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Abstract
Virtually all large-scale sequencing projects use automatic
sequence-assembly programs to aid in the determination of
DNA sequences. The computer-generated assemblies
require substantial hand-editing to transform them into
submissions for GenBank. As the size of sequencing
projects increases, it becomes essential to improve the
quality of the automated assemblies so that this time-
consuming hand-editing may be reduced. Current ABI
sequencing technology uses base calls made from
fluorescently-labeled DNA fragments run on gels. We
present a new representation for the fluorescent trace data
associated with individual base calls. This representation
can be used before, during, and after fragment assembly to
improve the quality of assemblies. We demonstrate one
such use – end-trimming of sub-optimal data – that results
in a significant improvement in the quality of subsequent
assemblies.

Introduction
A fundamental goal of the Human Genome Project is to
determine the sequence of bases in DNA molecules. Since
the late 1970’s, researchers have been making progress in
sequencing human DNA as well as that of several model
organisms (Maxam & Gilbert 1977, Sanger 1977). Their
methods have evolved from painstaking manual
generation and analysis of data to the incorporation of
automated and computerized techniques (Ansorge et al.
1986, Smith et al. 1986, Connell et al. 1987, Prober et al.
1987, Dear & Staden 1991, Hunkapiller et al. 1991, Myers
1994).

The key to the use of computers for analysis is that
DNA is most naturally represented as a discrete sequence
of bases. The sequence of bases can be thought of as a
string over an alphabet of four symbols: A, G, C, and T.
Algorithms for matching and aligning strings have been
well-studied in computer science and can be applied to

problems in DNA sequencing (Waterman 1989, Kruskal
1983). One critical application involves the alignment of
overlapping sequences of bases among DNA fragments;
this process is called sequence assembly. The sequences of
bases used for assembly are determined by an examination
of the fluorescent-dye intensity signal, called trace data,
that is output by automatic sequencers.

We present a more descriptive representation of the trace
data that is output by Applied Biosystems Inc. (ABI)
automatic sequencers. The output representation of ABI
trace data is a sequence of discrete fluorescent-dye
intensities. Although the information contained in this data
has enormous potential for use in sequence assembly, the
representation that is output by sequencers makes the
direct use of the data for automatic assembly almost
impossible. We believe that our new representation makes
trace-data information directly accessible for automatic
DNA sequence-assembly programs. To substantiate this
belief, we present a case study in which our representation
is used in an application that trims sub-optimal data from
sequences before assembly. Empirical results show that
the inclusion of the trace-data information improves the
quality of subsequent assemblies.

The following section of this paper presents a brief
background of DNA sequencing and assembly for those
readers who are unfamiliar. Next, our new representation
for trace data is detailed. This is followed by a
presentation of our case study. Finally, ideas for future
work and conclusions complete the paper.

Background

In brief, the sequencing procedure consists of selecting a
large segment of DNA, producing overlapping fragments
of this segment, sequencing each fragment, and finally
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aligning the overlapping areas of the fragments to
determine the overall sequence of the original segment of
interest. With the ABI 377 sequencer, the large segments
of DNA may be as long as several hundred kilobases (kb),
and the fragments that can be sequenced are less than one
kb long. Our work involves the sequencing and assembly
of individual fragments, so these aspects of the procedure
will be described in more detail.

Sequencing Fragments

The basic idea is that for each fragment, we need to
produce a set of complementary sub-fragments. The set is
complementary since it is generated through replication
using polymerase and a primer. At each replication step
deoxynucleotides (A, G, C, and T) and dideoxynucleotides
(A*, G*, C*, and T*) compete for addition to the growing
sequence. Deoxynucleotides permit elongation whereas
dideoxynucleotides terminate replication (Prober et al.
1987). The result is a set of sub-fragments that
encompasses all possible lengths (except those of the
initial primer).
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Figure 1. The sequence of a fragment of DNA and the
corresponding set of complementary sub-fragments for
sequencing. Quantities of primer, polymerase, deoxynucleotides,
and dye-labeled dideoxynucleotide terminators are added to
copies of the fragment to produce the set of complementary sub-
fragments. The asterisks designate fluorescently-labeled
dideoxynucleotide terminators.

Each dideoxynucleotide at the end of a sub-fragment is
labeled with a fluorescent dye. Since a different dye labels
each of the the four bases, all sub-fragments of a given

length are labeled with the same dye. (Other methods of
labeling also exist, but will not be described in this paper.)
Figure 1 shows a fragment and its corresponding set of
sub-fragments.

The set of labeled sub-fragments is placed on a plate of
polyacrylamide gel and an electric current is applied. The
current causes the migration of sub-fragments through the
gel. Since smaller pieces of DNA migrate more quickly
than larger ones, the sub-fragments become separated by
size. The fluorescent labeling then provides the means for
determination of the fragment sequence (Ansorge et al.
1986, Smith et al. 1986).

The ABI sequencer reads the intensity trace of each of
the four fluorescent dyes as the sub-fragments migrate
past. This process is called reading the trace, and the data
produced is called trace data. There is one set of trace data
for each of the four fluorescent dyes. Although each set of
trace data is composed of discrete measurements, the
points can be interpolated to form a continuous curve.

Base Calling

The sets of trace data are used to determine the sequence
of bases in the fragment; this is referred to as base calling.
The four sets of trace data are kept synchronized as they
are scanned during base calling. The sequencer expects to
call a base at fairly regular intervals and calls exactly one
base for each of these intervals of trace data (Perkin Elmer
1995). There are usually about ten trace-data points per
interval, and a record is kept of the points at which the
calls are made.

A
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G

C

T

Base Call

Trace

Figure 2. Sequence base calls and corresponding sets of trace
data. The sequencer calls the base with the highest trace value
unless two or more values are similar (in which case it calls an
N). Gray lines indicate where base calls are made.



The sequencer calls the bases in order as it scans the
trace data. Calls are made by examining the values of the
trace data. Ideally, the trace values for one base are
substantially higher than those for the other three. In this
case, the base corresponding to that trace is the one that is
called. Sometimes the trace values for two or more
possible bases are similar. In this case, the sequencer
makes a no-call and labels the base with an N. The goal is
to obtain the exact sequence of bases that is the
complement of the fragment. In practice, the accuracy of
the base calls made by modern sequencers is 98-99%
(Chen 1994, Kelley 1994). A sequence of base calls and
corresponding trace data is depicted in Figure 2.

Sequence Assembly

When all the fragments of the original DNA segment of
interest have been sequenced, we proceed to assembling
the fragments into larger segments (McCombie & Martin-
Gallardo 1994, Myers 1994, Rowen & Koop 1994). The
fragments overlap, so we can produce this assembly by
aligning the overlapping regions of the sequences. A
computer assembly program uses an approximate string-
alignment algorithm to find the optimal alignment of the
sequences of base calls (Needleman & Wunsch 1970,
Martinez 1983). A consensus of the base calls is
computed; this forms a contiguous sequence of DNA that
is known as a contig (Staden 1980). Figure 3 illustrates
this idea.
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Figure 3. Three overlapping fragments aligned to determine
the sequence of a larger segment of DNA. The base sequence
of this segment is the consensus of the aligned fragments.

When we assemble sequences that are not entirely
correct, we get base locations where sequences align but
do not agree completely (McCombie & Martin-Gallardo
1994). A consensus base call in these cases is assigned one
of 12 ambiguitycodes as listed in Figure 4. (An ambiguity
is any call that is not A, G, C, or T.) Figure 5 portrays a
multiple sequence alignment containing some ambiguities
in the sequence consensus.

In an ideal assembly where the data is flawless and
available, the sequences align to form one contig and each
consensus base call is A, G, C, or T. In fact, this is rarely
the case. Difficulties inherent in the preparation and
sequencing of fragments lead to incorrect base calls. Also,
the quality of the trace data becomes progressively worse

near the end of the fragment. Many more incorrect calls
and no-calls are in this region (Kelley 1994, Perkin Elmer
1995).
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Figure 4. Base ambiguity codes.

After assembly, the ambiguities must be resolved and a
single contig formed before a sequence is complete and
ready to be submitted to GenBank. This is a time-
consuming task performed by human sequence-editors that
entails visual analysis of the assembly and data (Rowen &
Koop 1994).
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Figure 5. Three sequences aligned that are not in perfect
agreement. The four ambiguous base calls in the consensus
sequence are underlined.

Trace-Data Representation
Currently, commercial assembly programs such as
DNAStar Inc. Seqman, Gene Codes Corp. Sequencher,
and Genetics Computer Group Fragment Assembly
System, use only the sequence of base calls, and no trace-
data information, in automatic assembly processes
(Schroeder 1996, Rosenberg 1996, Edelman 1996).
Seqman and Sequencherdo provide a 2-D graph
representation of trace data for users, but only for visual
examination. Human editors make extensive use of these
graphs after assembly to assist in resolving ambiguous
calls, fine-tuning alignments, and merging contigs (Rowen
& Koop 1994). As the size of sequencing projects
continually grows, it becomes increasingly important to
reduce these kinds of costly manual operations
(McCombie & Martin-Gallardo 1994, Rowen & Koop
1994).

We claim that the need for manual processes can be
reduced by allowing the explicit inclusion of trace-data
information into the automatic assembly process. Since the
existing represention of ABI trace data as four discrete
sequences of fluorescent-dye intensities is difficult to
incorporate, we have developed an algorithm that



transforms the trace data into a visually-descriptive
representation that is usable in assembly programs.

The trace-data output from an ABI DNA sequencer is
found in the data files of the ABI Analysisprogram. There
are four sets of data for a fragment of DNA – one for each
of the four fluorescent dyes. The trace data appears in two
forms; one is a sequence of raw intensities, and in the
other, the data has been processed such that trace peaks are
more distinct and uniform. It is the processed data that is
used to produce the graphs made available to users of
Seqmanand Sequencher. While studying the graphs,
sequence editors pay particular attention to the relative
intensities and characteristic shapes of trace data. It is a
measure of these shapes and relative intensities found in
the graphs of processed data that we describe in our
representation. By capturing this information, we can
make available to an assembly program the same
information that is available to editors.

For our new representation, we are interested in
classifying the shape and intensity of the local trace-data
that is used for each particular base call. We define this
local trace-data to be the data from midway between the
previous call and the current call to the data midway
between the current call and the next call (Figure 6). We
will refer to each of these intervals of data as base trace-
data. Each set of base trace-data is composed of about ten
to 15 data points representing the intensities of the
fluorescent dyes. In the following sections, the
classification of the trace data always refers to a single set
of trace data (the A, G, C, or T fluorescent-dye trace-data)
for a base.

GG T

Figure 6. Base trace-data. Base trace-data is the trace data
associated with a base that extends from midway between the
previous call and the current call to midway between the current
call and the next call.

Overview

The trace-data representation we define is composed of
classes of shapes, each of which is assigned a score from 0
to 100. Two broad categories are defined that are each then
divided into three classes. The two broad categories of
base trace-data shapes are peaks and valleys. Data that
curves down is categorized as a peak and data that curves

up is categorized as a valley. As illustrated in Figure 7,
some peaks or valleys are very sharp and pronounced,
others contain a shoulder, and others are merely a smooth
curve sloping in one direction.

Figure 7. A variety of shapes occur in trace data. Trace data
takes on a number of characteristic shapes. Some are sharp
curves, some contain a shoulder, and others appear as long
smooth curves.

Within the peak and valley categories, the data is
divided into three classes: strong, medium, and weak.
Curves assigned to strong classes are characterized by
sharp peaks or dips, those assigned as medium peaks and
valleys are characterized by the occurrence of a shoulder
in their curves, and curves in weak classes are smooth and
slope in only one direction. Stereotypical class shapes are
sketched in Figure 8.
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Figure 8. Stereotypical shapes of class curves. Gray lines
indicate base call locations.

Often, the distinction among the strong, medium, and
weak classes is not clear. In these cases, data is assigned a
weighted combination of class scores. Each peak and
valley is assigned a score that reflects the amount of
strong, medium, and weak character that is exhibited.

The trace data associated with a single base may contain
a peak, or a valley, or both a peak and a valley. The base is



called at a particular point in the trace data – we assign
scores for both the peak and the valley that are the closest
to this location. These class scores are weighted by
proximity to the base-call location. Peaks or valleys that
are closer to where the base is called have a relatively
higher score than those that are further away.

Sometimes we may need to make comparisons among
the four sets of trace data associated with a single base
call. For this situation, the classification scores are
adjusted to reflect the relative difference in intensities
(heights) of the peaks or valleys; higher peaks score higher
than lower peaks, and lower valleys score higher than
higher valleys.

Algorithmic Details

The data is scanned for strong peaks and valleys, then for
medium peaks and valleys, and finally, if neither of these
is found, a weak peak or valley is assumed. At each step,
we look for the peak and valley that are the closest to the
point where the base was called. Scores are assigned based
on proximity to the base-call location and on the amount
of strong, medium, and weak character exhibited.

We first examine the data for strong peaks or valleys. A
strong peak is detected when there is a change from a
negative to a positive slope, and likewise, a strong valley
is detected when there is a change from a positive to a
negative slope. The slopes are measured as the change in
intensity from one data point to the next. If a strong peak
or valley is found, it must be checked for amount of strong
and medium character. Peaks that start at the baseline
(zero intensity) and return to the baseline are scored as
100% strong and 0% medium. The same is true for valleys
that start at the maximum intensity and return to the
maximum intensity. Any other peaks or valleys found in
this step possess a combination of strong and medium
strengths.

To calculate the strong and medium scores, we measure
the local size of the peaks and valleys. We do this by
looking on either side of the peak or valley to find
extremes where the slopes change directions (changing
from positive to negative or vice-versa). The values at
these locations are used to determine the fraction of the
total height of the local area that is the peak or valley.
There are three local extremes used in the calculation: one
at the center of the peak or valley, and one to each side.
The scores for strong and medium classes are computed as
follows.

SP =  100 * (E - (L+ R) / 2) / E 
MP =  100 - SP
SV =  100 * ((L+ R) / 2 - E) / (L+ R) / 2 
MV =  100 - SV

where 
SP =  strong peak score

MP =  medium peak score
SV =  strong valley score
MV =  medium valley score
E =  value at peak or valley location
L =  value of extreme to left of E location
R =  value of extreme to right of E location

If no strong peaks or valleys are found, the data is
scanned for peaks or valleys of medium strength. A
medium peak is located when the slope has remained
(nearly) the same over at least three data points and then
changes significantly to a new value for at least three data
points. Three data points are used to ensure that a true
shoulder in the curve exists.

If a medium peak or valley is found, the amount of
medium and weak character is computed. Peaks or valleys
that contain a region of zero slope score 100% medium
and 0% weak. Other peaks and valleys found in this step
are a combination of medium and weak. To assign these
strengths we determine the fraction of the overall height of
the local area that is the shoulder. We do this by first
finding the locations on either side of the peak or valley
where the slope changes significantly. These locations and
that of the peak or valley are the three slope-change
locations used in the following calculation of medium and
weak scores.

WP =  100 * (max(L,R) - E) / max(L,R) 
MP =  100 - WP
WV =  100 * (E - min(L,R)) / E 
MV =  100 - WV

where 
MP =  medium peak score
WP =  weak peak score
MV =  medium valley score
WV =  weak valley score
E =  value at peak or valley location
L =  value at slope-change to left of E location
R =  value at slope-change to right of E location

The computation of the medium class scores defined
here do not conflict with the computation given for
assigning strong and medium scores since combined
strong and medium scores are mutually exclusive with
combined medium and weak scores.

Finally, if the data has not yet been classified in the
strong or medium assignment steps, a weak peak or valley
is assumed. Data with increasingly-positive or
decreasingly-negative slopes define data that is assigned as
a 100% weak valley. Data with slopes that are
decreasingly-positive or increasingly-negative is scored as
a 100% weak peak. Partial weak and medium scores are
not assigned here since that would have been done in the
previous step.

Each class score is adjusted as it is computed to reflect



the proximity of a peak or valley to the location where the
base was called. The scores are adjusted as follows.

Snew =  Sold * (1 - |E - B | / N)
where

S =  a class score
E =  location of peak or valley
B =  location of base call
N =  number of base trace-data points

Peaks and valleys that are closer to where the base was
called get higher scores.

(a) Existing Representation (b) 2-D Graph Representation
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Figure 9. Sample Base Trace-Data Classification. (a) The
existing representation of trace data is a sequence of intensities
associated with a base call. (b) A 2-D graph representation of the
trace data is shown as a curve interpolated from the data points.
(c) Our new representation is a classification of the trace data
based on the visual shape and intensity of the trace data. In this
example, a base has been called between a peak and a valley.
(The gray line indicates this location.) The base is called at point
7, and the peak and valley are detected at points 8 and 6
respectively. The peak and valley scores have been adjusted to
reflect the distance of the peak and valley from the point where
the base was called. The scores prior to adjustment are in
parenthesis.

An example of our new representation of trace data,
based on its visual shape and intensity, is shown in Figure
9. It is contrasted with the existing representation of trace
data as a sequence of discrete intensity values. In the new
representation, a valley with 81% medium strength and
19% weak strength has been detected to the left of the
base-call location. A peak that is 65% strong and 35%
medium is to the right of the base call. These scores have

then been adjusted to reflect that the peak and valley are
not at the base call location.

After classification scores have been computed for all
four sets of trace data for a base, the scores are modified to
account for the relative intensity differences among them.
The following formula accomplishes this.

Pnew = Pold * (P / max(T))
Vnew = Vold* (1 - V / max(T))

where
P = a strong, medium, or weak peak score
V = a strong, medium, or weak valley score
T = base trace-data values

Higher peaks and lower valleys get higher scores.
Each class in the base trace-data classification

representation is now assigned a score between 0 and 100.
If desired, a single class may be assigned to base trace-
data by selecting peakor valleyaccording to which has the
higher sum of scores, and then strong, medium, or weak
according to which has the highest score. For example, if a
set of trace data is assigned scores of SP=75, MP=14,
WP=0, SV=0, MV=11, and WV=3, peak has the higher
sum of scores (75 + 14 + 0 = 89) compared to valley (0 +
11 + 3 = 14), and the highest scoring class is strong (75).
Given this, the single class assignment is strongpeak. We
anticipate a need for both fine-grained and coarse
classifications of trace data.

In summary, we have described a classification of base
trace-data as follows.

• Broad categories are defined by curvature and include
peakand valley.

• Peak and valley categories are divided into strong,
medium,and weak classes.

• Curves assigned to strong classes are characterized by a
sharp peak or dip.

• Curves assigned to medium classes are characterized by
a shoulder.

• Curves assigned to weak classes are characterized by a
smooth slope in one direction.

• Scores reflect the amount of strong, medium, or weak
character exhibited.

• Scores reflect the proximity of peaks and valleys to the
base-call location.

• Scores reflect relative intensity to corresponding traces.

• A single class may be assigned by choosing the highest
scoring class in the category with the higher sum of
scores.

We believe that the new base trace-data classification
representation we have defined may be used before,
during, and after fragment assembly to increase the quality
and efficiency of automatic processes. To demonstrate the
value of our representation, we next describe a method



that successfully uses base trace-data classifications in an
important pre-assembly step. 

Case Study: End-Trimming
The quality of the trace data, and therefore the base calls,
decreases dramatically as the read through a gel progresses
(Kelley 1994). In good data, peaks are sharp, well-defined,
and scaled high (Perkin Elmer 1995). Figure 10 shows a
set of trace data as it progresses from good to nearly
useless. Since the accuracy of the data we use as input
dramatically affects the results of an automatic assembly
process, we want to use only data that is of sufficient
quality to produce a good assembly. End-trimming is a
common pre-processing step that helps to ensure that only
good data is used in an assembly; it removes sub-optimal
data from the 3’ ends of sequences (Seto, Koop & Hood
1993, McCombie & Martin-Gallardo 1994, Rowen &

Koop 1994).
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Figure 10. Deterioration of trace data. Trace data becomes
progressively worse as a gel is read.

For our end-trimmming experiments, we used the
DNAStar Inc. Seqmansequence-assembly software. In
this program, sequences are added one at a time to contigs.
New sequences are compared against the consensus of
each existing contig. If an acceptable alignment is found
with a contig, the sequence is added, otherwise a new
contig is created (Burks et al. 1994, McCombie & Martin-
Gallardo 1994, DNAStar 1994). Bad data adds many
ambiguous and incorrect base calls to, or poisons, the
consensus for its contig and may prevent subsequent
sequences from being added to the contig (McCombie &
Martin-Gallardo 1994). Even if bad data does not spoil the
consensus enough to prevent the addition of sequences, it
still results in a significant number of ambiguities in the
consensus that must be resolved manually (McCombie &
Martin-Gallardo 1994). 

Existing Methods

Existing methods for end-trimming include the use of
absolute cutoffsand N-Trimming.

The absolute cutoff method trims sequence data after a
user-specified number of bases. Often with ABI data, the
number of bases is about 500 – this is based on the

observation that the quality of trace data generally
deteriorates after 500 bases (Kelley 1994). Given this
information, data from base 500 to the end of the sequence
is trimmed off the sequence. Although trimming the data
after 500 base calls is reasonable, the problem is that
sometimes good data is trimmed away while at other times
poor data is kept. 

The other method, N-Trimming, trims off data that
exceeds an allowed number of no-calls (Ns) in windows of
sequence data. The DNAStar Seqmansequence-assembly
program employs an adaptation of this method described
as End-Clip in (Seto, Koop & Hood 1993). Seqman
requires two parameters; one sets a window size in bases
and the other specifies the number of Ns that are allowed
in a window. The sequence of base calls is scanned from
the 3’ to 5’ end until a window of the given size is found
such that the number of Ns in the window is less than or
equal to the maximum number allowed. Data from this
window to the end of the sequence is trimmed off. For
example, in Figure 10, if we set the window size to 20 and
the number of Ns allowed to 2, the last seven bases on the
3’ end of the sequence would be trimmed away. 

Although it is still commonly used, we believe that N-
Trimming has been made less useful by contemporary ABI
sequencers – the sequencers tend to almost always make a
base call even when the trace data is erratic. This results in
inferior data that remains untrimmed by the N-Trimming
method. Although the number of no-calls is certainly
correlated with the quality of trace data (and the base calls
made from it), it is advisable to look directly at the trace
data to determine its quality. Information contained in the
trace data can be used to make a more intelligent decision
about the quality of the associated base calls and the best
location for trimming.

Trace-Class Trimming

We want to use the information in trace data to make
useful end-trimming decisions. To do this, we examine the
base trace-data classifications defined earlier to determine
the quality of regions of trace data. For our method, we
simply use the single class assignment (i.e. the base trace-
data is assigned the class with the highest score in the
category with the highest sum of scores). Similar to N-
trimming, our algorithm scans data in windows. However,
rather than examining the windows for no-calls (as in N-
Trimming), we look for sub-optimal base trace-data
classifications. As we scan the window, we note only the
class of the base trace-data associated with the base that
has been called at that location. In general, trace data that
falls into the strong peak class is considered optimal; base
calls made with corresponding trace data of that
classification are likely to be accurate. Medium peaks
indicate trace data that is less likely to produce accurate



base calls, and weak peaks and valleys indicate unreliable
base calls.

To perform Trace-Class Trimming, three parameters
must be set: the size of the window in bases, the maximum
number of sub-optimal trace classes to be allowed in the
window, and a cutoff that specifies which classes are
considered sub-optimal. As the cutoff is adjusted, the
trimming stringency is changed correspondingly. For
example, the most stringent cutoff would specify that all
classifications except strong peaks are sub-optimal. A
cutoff identifying all but strong and medium peaks as sub-
optimal is less stringent.

The sequence of base trace-data classifications is
scanned from the 3’ to 5’ end until a window of the given
size is found such that the number of sub-optimal
classifications in the window is less than or equal to the
maximum number allowed. The data from this window to
the end of the sequence is trimmed from the sequence and
not used when adding the sequence to the assembly. (The
data is not actually “thrown away,” but is kept for possible
use in manual editing.) Figure 11 gives an example of
Trace-Class Trimming of a sequence.
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Figure 11. Trace-Class Trimming example. In this example,
the window size is ten, the maximum number of sub-optimal data
classifications allowed is two, and weak peaks (WP) and all
valleys are considered sub-optimal. The box encloses the first
window from the 3’ end of the data that contains two or fewer
sub-optimal peaks. The shaded area of the sequence is trimmed
off.

We empirically evaluate Trace-Class Trimming and
compare it to N-Trimming by optimizing the parameters
for each method over one set of data and then testing the
best parameters on a second set of data.

Data Sets

We used data from the E. coli Genome Project lab at the
University of Wisconsin that was gathered for an assembly
of a 243 kb fragment of E. coli. Data sets were formed in
the following way. The 2021 sequences in the set of data
for the assembly were trimmed extensively such that only
bases from locations 50 to 200 remained in each sequence.
To this set, we added longer E. coli sequences from
GenBank that were believed to fall in the 243 kb section of
the E. coli genome. The sequences were then
automatically assembled. In this way, only the very best
data was used and contigs were formed with sequences
that should align (given nearly ideal data).

All contigs containing ten or more sequences were
chosen for inclusion in data sets. In these contigs, the

GenBank sequences were removed and the full untrimmed
length of sequences was reinstated. Each set of sequences
in a contig formed a separate data set, called a project, that
could be independently assembled. The result was 20
projects for evaluating trimming methods. Ten projects
form a training set used to optimize parameters and the
other ten sets form a test set used to test the quality of
subsequent assemblies using the optimized parameters.
Training and test sets were chosen to make the number of
projects equal and the total number of sequences similar.

For use in our evaluations, we estimated the expected
number of contigs and total contig length for each project.
Although each project is formed from a single contig, in
some cases, the expected number of contigs is greater than
one because regions in the contig were bridged by (now
removed) GenBank sequences. To estimate the expected
total contig length, we simply use the length of the contigs
after they have been extended with complete, untrimmed
sequences. The data sets are described in Table 1.

Table 1. Data sets. The number of sequences is the actual
number in the project. The number of contigs and the contig
length are the expected values for the project.

(a) Training set.
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(b) Test set.
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In addition to the projects in the test set, we evaluated
our system with an unrelated set of sequences. These are
from a 7 kb segment of human DNA. This project has
reached completion so the number of contigs and contig
length is known. Table 2 describes this set.

Table 2. Human DNAdata set.
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Method and Results

We optimized parameters for the Trace-Class Trimming
method and separately for N-Trimming. For N-Trimming,
we varied the window size from ten to 50 in increments of
five and the number of Ns to be allowed in a window from
zero to five. For Trace-Class Trimming, we varied the
window size from ten to 50, the number of sub-optimal
peaks to be allowed from zero to five, and the trace class
cutoffs over strong peaks, medium peaks, and weak peaks.
Valleys were always considered sub-optimal. Each project
in the training set was assembled with every combination
of parameters and the quality of assemblies was evaluated.

The goal of end-trimming is to produce better-quality
automated assemblies of DNA fragments. We used three
metrics to measure the quality of assemblies. One is the
number of contigs. In general, we want a group of
sequences to assemble into a small number of contigs (the
ultimate goal is to have only a single contig). The second
metric is the number of ambiguities in the consensus
sequence. Fewer ambiguities means not only that the
sequences align well, but also that less manual work is
needed. The third measure is the total length of the
contigs. Contigs should be as long as possible without
incorporating too many ambiguities.

We measure the number of contigs and contig length as
the absolute deviation from the expected values, and the
number of ambiguities as the average number of
ambiguous calls per kb. To score each set of parameters,
we normalize and individually sum the three metrics
across all data sets for each set of parameters. The overall
score, Si, for parameter set i is

Si = α Ci + β Ti + γ Ai

where Ci, Ti, and Ai are the normalized sums of the

number of contigs, total length of contigs, and number of
ambiguities metrics, respectively; α, β, and γ are
constants. We believe that the order of importance of the
metrics is: 1) number of contigs, 2) number of ambiguities,
and 3) total length of contigs. Consequently, we set α =3,
β =1, and γ =2 to weight the metrics.

Using the scheme described above, we scored and sorted
the parameter sets. We found that, in general, the best

Trace-Class Trimming assemblies resulted when the
window size was large (40 to 50 bases), the cutoff defined
both strong and medium peaks as optimal, and the number
of sub-optimal peaks to be allowed was between 5% and
10% of the window size. The best N-Trimming assemblies
resulted when the window size was large (40 to 50 bases),
and the number of Nsallowed was small (0 to 2). 

The ten minimum scoring parameter sets for N-
Trimming and for Trace-Class Trimming were chosen as
optimal parameter settings. Next, test set projects were
assembled using each of the top ten parameter settings for
N-Trimming and Trace-Class Trimming settings. The
human DNA project was assembled using only the top-
scoring parameter sets. As a baseline, the projects were
also assembled with no trimming.

Discussion

By all three measures of evaluation (number of contigs,
total contig length, and number of ambiguities), our new
Trace-Class Trimming resulted in assemblies of better
quality than those produced after N-Trimming or no
trimming. Figure 12 graphs the results for the ten test-set
projects. On average over the test-set projects, the absolute
deviation from the expected length of contigs falls by
about 75% and both the deviation from the expected
number of contigs and the number of ambiguities per kb
falls by about 50% from assemblies using N-Trimming to
those using Trace-Class Trimming. The decrease in the
number of ambiguities represents a significant decrease in
the amount of hand editing that needs to be done on
assembled projects. For example, in a 243 kb project, the
number of ambiguities to be resolved would decrease from
nearly 10,000 bases using N-Trimming to fewer than 5000
using Trace-Class Trimming.

With the human DNA project, we again see a significant
improvement in the assembly done after Trace-Class
Trimming over the assemblies done after N-Trimming or
no trimming. Table 3 contains the results for the human
DNA project. After Trace-Class Trimming, the assembly
produces three contigs, compared to five contigs with N-
Trimming (the expected number is two). It also results in a
40% reduction in the number of ambiguities per kb over
the assembly done after N-Trimming.

The key to the success of Trace-Class Trimming is that
it uses the information contained in trace data in the form
of base trace-data classifications. These classifications
directly reflect the morphology of trace data, and are good
indicators of the accuracy of the associated base calls. The
N-Trimming method does not use trace data, rather it
examines only the sequence of bases for no-calls. Since
modern sequencers make base calls even when the trace
data is erratic, searching for no-calls may no longer be
useful as a method for assessing the accuracy of base calls.



Future Work
Our trace-data representation is a first attempt at capturing
visual qualities of ABI trace data. Although we have had
success in using it as described, we believe that it can be
enriched to make it more powerful. Relative intensities
and relative separations among peaks have been identified
as important features in patterns of DNA sequences
(Golden, Torgersen & Tibbetts 1993, Tibbetts, Bowling &
Golden 1994). We will study the merit of incorporation of
these features in our representation. In addition,
refinements may be made that define peak sharpness and
intensity relative to a global scale.
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Figure 12. Results. Results are graphed individually for the ten
test-set projects as well as for the average over all projects.

We also plan to explore other ways that our
representation can improve the quality and efficiency of
automated sequence-assembly.

The end-trimming method we described works as a pre-
processing step to assembly. Another pre-processing step
we believe base trace-data classifications may be useful
for is base calling. Machine learning systems such as
neural networks can be trained to recognize patterns of
classification scores that are associated with particular
base calls. Once the system has been trained to recognize
the patterns, it can make base calls with previously unseen
data. Tibbetts, Bowling, and Golden (1994) describe work
on one such method that uses trace data as input to simple
base-calling neural networks.

Table 3. Human DNA project test results. Trace-Class
Trimming yields an assembly with one more than the expected
number of contigs compared to three more with N-Trimming.
The Trace-Class Trimming assembly had 40% fewer ambiguities
than the assembly done with N-Trimming.
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Base trace-data classes may also be incorporated into
the actual assembly process. In the Seqmanassembly
program, the consensus is computed with a scheme that
uses a weight assigned to each base call in each sequence.
The idea is that better quality data should have higher
weights that will result in a greater contribution to the
consensus computation than poorer quality data. The
weights can either be assigned uniformly or according to a
trapezoidal rule as described in the DNAStar Lasergene
User’s Guide (1994). In either case, sequence-specific
information is not used and data may be weighted
inappropriately for its quality. As with end-trimming, base
trace-data classifications can be used as a measure of the
quality of base calls in a sequence. Weights can be
assigned to a base call that reflect the quality of data in the
local area of the call. This proposed method uses
information specific to the sequence as suggested by
Rowen and Koop (1994) and Bonfield and Staden (1995).

Alternately, base trace-data classifications may be used
in the assembly process to actually compute the consensus
sequence. We have encouraging results from preliminary
studies in which we use a summing of class scores as
evidence for making a particular consensus call.

In the post-assembly process, a significant amount of
time is spent in hand-editing. If we can use machine
learning techniques such as neural networks to train a
system to look for the same trace-data patterns as the
editors, we may be able to automate a significant portion
of the manual process. Tibbetts, Bowling, and Golden
(1994) describe a single-sequence automatic editing
system that uses a neural network to confirm calls or
suggest changes.

Finally, we believe that a more sophisticated analysis of
trace-data classifications can provide useful information to
users and assembly programs. In particular, we would like
to be able to identify problematic areas in trace data. Some
possible causes for the existence of such areas are: the
p r e s e n c e o f u n i n c o r p o r a t e d d i d e o x y n u c l e o t i d e s ,
homopolymer regions, gel compressions, and noisy data.



These regions are generally characterized by trace data
that exhibits concurrent significant intensities or peaks
among the four dye traces (Perkin Elmer 1995). This
occurrence can be detected with our trace-data
representation and the information gathered can be used
by hand-editors or in automatic processes requiring an
assessment of data quality.

Conclusions
The quality and efficiency of automated DNA assembly of
ABI-generated sequences can be increased by the
incorporation of trace-data information into the process.
The visually-oriented base trace-data classes we describe
provide a representation of trace data information that
makes this incorporation possible. We have shown one
such use, trimming of sub-optimal data before assembly,
that results in better assemblies. Using the base trace-data
classifications for trimming leads to a decrease in the
number of contigs, a reduction in ambiguities, and a closer
approximation to the expected contig length. Refinements
of and other uses of our representation are under
investigation.
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