
Learning Relational Options for Inductive Transfer in
Relational Reinforcement Learning

Tom Croonenborghs, Kurt Driessens, and Maurice Bruynooghe

K.U.Leuven, Dept. of Computer Science, Celestijnenlaan 200A, B-3001 Leuven,
{ Tom.Croonenborghs, Kurt.Driessens,

Maurice.Bruynooghe }@cs.kuleuven.be

Abstract. In reinforcement learning problems, a learning agent has the task of
learning a good or optimal strategy from interaction with his environment. At the
start of the learning task, the agent usually has very little information. Therefore,
when faced with complex problems that have a large state space, learning a good
strategy might be infeasible or too slow to work in practice. One way to overcome
this problem, is the use of guidance to supply the agent with traces of “reasonable
policies”. However, in a lot of cases it will be hard for the user to supply such a
policy. In this paper, we will investigate the use of transfer learning for Relational
Reinforcement Learning problems. The goal of transfer learning is to accelerate
learning on a target task after training on a different, but related, source task. More
specifically, we introduce an extension of the options framework to the relational
setting and show how one can learn skills that can be transferred across similar,
but different domains. We present some preliminary experiments showing the
possible advantages of using relational options for transfer learning.
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1 Introduction

In reinforcement learning [12], an agent can observe its world and perform actions in it.
The agent’s learning task is to maximize the reward he obtains. In order to enable agents
to learn in larger and more complex problem domains, abstraction has been an important
factor. One important class of abstractions consists of hierarchical methods which focus
on abstraction over the sequential and temporal aspects of a task [1]. Another direction
of abstraction is relational reinforcement learning [14] which focuses on using relational
representations for both the world (i.e., states and actions) and the learned policies.

One of the difficulties that remain is that at the start of the learning task, the agent
has no or little information and is forced to do random exploration. As a consequence,
learning can become infeasible or too slow in practice for complex domains.

One of the approaches to tackle this problem is the integration of guidance in re-
inforcement learning [5]. In this approach, traces of “reasonable policies” are used to
overcome the problem of forced random exploration. The drawback of this approach
is that the user still needs to provide such a “reasonable policy” that will provide the
learning agent with some positive reinforcement.
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Another approach that targets this problem and which has received a lot of attention
recently is inductive transfer or transfer learning. Transfer learning is concerned with
learning in one task to benefit learning in different but related tasks. More specifically,
in a reinforcement learning context, the added effects of transfer learning can help the
learning agent to learn a new (but related) task faster, i.e., with a smaller amount of
training experience.

In this paper, we want to investigate the feasibility and benefit of usinghierarchical
relational abstractionsfor inductive transfer in reinforcement learning. The options
framework is used for hierarchical abstractions [13]. Options are macro-actions that
execute until some termination condition is satisfied and have been shown to be well
suited to build high-level skills [9]. We introduce relational options as a combination of
options with relational abstractions and use them to model skills that can be transferred
across similar, but different domains.

Our contribution is threefold. First, we extend the options framework to the rela-
tional setting and show the benefits of such relational options. Second, we propose a
method to learn options that can be used to transfer knowledge across different re-
inforcement learning domains using the framework of relational options. Third, we
present some preliminary experiments to evaluate if skills learned as options in pre-
vious tasks can help the reinforcement learning agent in more difficult tasks.

2 Background

2.1 Relational Reinforcement Learning and the Blocks World

Reinforcement Learning (RL)[12] is often formulated in the formalism ofMarkov De-
cision Processes(MDPs).

Definition 1. An MDP can be characterized by a state spaceS, an action spaceA, a
state transition functionT and an immediate reward functionR. The transition function
T : S ×A× S → [0, 1] defines a probability distribution over the possible next states:
T (s, a, s′) denotes the probability of landing in states′ when executing actiona in state
s. The reward functionR : S×A → R defines the reward for executing a certain action
in a certain state.

The task of reinforcement learning consists of finding anoptimal policyfor a certain
MDP, which is (initially) unknown to the RL-agent. As usual, we define it as a function
of the discounted, cumulative reward, i.e. find a policyπ : S → A that maximizes
the value function:V π(s) = Eπ[

∑∞
t=0 γiR(st, π(st))|s0 = s, st+1 = π(st)], where

0 ≤ γ < 1 is thediscount factor, which indicates the relative importance of future
rewards with respect to immediate rewards.

The RRL-system [6] appliesQ-Learning in relational domains, by using a rela-
tional regression algorithm to learn aQ-function that approximates the quality of ex-
ecuting a certain action in a certain state. The quality value for executing actiona in
states with rewardR(s, a) and resulting states′ is defined asQ(s, a) ≡ R(s, a) +
γ maxa′Q(s′, a′). Knowing theseQ-values, an optimal policyπ∗ can be constructed as
π∗(s) = argmaxa Q(s, a).
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Throughout the paper, we will use the blocks world as an example application. We
use a blocks world with a varying number of blocks, where blocks can only be stacked
neatly on top of each other and the table or floor is of infinite size, i.e., it is always
clear and ready to store an extra block. Consider a set of blocks{b1, b2, . . . bn}, every
block bi stands either on the floor (denotedon(bi, f loor)) or on some other blockbj

(denotedon(bi, bj)) and on every blockbi there is either exactly one other block or it
is clear (denotedclear(bi)). The agent can take a clear blockbi and put it on another
clear blockbj or on the floor (denotedmove(bi, bj) or move(bi, f loor) respectively).

2.2 The options framework

The theory of options has been introduced by Sutton et al. [13]. An option can be
viewed as a subroutine, consisting of an option policy that specifies which action to
execute for a subset of the environment states, an initiation set consisting of all states
in which the option can be initiated and a termination condition, specifying when the
option terminates. Note that an option is not just a sequence of actions, but a closed-loop
policy taking actions depending on changes in the world.

More formally, an optiono consists of three parts:

Io ⊆ S : S 7→ {0, 1}
βo : S 7→ [0, 1]
πo : Io ×A 7→ [0, 1]

with Io the initiate set which specifies the states in which the option can be initiated,βo

the termination condition which specifies the probability of terminating in states for all
s ∈ S andπo theoption policy, which specifies the probability of executinga in state
s for all a ∈ A, s ∈ Io. Since an option policy can also invoke other options, creating
hierarchical structures, the action spaceA is extended to be the set of all options and
primitive actions.

To update theQ-value of an optiono that is started in states and terminated in
states′, the following equation can be used (similar to the one for primitive actions):
Q(s, o) ≡ R(s, o)+γdmaxo′Q(s′, o′) with d the duration of the option (i.e. the number
of time steps betweens ands′).

2.3 Transfer Learning

One of the motivations for relational reinforcement learning is that by using parameter-
ized goal and policy descriptions it allows learned results to be applied in similar, but
different worlds. This transfer of knowledge is however limited to learning problems
that exhibit the same structure, only differing in the identity of certain objects or the
number of objects involved [4].

Recently, several approaches have been proposed to transfer knowledge between
different propositional reinforcement learning tasks. Often, a user-defined mapping is
used to relate the new task to the task for which a policy was already learned.
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Some approaches use the learned knowledge to aid exploration in new (and usually
more difficult) tasks. Examples of these are [10] and [8]. The most important draw-
back of these methods is that a lot of useful information is lost when only using the
transferred knowledge for exploration.

Perkins and Precup [11] investigate the use of non-relational options to transfer
knowledge. They however only study the scenario where the agent has to solve dif-
ferent tasks drawn from a given distribution in which the agent does not know which
task he has to solve during a certain episode. The approach of [9] also uses options to
transfer knowledge where the need for a mapping between different tasks is avoided by
introducing a so-called “agent-space”. This space is generated by a feature set that is
present and retains the same semantics across successive problem instances.

The first approach that uses the generalizing power of relational learners is [15]
where a relational rule learner is used to generate advice to speed up reinforcement
learning. This advice is incorporated into the new task by adding the information about
Q-values as soft-constraints to the linear optimization problem that approximates the
Q-function for the next task which means that the advice needs to be propositionalized
again for the new task. All advice is added to one big optimization problem, while
the hierarchical abstractions in our approach are a first step towards a more modular
representation of the policy.

3 Relational Options

The options framework can easily be extended to the relational setting by using a re-
lational state and action space. We represent a relational policy by a set of rules of
the following form:CS : CSA → A, with CS a conjunction of tests that only involve
the state space,CSA a conjunction of tests on the state-action space andA the action
predicted by this rule where the arguments are set byCSA. When a policy needs to de-
termine which action to execute in a state, it searches for the top-most rule for whichCS
is satisfied and an actionA exists such thatCSA holds. ActionA (with its arguments set
according toCSA) will be predicted by the policy. Note that a distinction betweenCS
andCSA is not strictly necessary. The predicates/1 binds its argument with the current
state and thegoal -predicates are used to query the goal information: thegoal on/2
predicate succeeds if the current goal of the agent ison(A,B) and it will bindA andB
with its arguments. Consider as an example an optimal policy for theon(A,B) goal:8>><>>:

s(S), goal on(A, B), clear(S, A), clear(S, B) : true → move(A, B)
s(S), goal on(A, B), clear(S, A) : above(S, X, B), clear(S, X) → move(X, floor)
s(S), goal on(A, B), clear(S, B) : above(S, X, A), clear(S, X) → move(X, floor)

s(S), goal on(A, B) : above(S, X, A), clear(S, X) → move(X, floor)

Although this relational extension of options is straightforward, it offers some advan-
tages over regular options. Not only can they deal with relational worlds, it is also easy
to extend them to a parameterized setting by expressing the policy in terms of variables
instead of referencing concrete objects and by making it rely on the structural aspects
of the task. Another advantage is that by having parameterized options, it also becomes
possible to have recursive calls within the option policy.

Consider as an example an option that clears a certain block, instead of defining
or learning a different option for every block that occurs in the world, it is possible
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to define one generalized option that can clear any block by introducing a variable as
parameter of the option (as illustrated in Example 1). Note that this option does not
specify a sequence of actions but a closed-loop policy deciding every time step which
action to execute as long as the option is not terminated.

Example 1 (option forclear(X)).

Iclear(X) : s(S) 7→ 1

βclear(X) :
{

s(S), clear(S, X) 7→ 1
s(S),¬clear(S, X) 7→ 0

πclear(X) :
{

s(S), goal clear(X) : on(S, Y,X), clear(S, Y ) → move(Y, floor)
s(S), goal clear(X) : on(S, Y,X) → clear(Y )

4 Relational Skill Learning

One of the main difficulties in a lot of traditional transfer learning approaches is that in
order to transfer knowledge one needs to provide a mapping from the source domain
to the target domain. This problem is already partially overcome by using a relational
representation since this allows us to abstract over specific object identities and even
the number of objects involved.

In this paper we would like to transfer knowledge in the form of skills. Since we
represent these skills as relational options, we need to specify the initiation set, the
termination condition and the policy. To learn a specific option, the most straightforward
approach would be to set the initiation set totrue, the termination condition such that it
is satisfied when a certain goal is reached and learn the policy with a standard relational
reinforcement learning algorithm.

We take a slightly more advanced technique, motivated by the following observa-
tions: First of all, we would like to extract different skills from a single learning expe-
rience. Secondly, note that theQ-function contains more information than is actually
needed for the optimal policy, i.e. it only requires a mapping from a state to the best ac-
tion. Since theQ-function in a sense models the distance to reward, it does not always
give the best generalization to new domains (with e.g. a different number of objects).
Moreover, we would like the policy of the learned skill to be as interpretable as possible.
Another disadvantage of traditionalQ-learning approaches is that when an action needs
to be predicted for a given state, an iteration is needed over all possible state-action pairs
for that state to predict the action that results in the highestQ-value in case of a greedy
policy. Since in complex domains with a lot of objects, the number of possible actions
can be very large, we would like to avoid this iteration over all possible actions.

Therefore, we propose the following approach: The initiation set and termination
condition can in the simplest case be set as specified above. Since the learned policy
will not always be optimal it could be the case that the option never terminates. To
avoid this scenario, the termination condition is changed so that every non-goal state
has a non-zero probability of terminating the option. A skill policy for a certain task is
built as follows where the first three steps are similar to theP -learning approach [6]:
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1. use an RRL algorithm to learn to solve this task
2. create training examples of state-action pairs labeled as policy-based or not
3. use the TILDE system [2] to learn a relational decision tree that predicts whether or

not the action will be executed by the policy
4. extract a relational policy

To create the dataset for TILDE, we create a number of random states and check which
action would be executed by the learned policy. This action gets the label “policy ac-
tion”, other actions the label “non-policy action”. For the moment we do not use any
sampling techniques, but in the future we would like to investigate possible sampling
techniques as well as different schema to create learning examples. One possibility is to
only include examples of state-action pairs for which theQ-value is significantly better
or worse than other state-action pairs for the same state (similar to the approach taken
in [15]).

The learned decision tree for this binary classification problem predicts if, given a
certain state and action, the action is the one that would be executed by the policy (or the
probability if we use probability trees). Although in future work we plan to investigate
extraction schemas that obtain stochastic policies from these probability trees, at the
moment we only look at the majority class in each of the leaves. This means we can
do some bottom-up post-pruning if both the ’yes’ and ’no’ branch predict the same
majority class. Figure 1 shows an example of a policy tree for theclear(X) skill.

s(S),goal_clear(X),action(move(A,B))

clear(S,A)?

clear(S,B)?

yes

non_policy

no

non_policy

no

above(S,A,X)?

yes

policy

yes

non_policy

no

Fig. 1.Policy tree forclear(X) that expresses that an action is a “policy action” if both arguments
of the move action are clear and the agent moves a block above the one that needs to be cleared.

To avoid the action iteration, we extract from this tree only those rules that pre-
dict the ’policy action’ class. These rules give the constraints on the action to be part
of this policy. If we do this for the tree in Figure 1, we only obtain the following rule:
s(S), goal clear(X), action(move(A,B)), clear(S, A), clear(S, B), above(S, A,X)
→ policy. A policy is obtained by transforming each rule to the formCS : CSA → A,
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the order of the rules is not important since the decision tree partitions the state-action
space. For computational reasons it could be interesting to first consider rules with the
least negations in them. A default rule is also added that predicts a random action in case
none of the other rules apply. For the policy tree in Figure 1, this gives the following
relational policy:{

s(S), goal clear(X) : clear(S, A), clear(S, B), above(S, A,X) → move(A,B)
s(S), goal clear(X) : random block(X), random block(Y ) → move(A,B)

There are different approaches to extract more than one skill. One possibility is
to repeat the above procedure with different language bias settings, e.g. to obtain a
different level of generalization. For instance the approach of [9] can be modeled with
our approach by using appropriate language bias settings for both “problem-space” and
“agent-space” skills. Another approach would be to specialize the initiation set of an
option. For instance if the top test of the policy tree is not selective on the arguments of
the action, the policy will be different for the two partitions of the state space.

The learned skills do not necessarily have to be subgoals in the new task as is the
case in our blocks world example. We expect that transferring knowledge in the form
of options is also useful in other cases. Consider as an example learning a task in a
stochastic environment where the agent already learned a skill to solve the same task
in a non-stochastic version of this environment. This skill will then probably be most
interesting in the beginning of the learning task as a means of good exploration, while
the learning agent might find better policies when he collects more information.

5 Preliminary Experiments

We consider a target task in the blocks world with theon(A,B)-goal, i.e. the agent
receives a reward iff blockA is directly on top of blockB. The number of blocks
is varied between 5 and 15 every episode. During exploration, the learning agent is
allowed 10 steps more than needed to reach the goal. To evaluate the agents’ learning
behavior, 100 tests are performed following a greedy policy checking the percentage of
episodes in which an optimal path is followed. The RRL-TG[3] method is used in all
experiments to approximate theQ-function. Figure 2 shows the results averaged over 5
different runs.

First of all, we will compare the learning behavior of a standardRRL agent using
only primitive actions and an agent that can also use theclear(X) option as defined in
Example 1. As expected, Figure 2 clearly shows an improvement in learning behavior
for the agent that can use this skill.

Next, we would like to investigate how difficult it is to learn such aclear(X) skill.
To learn this skill, we set up a blocks world environment with theclear(X)-goal in
which the number of blocks is varied between 5 and 10. TheQ-function learned by the
agent after 100 episodes is taken to create training examples. This dataset is created
using states from 50 new episodes1. The policy trees learned in the 5 different runs all

1 Instead of using episodes, it is also possible to create the dataset using random states, i.e.
episodes of length one
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Fig. 2.Results in the blocks world withon(A, B) goal and theclear(X) skill

looked similar to the one shown in Figure 1. They only differed in the order of the tests
and the distributions in the leaves. Note that by only looking at the majority class noise
in theQ-function can be filtered out. As a result the learned policy tree is optimal, while
the policy based on theQ-function was not. Of course, by only looking at the majority
class, it could also happen that important information is filtered out. We will address
these issues in future work.

Since in general we do not know whether the learned skill is optimal, we set the ter-
mination condition so that it terminates for states in whichclear(X) holds and with a
probability of0.05 otherwise. Figure 2 shows the learning behavior of a learning agent
using primitive actions and this learned option. To compensate for the 100 training
episodes in theclear(X) task we shifted this learning curve to make a fair compari-
son. Since an optimal policy is learned for thisclear(X) skill, the learning behavior is
similar to the one with the user-definedclear(X) skill and significantly better than the
learning behavior of the agent with only primitive actions.

6 Conclusions and Further Work

In this paper we presented an extension of the options framework to the relational set-
ting. We have also shown how this framework can be used to learn relational skills
that can be transferred across similar, but different tasks. Some very preliminary exper-
iments motivate the use of such learned skills inRRL problems.

In future work, we will perform a more in depth analysis of the approach we pre-
sented. Currently, we have not considered the problem of determining which skills to
learn. Since we learn parameterized options this is less of a problem, since it will often
be possible to learn a skill for every predicate in the state representation (e.g. usually
clear/1 andon/2 in the blocks world).

When learning these skills is hard, one could consider the approach of Fern et al. [7]
to generate extra learning experience by using relational abstractions to create artificial
goals in non-goal states. E.g. in every state there will be a clear block, so it is possible
to assign the clearance of that block as a goal for the agent to create training experience
for theclear(X) goal.
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Furthermore, at the moment we only consider the use of skills learned in previous
tasks. A natural extension would be to focus on a hierarchical decomposition and learn
new skills in the current task and to modify previous learned skills while learning in the
new task.
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