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Abstract. Despite the considerable success of Inductive Logic Program-
ming, deployed ILP systems still have efficiency problems when applied
to complex problems. Several techniques have been proposed to address
the efficiency issue. Such proposals include query transformations, query
packs, lazy evaluation and parallel execution of ILP systems, to mention
just a few.
We propose a novel technique to improve the execution time of an ILP
system that avoids the procedure of deducing each example to evaluate
each constructed clause. The technique takes advantage of the two stage
procedure of Mode Directed Inverse Entailment (MDIE) systems. In the
first stage of a MDIE system, where the bottom clause is constructed, we
store not only the bottom clause but also valuable additional information.
The information stored is sufficient to evaluate the clauses constructed
in the second stage without the need for a theorem prover. We used a
data structure called Trie to efficiently store all bottom clauses produced
using all examples (positive and negative) as seeds.
The technique was implemented and evaluated in two well known data
sets from the ILP literature. The results are promising both in terms of
execution time and accuracy.
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1 Introduction

Inductive Logic Programming (ILP) [1,2] has been successfully applied to prob-
lems in several application domains [3]. Nevertheless, it is recognised that effi-
ciency and scalability is a major obstacle to the increased usage of ILP systems
in complex applications with large hypotheses spaces.



Research in improving the efficiency of ILP systems has focused on reducing
their sequential execution time, either by reducing the number of hypotheses
generated (see, e.g., [4,5]), or by efficiently testing candidate hypotheses (see,
e.g., [6,7,8,9]). Another line of research, recommended by Page [10] and pursued
by several researchers [11,12,13,14,15], is the parallelization of ILP systems. A
survey on parallel execution of ILP systems can be found in [30].

During execution, an ILP system generates many candidate hypotheses which
have many similarities among them. Usually, these similarities tend to corre-
spond to common prefixes among the hypotheses. Blockeel et al. [6] defined
query-packs as a technique to exploit this pattern and improve the execution
time of ILP systems. Inspired by their work, we focus on how to reduce the
amount of theorem proving to a minimum. We call our novel approach trieing
MDIE. The key idea is to use a single Trie data structure (also known as a Prefix-
Tree) to inherently and efficiently exploit the similarities among the hypotheses,
hence reducing memory usage and allowing us to store useful information about
causes. But this is as close we get to query-packs, which can be considered as a
form of trie designed to improve execution speed. Instead we follow a different
approach based on Mode Directed Inverse Entailment (MDIE)[32].

To explain our approach, trieing MDIE, let us recall that a “traditional”
MDIE-based procedure is performed in two stages. In the first stage an exam-
ple is chosen and the bottom clause[32] is constructed (saturation stage). In the
second stage a search is performed using the bottom clause as the lower bound
of the search space. During the second stage clauses are constructed and evalu-
ated using the examples. In the trieing MDIE approach we saturate all examples
(positive and negative). From each bottom clause we generate valid clauses and
insert them in an unique Trie, such that the Trie contains counters describing
clause coverage. The search procedure of the second stage of a “traditional”
MDIE approach will therefore be replaced by a simple inspection of this Trie
to retrieve the best clause. For efficiency sake, in our approach we first process
the positive examples so that only clauses generated by the positives are in-
serted in the Trie. The clauses generated using the negatives are not considered
interesting, so negative clauses just update coverage counters.

Trieing MDIE is usable in positive only data sets and is not applicable to
learn recursive theories. A further improvement in speedup can be achieved by
combining Trieing MDIE with some of the strategies to parallelise ILP [30], such
as Parallel Exploration of Independent Hypotheses and; Data Parallelism. It can
be implemented in MDIE-based ILP systems such as Progol [29], Aleph [16],
Indlog [9], and April [33]. Notice that tries had already been proposed previously
([31]) as a technique to reduce the amount of memory storage. In that study Tries
were used to store the clauses constructed during the second stage of the MDIE
method. They have also been used in the FARMER system [35] to overcome
efficiency issues of the Warmr system [34] for learning Association Rules.

The remainder of the paper is organised as follows. Section 2 introduces the
Trie data structure and describes its implementation. In Section 3 we present
the algorithm to use Tries in MDIE-based ILP systems. Section 4 presents some



limitations of the technique when using background knowledge containing pred-
icates that are not pure Logic Programs. In Section 5 we present an empirical
evaluation of the impact in execution time of the proposed data structure. Fi-
nally, in Section 6, we draw some conclusions and propose further work.

2 The Trie Data Structure

Tries were first proposed by Fredkin [17], the original name inspired by the
central letters of the word retrieval. Tries were originally invented to index dic-
tionaries, and have since been generalised to index recursive data structures such
as terms. Please refer to [22,21,19,20,18] for the use of tries in automated theo-
rem proving, term rewriting and tabled logic programs. An essential property of
the trie data structure is that common prefixes are represented only once. The
efficiency and memory consumption of a particular trie thus largely depends on
the percentage of terms that have common prefixes. This naturally applies to
ILP, as the hypotheses space is structured as a lattice and hypotheses close to one
another in the lattice have common prefixes (literals). Hence, it clearly matches
the common prefix property of tries. We thus argue that, for ILP systems, this
is an interesting property that we should be able to take advantage of for storing
hypotheses and associated information.

2.1 Description

A trie is a tree structure where each different path through the trie data units,
the trie nodes, corresponds to a term. At the entry point we have the root
node. Internal nodes represent symbols in terms and leaf nodes specify the end
of terms. Each root-to-leaf path represents a term described by the symbols
labelling the nodes traversed. Two terms with common prefixes will branch off
from each other at the first distinguishing symbol. When inserting a new term,
we start traversing the trie starting at the root node. Each child node specifies
the next symbol to be inspected in the input term. A transition is taken if the
symbol in the input term at a given position matches a symbol on a child node.
Otherwise, a new child node representing the current symbol is added and an
outgoing transition from the current node is made to point to the new node. On
reaching the last symbol in the input term, we reach a leaf node in the trie.

An important point when using tries to represent terms is the treatment of
variables. We follow the formalism proposed by Bachmair et al. [19], where each
variable in a term is represented as a distinct constant. Formally, this corresponds
to a function, numbervar(), from the set of variables in a term t to the sequence
of constants VAR0, ...,VARN , such that numbervar(X) < numbervar(Y ) if X is
encountered before Y in the left-to-right traversal of t. For example, in the term
[eastbound(T ), has car(T,C), long(C)], numbervar(T ) and numbervar(C) are
respectively VAR0 and VAR1.
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Fig. 1. Using tries to represent:
(a) C = eastbound(Train) :- has car(Train,Car),long(Car);
(b) C and D = eastbound(Train) :- has car(Train,Car),closed(Car),short(Car);
(c) C, D and E = eastbound(Train) :- has car(Train,Car),closed(Car),long(Car).

2.2 Using Tries to Represent Hypotheses

In order to maximise the number of common trie nodes when storing hypotheses
in a trie, we used Prolog lists to represent the clauses corresponding to hypothe-
ses. A clause of the form Head : −Body1, ...,Bodyn is stored in the trie structure
as an unique path corresponding to the list [Head ,Body1, ...,Bodyn]. Such a path
always starts from the root node in the trie, follows a sequence of trie nodes and
terminates at a leaf data structure, the ilp frame data structure, that we used
to extend the original trie structure to store associated info with the clause,
namely info regarding the number of positive and negative examples covered
by the clause (the use of this info is discussed in more detail in the following
sections). Figure 1 presents an example for a trie with three clauses.

Initially, the trie contains the root node only. Next, we insert the clause
[eastbound(T ), has car(T,C), long(C)] and nine nodes are added to represent it
(Figure 1(a)). The clause [eastbound(T ), has car(T,C), closed(C), short(C)] is
then inserted which requires eleven nodes. As it shares a common prefix with the
previous clause, we save the six initial nodes common to both representations
(Figure 1(b)). The clause [eastbound(T ), has car(T,C), closed(C), long(C)] is
next inserted and we save more eight nodes, the same six nodes as before plus
two more nodes common with the second inserted clause (Figure 1(c)).



3 Trieing MDIE

The first insight in our approach is that if a legal clause C covers an example e

then an instance of the clause Cσ must be in the most specific clause for e, ⊥e.
Indeed, imagine that C covers e. Then, there is a θ such that Cθ satisfies

example e. Hence, from the completeness of saturation, a variant of Cθ must be
in e’s most specific clause. Hence, there must be a σ such that Cσ is in e’s most
specific clause.

If this is the case, can we just look for the clause in e’s bottom clause?
Unfortunately, the answer is not quite: generalising Cθ will not always lead to
a variant of the clause of interest, C. To understand the problem, consider the
following clause C:

C = l(A)← h c(A,B), h c(A,C), d(C), o c(B).

and the following bottom-clause for an example e:

⊥e = l(A)← h c(A,B), h c(A,C), o c(B), d(B), f(C).

Careful examination shows that ⊥e is entailed by clause C. On the other
hand, the closest clause C ′ that can be generated from the bottom-clause is:

C ′ = l(A)← h c(A,B), h c(A,C), d(B), o c(B).

Although C ′ = Cθ, C ′ is a more specific version of the original clause, it is
not a variant. In this case, we cannot find a variant, even though the example
indeed covers the clause.

This suggests the following approach: given an example e construct the cor-
responding bottom clause ⊥e. Next, generate a set C with all legal clauses C

such that C θ-subsumes ⊥e. Then, we can state the following theorem:

Theorem 1. A clause covers e iff it is in C

If a clause covers e then according to the completeness of the bottom-clauses it
must θ-subsume the bottom-clause. The reverse immediately follows from the
properties of the bottom-clause. Therefore we have a set C with all legal clauses
that cover the example.

Next, given a set of examples {e+

1 , e+

2 , . . . , e+
n e−1 , e−2 , . . . , e−m} construct the

corresponding sets of clauses {C+1 , C+2 , . . . , C+n C
−

1 , C−2 , . . . , C−m}: finding the best
clauses should be just a question of searching for clauses that appear in most C+

i

and not in C−i . More precisely, if we allow no noise, then we would like to find
the clause with best coverage from ∪iC

+

i \ ∪j C
−

j .

The second insight of our approach is that we are not interested in examples,
but in the set of all clauses of interest, C (which would to a first approximation
be close to ∪iC

+

i . Now, this set may grow quickly, and therefore needs a compact
and fast representation. It makes sense to represent sets of clauses by structures
optimised for quick access and sharing, such as the tries discussed previously.

Assuming this representation works, one approach is just to walk over all
examples, generate all clauses subsuming the bottom-clause, and:



– If C ∈ C, somehow state that C covers this example.
– If C 6∈ C, add C to C and state that C covers this example.

This basic algorithm can be optimised if we visit positive examples first, and
assume we care not about clauses that only cover negative examples:

– If the example is positive and C ∈ C, we state that C covers this positive
example.

– If the example is positive and C 6∈ C, we add C to C and state that C covers
one positive example.

– If the example is negative and C ∈ C, we state that C covers this negative
example.

– If the example is negative and C 6∈ C, do nothing.

Given a set C with all clauses and their coverage, we can easily implement
any theory construction algorithm.

The algorithm

The Trieing MDIE approach uses a greedy coverage main cycle as shown in
Figure 2. The main difference with systems like Progol or Aleph concern the
inner procedure learn MDIE Trie(). We now explain how clauses are being
learn in the trieing MDIE approach.

generalise MDIE Trie(B,E,C):
Given:

background knowledge B;
a finite training set E = E+ ∪ E−;
a set of constraints C;
Return: a hypothesis H that explains the E and satisfies C

H = ∅
while E+ 6= ∅ do

h = learn MDIE Trie(E+, E−, B, C)
E+ = E+ \ covered(h)
H = H ∪ h
B = B ∪ h

endwhile

return H

Fig. 2. The greedy cover algorithm of a MDIE system implementation.

In what follows we refer the reader to Figure 3. The Trieing MDIE algorithm
has two basic stages. First a Trie is constructed (lines 1-19) and then the best
clause is found by inspection of the Trie (line 20). In the first stage the Trie is
constructed in three steps. We first use each positive example (lines 2-10) and



learn MDIE Trie(E+, E−, B, C):
Given:

background knowledge B; a finite training set E = E+ ∪ E−; constraints C;
Return: the best hypothesis that explains some of the E+ and satisfies C.

1. trie = ∅
2. foreach e ∈ E+ do

3. bot = Saturate(e, B, C)
4. repeat

5. clause = FindNewValidClause(bot)
6. clause = Normalise(clause)
7. if NotInTrie(clause, trie) then trie = InsertInTrie(clause, trie)
8. trie = UpdatePosCounters(clause, trie)
9. until clause == ∅
10. endforeach

11. trie = PruneTrie(trie)
12. foreach e ∈ E− do

13. bot = Saturate(e, B, C)
14. repeat

15. clause = FindNewValidClause(bot)
16. clause = Normalise(clause)
17. trie = UpdateNegCounters(clause, trie)
18. until clause == ∅
19. endforeach

20. return bestClauseInTrie(trie)

Fig. 3. The learning algorithm of Trieing MDIE.



for each we generate a bottom clause. Using the bottom clause we generate all
valid clauses4 (lines 4-9) and insert them in the Trie (line 7). To avoid syn-
tactic redundancy we normalise each clause (line 6). Normalisation orders the
literals according to the Prolog “@ <” order relation. The user has no choice
on the ordering to use. Since variables are turned into constants in the Trie
(VAR0, . . .VARN ) we have to generate all renaming of existential variables to
get the right countings in the Trie. All generate valid clauses update the counters
in the Trie (line 8). After the Trie is constructed we call a pruning procedure
(PruneTrie() line 11) that removes useless nodes like nodes with countings less
than minimum number of examples covered by a clause to be accepted (mincover
parameter). In the third step we process all the negative examples. With each
negative example we construct a bottom clause and from that bottom clause
construct valid clauses. Those clauses are discarded if they are not in the Trie
or used to update the counters if there is a copy of them.

The last stage of the algorithm (line 20 - bestClauseInTrie()) returns the best
clause stored in the Trie.

4 Trie the Real World

We have presented our algorithm in the context of an ideal world, where the
Background Knowledge is a pure logic program, the saturated clause is generated
to its completion, and all clauses subsuming the saturated clause are enumerated.
Next we discuss how our algorithm can cope with two major issues we found in
practise: completion of the saturated clause and syntactic redundancy.

Completeness and Recall Number In almost every data set ILP can only generate
a subset of the full saturated clause. This subset is controlled by a depth factor
i on the maximum length of variable chains, and also by the recall factor. Next,
we discuss how these two factors affect our algorithm.

The i constraint is a syntactic constraint on the maximum length of variable
chains. This constraint is applied uniformly to every goal while generating the
bottom-clause. By induction, it should be clear that if a variable chain respects
the i constraint in a saturated clause, it will respect the same constraint on every
other saturated clause.

The recall-number parameter indicates how many solutions to a goal can be
introduced in the bottom clause. If set to *, it will include every answer. On
the other hand, if set to a lower threshold than the actual number of different
answers a goal can generate, this parameter becomes a source of incompleteness.
As the answer order will be different with different examples, using low-values
of this parameter is not recommended when using the proposed algorithm.

Syntactically Redundant Clauses The switching lemma tells us that if conjunc-
tion of goals G1, . . . , Gn is satisfiable, then any permutation of these goals is
also satisfiable. ILP systems often take advantage of this principle to reduce the

4 Clauses satisfying the language and bias constraints.



number of clauses they actually need to generate: if one generates a(X), b(X)
there is no point in also generating b(X), a(X).

On the other hand, traditional ILP systems cannot use any ordering of goals,
as they must respect an ordering that is efficient for Prolog execution. As our
algorithm does not actually evaluate goals, this is is unnecessary: we can choose
any ordering between goals when checking for redundant goals. In this vein, we
try to simplify all syntactically redundant clauses into a normalised clauses, so
that all syntactically equivalent clauses will have a canonical representative in
the trie.

5 Experiments and Results

The goal of the experiments was to evaluate the impact of the proposed data
structures in the execution time and memory usage when dealing with real ap-
plication problems.

We adapted the April ILP system [33] so that it could be executed with
support for Tries and applied the system to well known data sets. For each data
set the system was executed twice with the following configuration: standard
MDIE implementation (no Tries), and MDIE using Tries.

5.1 Experimental Settings

The experiments were made on an AMD Athlon(tm) MP 2000+ dual-processor
PC with 2 GB of memory, running the Linux RedHat (kernel 2.4.20) operating
system.

The data sets used were downloaded from the Machine Learning repositories
of the Universities of Oxford5 and York6. Table 5.1 characterises the data sets
in terms of number of positive and negative examples as well as background
knowledge size.

Data set | E+ | | E− | | B |
carcinogenesis 202 174 44

mutagenesis 136 69 21
Table 1. Data sets

5.2 Results

For each data set, we ran a vanilla ILP system to generate a theory using a
deterministic top-down breadth-first search procedure (dtd-bf ). We varied the
maximum depth of the clauses (S) from 2 (one literal in the body) to 4 (3 literals
in the body).

5 http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
6 http://www.cs.york.ac.uk/mlg/index.html



Execution Time Clauses generated
Data set S

dtd-bf MDIE Trieing MDIE dtd-bf MDIE Trieing MDIE

Carcinogenesis 2 4 6 8,012 17,352
Carcinogenesis 3 56 82 233,860 684,855
Carcinogenesis 4 2,205 4,049 5,827,459 26,613,734

Mutagenesis 2 2,130 3,442 8,991 18,308
Mutagenesis 3 13,809 5,343 339,591 834,023
Mutagenesis 4 21,600 7,115 9,261,589 20,445,957

Table 2. Execution time and number of clauses generated

Table 2 compares the execution times and the number of clauses generated by
both approaches. The results confirm that Trieing MDIE generates considerably
more clauses (ranging from two up to five fold) than the other approach. In
spite of considering more clauses in the search, Trieing MDIE outperforms dtd-bf
MDIE in the mutagenesis data set. However, it is around 50% slower than dtd-bf
MDIE in the carcinogenesis data set. Naturally, if the same number of clauses
is generated, Trieing MDIE reduces the execution time. Although the impact
in execution time of Trieing MDIE is inconclusive, the impact in accuracy is
promising. In Table 3 we can observe that Trieing MDIE achieves good results.
In terms of memory usage Trieing MDIE is efficient as shown in Table 4.

Data set S dtd-bf MDIE Trieing MDIE

Carcinogenesis 2 72 72
Carcinogenesis 3 48 62
Carcinogenesis 4 51 69

Mutagenesis 2 65 65
Mutagenesis 3 71 94
Mutagenesis 4 74 82

Table 3. Accuracy

Data set S dtd-bf MDIE Trieing MDIE

Carcinogenesis 2 19 19
Carcinogenesis 3 19 21
Carcinogenesis 4 122 59

Mutagenesis 2 10 13
Mutagenesis 3 19 13
Mutagenesis 4 99 22

Table 4. Memory Usage



6 Conclusions

This paper is a novel contribution to the effort of improving ILP systems effi-
ciency. A novel technique was put forward to reduce execution time of MDIE-
based ILP systems. This improvement is achieved by avoiding the theorem prov-
ing of all clauses constructed during the search stage of a MDIE system. This
was possible by using a Trie data structure to store all generated clauses, and
their coverage. Tries take advantage of common pre-fixes in clauses which leads
to a quite small memory requirements for the ILP system. Coverage information
allows the system to estimate efficiently the value of clauses.

The proposed technique was integrated in an ILP system implemented in
Prolog and empirically evaluated on two well known data sets. The results in-
dicate a significant reduction in execution time (for the same number of clauses
evaluated) in all data sets used. The results also indicate an increase in accuracy
since the system is performs wider searches. Overall the amount of memory used
to analyse the data sets was very small.

In the future we plan to extend the evaluation process. We will first determine
the degree of non-determinism of the background knowledge of each data set.
We expect the result to improve with an increase of non-determinism of the
predicates in the background knowledge (more effort in theorem proving).

To show further the advantage in memory savings we intend to use much
larger data sets. Data from the ILP challenge from 2005, for example, will be
considered.
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