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Abstract. Statistical Relational Learning (SRL) combines the benefits
of probabilistic machine learning approaches with complex, structured
domains from Inductive Logic Programming (ILP). We propose a new
SRL algorithm, GleanerSRL, to generate the probability that an example
is positive within highly-skewed relational domains. In this work, we
combine clauses from Gleaner, an ILP algorithm for learning a wide
variety of first-order clauses, with the propositional learning technique
of support vector machines to learn well-calibrated probabilities. We find
that our results are comparable to SRL algorithms SAYU and SAYU-
VISTA on a well-known relational testbed.

1 Introduction

Inductive Logic Programming (ILP) is the process of learning first-order clauses
to correctly categorize domains of relational data. ILP uses relations expressed
in mathematical logic to describe examples, and can handle variable-sized struc-
tures and sequences [5]. Statistical Relational Learning (SRL) [8] builds on the
benefits of relational data and introduces methods for learning from large and
noisy datasets, typically in combination with producing probabilistic outputs as
opposed to strict classifications. Prominent work within SRL includes the gen-
erative approaches of Probabilistic Relational Models by Friedman et al. [7] and
Markov Logic Networks from Richardson and Domingos [17], as well as discrim-
inative algorithms such as SAYU and SAYU-VISTA from Davis et al. [4].

In this work we propose the use of Gleaner [9] as the foundation for a new
discriminative SRL algorithm called GleanerSRL. Gleaner is a two-stage algo-
rithm developed to first learn a broad spectrum of clauses and then combine
them into thresholded theories aimed at maximizing precision for a particular
choice of recall. Gleaner can run quickly on large datasets when one has a set
of available processors. Already new desktop computers include multiple cpu’s
(called ‘cores’), and within a few years it will be common for desktop computers
to have 32, 64, 128, or more cores. Also we have previously shown that Gleaner
can achieve good performance from only a relatively small number of clause eval-
uations per seed, because it keeps more than one good clause per seed, and we
believe the clauses learned from Gleaner will be more diverse than those found
with other approaches.

We modify the two-stage approach used by Gleaner into GleanerSRL, which
learns clauses, produces feature vectors, and generates probabilities. We then
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Fig. 1. GleanerSRL takes training, tuning and testing examples and returns a
probability estimate for the testing examples after four stages of processing.
Black arrows denote dependencies in training for a stage, while grey arrows
denote only data transformations. Note that the testset is not examined until
training is complete in order to allow us unbiased estimates of future perfor-
mance.

evaluate the quality of these approaches using Mean Cross Entropy in com-
parison to SAYU and SAYU-VISTA. Finally, we conclude by discussing future
directions and related work.

2 Learning Probabilities with GleanerSRL

GleanerSRL is a four-stage algorithm to directly estimate probabilities for re-
lational domains, as shown in Figure 1. The first stage learns a wide variety
of clauses from a large number of seed examples. The second stage uses the
clauses learned to generate a feature vector for each example, while the third
stage uses this feature vector in propositional learners to learn a numeric score
for each example, and the fourth stage calibrates these scores into probabilities.
In essence, we will be transforming our tasks into propositional domains through
the medium of our learned clauses and then using standard propositional learners
to estimate these probabilities.

2.1 Gleaning Clauses

The first stage of GleanerSRL is identical to that of the original Gleaner, and
learns a wide spectrum of clauses, illustrated in Figure 2. Gleaner brings in
a training set of positive and negative examples along with the background
knowledge. Each clause examined will cover a subset of examples; those that
are positive we call true positives (TP ) and those that are negative we call false
positives (FP ). The precision of a clause is then defined as TP

TP+FP . Not all
positives will be necessarily covered by a clause; those that are missed are called
false negatives (FN), and we define the recall of a clause as TP

TP+FN .
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Fig. 2. A hypothetical run of Gleaner for one seed and 20 bins on the training
set, showing each considered clause as a small circle, and the chosen clause per
bin as a large circle. This is repeated for K seeds to gather B × K clauses
(assuming a clause is found that falls into each bin for each seed).

Gleaner uses Aleph [18] to search for clauses using K seed examples to
encourage diversity. The recall dimension is uniformly divided into B equal
sized bins; in our experiments that appear in Section 3 our bins will be
[0, 0.05], [0.05, 0.10], . . . , [0.95, 1]. For each seed, we consider up to N possible
clauses using stochastic local-search methods [10]. As these clauses are gener-
ated, we compute the recall of each clause and determine into which bin the
clause falls. Each bin keeps track of the best clause appearing in its bin for the
current seed. We use the heuristic function precision × recall to determine each
bin’s best clause, since we believe this will increase the generality of our clauses.

At the end of this search process, there will be B clauses collected for each
seed and K seed examples for a maximum of B ×K clauses (assuming a clause
is found that falls into each bin for each seed). Since clauses can be learned
independently for each seed, Gleaner is fast for large datasets because each seed
can be explored in parallel.

2.2 Creating Features

Whereas the second stage of Gleaner combines these learned clauses in an at-
tempt to maximize precision-recall (PR) curves on an unseen testset, here we
wish to instead estimate the probability that an example is positive. We can-
not directly convert Gleaner’s final PR curve into numeric scores, since each
point in the test curve may come from a distinct theory and threshold combina-
tion. Gleaner requires the user to find the point closest to their desired recall and
then uses this theory to rank the testset examples based on the particular theory
which generated this point. Since we are interested in directly generating prob-
abilities instead of recall-precision curves, we introduce here a new second stage
for GleanerSRL to transform the learned clauses into propositional features.
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Our first transformation is the Boolean feature method. We create one feature
for each clause and assign the feature a value of 1 if the clause is true and 0 if the
clause is false. In a scenario with 20 bins and 100 seeds, this would generate 2000
features, given that there is a clause found within each bin for all seeds and all
clauses are unique. We have found in practice that there are many less features
generated than the complete 2000 due to duplicate clauses within the high-
recall bins. These Boolean feature vectors are created for the trainset, tuneset
and testset examples.

A second approach is the binned feature method. We make use of the theories
and thresholds as previously calculated by the second stage Gleaner, making
one feature per bin. For each example, the value of a feature is equal to the
cumulative precision of each clause in this bin’s theory that match this example.
This reduces our features to only the number of bins no matter how many seeds
are explored. In our earlier work with Gleaner, we noticed that duplicate clauses
were found more often in the high-recall bins. This binning feature method will
retain a more uniform coverage of the recall space and will also take advantage
of combining similar clauses. We look at two binning feature methods, one with
the features as raw score of the cumulative precision for each bin, and one with
the cumulative precision normalized to between 0 and 1 by the maximum score
found in that bin. The precision for each clause is calculated on the trainset, and
bin feature vectors are created for the trainset, tuneset and testset examples.
Using the tuneset to calculate the precision is also recommended, but I reuse
the trainset to maintain a suitably large number of positive examples for these
calculations.

2.3 Learning to Predict Scores

With the feature vectors calculated from the second stage, our problem is now
propositional in nature. The third stage of GleanerSRL uses standard proposi-
tional approaches to estimate the probability for each example. We will be using
classifiers where each feature f is assigned a weight wf through training. For a
new example xi, where 0 < i ≤ N for a testing set of size N and xi,j is the value
of feature f on example xi, we discriminate between positive and negative using
a threshold b as follows:

If
∑

f∈feats

(wf × xi,f ) > b then +, else -

We can achieve a richer feature space by using a kernel matrix K to give us a no-
tion of similarity between example xi and the examples in our training set (minus
those set aside in the tuning set). The simplest kernel is constructed by taking the
dot product of xi and example xj , such that K(xi, xj) =

∑
f∈feats(xi,f × xj,f ).

We can then replace our weighted feature model from above with

If
∑

j∈examples

(αj ×K(xi, xj)) > b then +, else -
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Table 1. We examine five different kernel methods for calculating K(xi, xj) =∑
f∈features k(xi,f , xj,f ) for Boolean feature vectors.

Kernel k(xi,f , xj,f )

Dot-Prod k(1, 1) : 1, else : 0

Precision k(1, 1) : precisionf , else : 0

Recall k(1, 1) : 1− recallf , else : 0

Both-Pos k(1, 1) : precision2
f , else : 0

Info

k(1, 1) : −log2(( TP+FP
|trainset| )

2)

k(1, 0) or k(0, 1) : −log2(2× TP+FP
|trainset| × (1− TP+FP

|trainset| ))

k(0, 0) : −log2((1− TP+FP
|trainset| )

2)

where αj is a weight on each kernel-induced feature. For the purposes of esti-
mating probabilities, we are only really interested in the weighted sum from the
above thresholded classification, and we use this as a numeric score s for each
example.

Our particular classifier choice for this paper is the Support Vector Machine
(SVM) [2]. SVMs learn weights for αj that maximize the margin between the
classification hyperplane and the training data by solving a linear or quadratic
program. In practice (especially when using linear programming), most αj val-
ues will be 0, thus ignoring a large number of our kernel-induced features. In
our preliminary testing, we also investigated using näıve Bayes and Logistic Re-
gression. We found them to be significantly outperformed by the SVM approach
and therefore do not include those results.

We examine here five different kernels, shown in Table 1, for use within our
SVM. First we use a simple dot-product kernel discussed above in combination
with both of the binning feature methods. As for kernels on Boolean features, we
also use a dot-product kernel, as well as four attempts to incorporate statistics
from the training set about each clause.

Since the similarity under the dot-product kernel is only increased when two
examples match on a feature (when features are all Boolean valued), we can
score each match instead by the precision of that clause as calculated on the
training set example. This means that examples will be more similar when they
are both covered by high-precision clauses. Similarly for recall, we use the score
1− recallf . Since we aim to collect clauses that have high precision in the first
stage, matching an example on a low-recall clause should be more meaningful in
relation to the positive examples.

We also explore two kernel methods related to the probability that a given
clause is expected to match a particular example, called both-pos and info. Pre-
cision equals the probability of an example being truly positive given that it
matched the clause, therefore precision2

f is the probability that any two exam-
ples are truly positive given that they both match on xi,f , assuming indepen-
dence, and we use this as our weight for both-pos. The actual probability of a
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given clause matching any example is based on the number of true and false
positives for that clause: probf = TP+FP

|dataset| . For the info kernel, we consider the
information content for the probabilities of both, only one, or none of the ex-
amples matching (using −log2(p(X)) for each case). Two other kernel method
explored but not reported here are the Hamming distance between two clauses
(where clauses are more similar if they return the same classification on a given
example, be it positive or negative) and a Gaussian kernel, as they were outper-
formed by our above kernels in preliminary tests.

2.4 Calibrating Probabilities

The SVM weighted sums from above will not be strict probabilities between 0
and 1. Therefore in the final stage of GleanerSRL, we calibrate these scores into
proper probabilities. Zadrozny and Elkan [21] and Niculescu-Mizil and Caruna
[14] recommend Isotonic Regression for large highly-skewed datasets. The main
idea behind isotonic regression is to transform the sorted list of SVM scores
into monotonically increasing probability scores which minimize the probability
errors, and can be seen as an adaptive method for automatically finding the
proper bin widths based on the tuning data. We achieve this isotonic regression
by using the Pool Adjacent Violators (PAV) algorithm. Given a set of examples
(si, ci), where each example i consists of the weighted SVM score s along with
the classification c, where c is now 1 for positive examples and 0 for negative
examples, PAV will return a mapping for a range of si scores to their calibrated
ci values. We calibrate our probabilities on a tuning set and then use the found
mapping to assign probabilities p(xi) on our testing set. Note that this step is not
necessary but still recommended when using näıve Bayes or logistic regression.

3 Experimental Results

We follow the methodology of Caruna and Niculescu-Mizil [1], and evaluate our
probability estimates from GleanerSRL using the metric of Mean Cross Entropy
(MCE). In preliminary work we found the results from using mean squared
error to be very similar, thus those results are not included here. Cross entropy
calculates the difference of predicted probability from the true probability; the
formula is derived from information theory and Kullback-Liebler divergence.
Formally,

MCE = −
∑n

i=0(a(xi)log(p(xi)) + (1− a(xi))log(1− p(xi))
n

where n is the testset size, a(xi) is the actual probability of example i (in our
case 0 or 1) and p(xi) is our estimate. To properly compute these numbers, we
enforced a bound on the probability estimates so that 0 < probmin ≤ p(X) ≤
1−probmin < 1. We tune this bound on our tuning set using leave-one-out cross-
validation. This bound is helpful when there is a complete mistake in probability,
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Fig. 3. Comparison of Mean Cross Entropy GleanerSRL kernel methods and
SAYU, ordered from least to most on each dataset.

where the actual probability is 1 and the predicted probability is 0, or vice versa,
since the cross entropy error will be infinity.

We report results on two highly-skewed domains, OMIM and Advisor:
OMIM This is the Online Mendelian Inheritance in Man genetic-disorder

biomedical information extraction dataset from Ray and Craven [16]. From a
sentence such as “Mutations in the COL3A1 gene have been implicated as a
cause of type IV Ehlers-Danlos syndrome, a disease leading to aortic rupture in
early adult life,” the task is to extract a relationship between the gene COL3A1
and Ehlers-Danlos syndrome. We use the ILP dataset construction of Goadrich
et al. [9], which contains five disjoint folds with 233 positive and 103,959 negative
examples.

Advisor This dataset is derived from the University of Washington CS
Department. It was constructed by Richardson and Domingos [17]. The goal is
to predict the advisor of a graduate student, where students, professors, courses
and papers are known to be related by author, instructor, and teaching assistant
relations. This dataset contains five disjoint folds with a total of 113 positive
examples and 2,711 negative examples.

For the parameters of GleanerSRL, we ran Gleaner with 20 bins, 100 seeds
for OMIM and 50 seeds for Advisor until 25,000 clauses were examined for each
seed. In combination with the SVM for stage three, we tuned with nine values
for the complexity parameter C ranging from 10,000 to 0.0001, and in stage four
we tested nine values for probmin from 0.25 to 0.0001. Different C and probmin

values were chosen for each fold.
Figure 3(a) shows the results of our kernel choices for GleanerSRL on OMIM.

Binnned feature vectors combined with the dot product kernel outperforms the
rest, however, this is only a statistically significant difference with the Boolean
match kernel. It is interesting to note that the highest scoring approaches use
the dot product kernels for both types of feature vectors.

The results on Advisor in Figure 3(b) again show that Binned Dot Prod-
uct outperforms our other approaches. Once again the dot product kernel is the
best choice. We also compare to SAYU and SAYU-VISTA from Davis et al. [4],
using a tree-augmented network [6] and an eager rule-adoption policy. SAYU
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learns a Bayesian network for classification by continually adding features when
a clause makes a significant improvement in the Area Under the Curve for Pre-
cision and Recall (AUC-PR). VISTA builds on SAYU by incorporating new
predicates throughout the learning process. We find that the difference between
GleanerSRL both SAYU-VISTA and SAYU is not statistically significant. We
separately explored directly optimizing the MCE for SAYU, and found the re-
sults were slightly worse than optimizing for AUC-PR, but the difference was
not statistically significant.

4 Related and Future Work

One typical approach to weighting a theory in ILP is propositionalization, where
each clause in a theory is translated into a Boolean feature. This allows for a
number of propositional learning algorithms to be used for learning weights on
each clause. Pompe and Kononenko [15] use a näıve Bayes classifier to find their
weights, while Srinivasan and King [19] use logistic regression, a technique to
find weights that will maximize the likelihood of the data.

Koller and Pfeffer [11] learn the weights for clauses in a theory by first cre-
ating a Bayesian network model for the theory. They then use an Expectation
Maximization algorithm to set the parameters to maximize the likelihood of the
data. Their results are on a toy dataset with three clauses, so it is unknown how
well this would extend to the very large datasets we propose to investigate here.
Richardson and Domingos [17] extend work with Relational Markov Networks
[20] to formulate Markov Logic Networks. Their setup can take clauses from
either ILP or a domain expert, translate them to a Markov Network, and then
learn the weights on the clauses using logistic regression. Davis et al. [3] compare
näıve Bayes, TAN and the sparse candidate algorithm as alternate methods of
learning appropriate weight parameters. As in the above methods, there is no
attempt to modify the learned theory, only the weights.

Support Vector Machines are a recent addition to the SRL toolkit, with con-
tributions of Support Vector Inductive Logic Programming (SVILP) from Mug-
gleton et al. [13], and kFOIL by Landwehr et al. [12]. SVILP is most similar to
our work, in that both use learned first-order clauses to create a kernel for prob-
abilistic output. However, where they use mainly a Gaussian kernel with a prior
probability over the clauses, we explore kernel methods and clause generation
that are informed by precision and recall on the training set. kFOIL presents
a dynamic kernel construction process, where the choice of clauses to add is
informed by the current classification accuracy. Conversely, GleanerSRL learns
clauses first and then constructs the kernel, and through the use of Gleaner we
can quickly and in parallel explore a large area of large hypothesis spaces.

We have explored the use of GleanerSRL through comparisons on two rela-
tional domains. In future work, we plan to compare with other SRL methods
and apply GleanerSRL to much larger testbeds, where we hope to see significant
speedups in search time due to using Gleaner over other methods. We also plan
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to investigate other kernel methods and propositional learning algorithms, as
well as alternate feature vector transformations.
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