15}.
For zout = 5 the LP algorithm achieves a slightly better AUC score than the SP. For
zout = 10 both algorithms have the same AUC score (within the standard deviation).
And finally, for zout = 15 SP has a better AUC score (see the bottom panel inFig. 2).
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Fig. 3. ROC curves for different connectivities.



In the experiments, we used bins of size 0.01 for the false positive rates FP . For each
bin we calculated the average and standard deviation of the corresponding true positive
rates TP. The results are shown in Fig. 3.

Let us first discuss the the case zout = 5. The corresponding AUC scores are 0.95±
0.01 for SP and 0.97 ± 0.01 for LP. What is remarkable, however, is that despite this
tiny difference, the two classifiers are quite distinct for small false positive rates. In
other words, the difference in AUC score is not distributed equally over the whole ROC
plane. Instead, the main difference is for FP rate between 0 and 0.1. For false positive
rates of larger than 0.3, on the other hand, SP achieves marginally better true positive
rates. This observation suggests that if the cost of false positives are high, then LP is
a superior choice for small class overlap. This can be especially important in the case
of highly skewed class distributions, where even tiny false positive rates translate into
large numbers of falsely classified instances. The inset shows the difference between
true positive rates ∆TP = TPLP − TPSP at a fixed false positive rate. Along with
each point, we plot bars that are two standard deviations wide and centered around the
mean. Clearly, for a small interval around FP = 0.05, this difference is positive and
statistically significant, and achieves a value as high as ∼ 0.3.

A somewhat similar, although less dramatic, effect holds for zout = 10. Note that
the AUC scores of both algorithms are indistinguishable. In this case, LP achieves bet-
ter true positive rates in the interval FP ∈ [0; 0.2], while SP performs better on the rest
of the axis. The difference between them is not as pronounced as it is with smaller class
overlap (note also the higher standard deviations). Finally, for zout = 15 the SP algo-
rithm matches the performance of LP for small positive rates, and outperforms the latter
over the rest of the FP axis. This again suggests that for relatively large class overlap
SP is a better choice. Followup experiments revealed that the observed differences in
ROC curves, especially for small false positive rates, persist for wide ranges of param-
eter choices as long as the overlap between the classes is not very large. Moreover, the
difference becomes more dramatic for larger within-class connectivities, zin. For some
parameters this difference was as high as 0.5 for small FP rates.

5.3 Effect of noise

Next, we study how the classification accuracy deteriorates in the presence of noise,
which was introduced by randomly and uniformly choosing N0

B nodes from B and
mislabeling them as type A in the initial data set. In the experiments, we set the number
of initially labeled A nodes to N0

A = 40, and studied how the AUC score changes as
we increased the number of mislabeled nodes, N0

B . The results are presented in Fig. 4
where we plot the AUC score against the ratio N0

B/N0
A (for three different values of the

class overlap). Remarkably, for small class overlap, zout = 10, the noise has a distinctly
different effect on SP and LP. The LP algorithm seems to be very resilient to the noise
and has an AUC score close to ∼ 0.97 even when the number of mislabeled nodes is
N0

B = 200, or five times the number of correctly labeled nodes. The performance of the
SP algorithm, on the other hand, deteriorates steadily starting from moderate values of
noise and attains an AUC score of only 0.68 for N0

B = 200. A similar, although weaker,
effect is observed for moderate overlap zout = 20. The AUC score of the SP algorithm
decreases at a nearly linear rate, while for the LP scheme the decrease is much slower.
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Fig. 4. AUC score vs the fraction of initially labeled instances (top panel) and number of initially
misclassified nodes (bottom panel).

Finally, for zout = 30 the noise seems to affect the performance of both algorithms in
very similar ways.

6 Experiments with CoRA Data

The assumption that the relational structure is described by coupled Erdos-Renyi graphs
might not be appropriate for real world datasets. Hence, it is important to find out
whether the results described in the previous sections hold for more realistic data. In
this section we present the results of our experiments on CoRA data–set of hierarchi-
cally categorized computer science research papers [16]. We focus on the papers in the
Machine Learning category, which contains seven different subtopics: “Case-Based”,
“Genetic Algorithms”, “Probabilistic Methods”, “Neural Networks”, “Reinforcement
Learning”, “Rule Learning” , and “Theory”. Two papers were linked together by using
common author (or authors) and citation. After pruning out the isolated papers from
the data–set, we were left with 4025 unique titles. In our experiments we mapped the
multi–class problem onto a binary classification problem for each individual topic.

Generally speaking, the results obtained for CoRA data were somewhat different
from results for the synthetic data. Specifically, we found that the ranking accuracies
were lower than one would expect for a random Erdos–Renyi topology with corre-
sponding connectivities, especially for the LP algorithm. We believe that this is due to
the fact that the CoRA graph has a much more skewed degree distribution compared
to the exponential distribution of Erdos–Renyi graphs (indeed, we established that the
performances of both algorithms improve if we purge nodes with very high and very
low connectivities from the graph). We also found that in contrast to the synthetic data,
the SP algorithm was usually better than LP in case where there was no noise in the
initial label assignment.

Despite these differences, however, we established that our main results for the syn-
thetic data held for some of the CoRA topics. In particular, we observed that for four
out of seven topics the LP algorithm is indeed less sensitive to noise. This is shown in
Figure 5 where we plot the AUC score vs the fraction of mislabeled nodes for six of the
seven topics. For the “Genetic Algorithms”, “Reinforcement Learning”, “Rule Learn-
ing” , and “Theory” topics, the decrease in accuracy for the LP algorithm is smaller
than for the SP algorithm, although the difference is not as dramatic as for the synthetic



data. For two other topics, “Case-Based” and “Probabilistic Methods”, as well as for
the “Neural Networks” topic not shown here, the response of both algorithms to noise
did not differ much.

Further, in Figure 6 we show the ROC curves for the same topics. Again, for some of
the topics the observed picture is qualitatively very similar to that presented in Figure 3
for synthetic data. Namely, although the overall accuracy of both classifiers (e.g., AUC
scores) are very close, their ROC curves are different, with LP algorithm achieving bet-
ter accuracy for small false positive rates. This is especially evident for the “Reinforce-
ment Learning” subtopic for which the (average) maximum difference is close to 0.18.
Note also that for “Case-Based” and “Probabilistic Methods” topics SP outperforms LP
for the whole ROC plane (this is also true for the topic “Neural Networks”).
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Fig. 5. AUC score vs the fraction of initially misclassified nodes for CoRA topics.

7 Discussion and Future Work

In this paper we have presented empirical comparison of hard and soft label propagation
techniques for binary relational classification. Our results suggest that for sufficiently
strong homophily of the linked data, both methods achieve a remarkably good ranking
accuracy. We also found that, while neither of the approaches dominates over the entire
range of input parameters, there are some important differences that should be taken
into account for deciding which one is better suited for a particular problem.

One of the main findings of this paper is that even when two algorithms achieve
the same accuracy of ranking (as characterized by their AUC scores), the behavior of
the family of classifiers based on them can be drastically different. Specifically, we
found that for small values of allowed false positive rates, LP usually achieves higher
true positive rates. In fact, for data with small class overlap, the observed difference
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Fig. 6. ROC curve for different CoRA topics.

was quite dramatic. The SP algorithm, on the other hand, achieves higher true positive
rates for larger allowed false positive rate. This suggests that SP might be a better choice
only when the cost of false negatives strongly outweighs the cost of false positives. This
difference will be especially important in the case of highly skewed class distributions,
where even tiny false positive rates translate into a large number of falsely classified
instances.

The other important finding of this paper is the different behavior of the two prop-
agation schemes in the presence of noise. Our experiments with synthetic data, as well
as for some of the CoRA topics, suggest that LP algorithm is less more robust to misla-
beled data instances. Thus, propagating hard labels instead of scores might be a better
choice when the prior information is noisy. We believe that this is an interesting obser-
vation that warrants a further examination, both analytically and empirically.

Many relational classification techniques rely on information propagation over graphs.
However, there are not many systematic studies that examine the role of the graph struc-
ture on the propagation dynamics. In this paper we have addressed this problem for
fairly simple propagation dynamics and graph topology. We believe it would be worth-
while to perform similar studies for more sophisticated classification schemes, and ex-
tend the empirical framework presented here to more complex relational domains. Cur-
rently, evaluations of various relational learning algorithms are limited to a handful of
real world datasets. While it is important to perform well on real world data, we believe
that evaluating an algorithm through a controlled set of experiments on synthetic data
will help to better understand its strengths and weaknesses.
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