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Abstract

Motivation: Given inputs extracted from an
aligned column of DNA bases and the
underlying Perkin Elmer Applied Biosystems
(ABI) fluorescent traces, our goal is to train a
neural network to correctly determine the
consensus base for the column. Choosing an
appropriate network input representation is
critical to success in this task. We empirically
compare five representations; one uses only
base calls and the others include trace
information.
Results: We attained the most accurate results
from networks that incorporate trace
information into their input representations.
Based on estimates derived from using 10-fold
cross-validation, the best network topology
produces consensus accuracies ranging from
99.26% to over 99.98% for coverages from
two to six aligned sequences. With a coverage
of six, it makes only three errors in 20,000
consensus calls. In contrast, the network that
only uses base calls in its input representation
has over double that error rate – eight errors in
20,000 consensus calls.
Contact: allex@cs.wisc.edu

Introduction

We have applied neural networks to the task of
determining the consensus base in a column of
aligned DNA sequences. The problem we
addressed is referred to as consensus calling
and is briefly described in Figure 1.

Accuracy in consensus sequences is an
important concern – the National Human
Genome Research Institute (NHGRI) set a
standard for sequencing accuracy at 99.99%
(NHGRI 1998). Unfortunately, the error rate
for sequences in GenBank has been estimated
to be from 0.3 to 0.03% (Lawrence &
Solovyev 1994) – much higher than the
standard. When imperfect DNA sequences are
translated, the effect on the resulting protein
sequence can be substantial. Even the mutation
of a single amino acid can cause critical changes
in the character of a predicted protein.
Furthermore, the deletion or insertion of bases
can result in frame shifts that lead to
dramatically increased error rates and the failure
to recognize open reading frames when the
DNA is translated.

Currently, sequencing accuracy is

significantly dependent upon careful human
examination and editing of consensus
sequences in fragment assemblies. The hand
process is time-consuming, expensive, and
error-prone, making it unsuitable for large-scale
sequencing projects. Automatic methods such
as ours that produce highly accurate consensus
calls reduce errors and alleviate the need for
human editing.

One significant way that our system for
consensus calling differs from most existing
methods is that it directly processes information
on the shape and intensity of Perkin Elmer
Applied Biosystems (ABI) fluorescent traces.
Other methods, such as those in the TIGR
Assembler (Sutton et al. 1995), and the Staden
Package (Bonfield et al. 1995), examine only
previously determined base calls when
calculating the consensus.

Two existing assemblers that do consider
trace characteristics are Phrap (Green 1997) and
DNASTAR’s SeqMan II. To make a consensus
call, Phrap chooses the base call in an aligned
column with the highest-quality trace as
determined by its companion base-calling
program, Phred (Ewing et al. 1998a, 1998b).
In SeqMan II, the consensus is determined by a
method we developed during earlier work
(Allex et al. 1997). The method extracts and
sums information about the shape and intensity
of the traces in an alignment. The sums are
used as evidence in determining the most likely
consensus call.

Another difference between our system and
others is our use of neural networks. Figure 2
contains a brief description of the operation of
neural networks; details can be found in
McClelland and Rumelhart (1986). Neural
networks can be a powerful data analysis tool
for problems in molecular biology (Baldi &
Brunak, 1998). Their strength is in their ability
to learn and use complex patterns such as those
found in these types of problems. Despite this,
the use of neural networks for tasks in DNA
sequencing has been scarcely explored. In one
promising example, neural networks are used
to make base calls in individual DNA sequences
(Golden et al. 1993). Note that Golden’s work
calls bases in single sequences whereas the
work we describe determines the consensus for
multiple aligned sequences.
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System and Methods

The ability of a neural network to correctly
categorize instances of a problem is critically
dependent upon the input representation (Baldi
& Brunak, 1998). For our work, this problem
can be expressed as follows.

Given: An aligned column of base calls and traces
Do: Represent the column as numerical inputs

We define four features of an aligned column
that can be used singly or in combination to
form input representations for a neural
network. Two of the features use information
extracted from fluorescent traces. We believe
that much valuable information is lost when the
traces are reduced to base calls. Our hypothesis
is that a neural network can exploit the trace
information to make consensus calls that are
more accurate than those made with networks
that use only base calls as inputs.

The inputs that use trace information are
weighted by the quality of the trace so that more
emphasis is given to better data. A description
of the calculation of the quality values we use
appears in Allex et al. (1997). One of the input
features that uses fluorescent trace information
captures the shape of the traces. To do this, we
employ Trace Classification scores described in
Allex et al. (1996) and summarized in Figure 3. 

The four input features we defined for an
aligned column are listed next.

• Base Call Fraction
The fraction of occurrences of G, A, T, and C.

• Gap Fraction
The fraction of occurrences of gaps.

• Trace Peak Intensities
For each base, the trace peak intensity weighted
by quality and averaged over the number of
aligned sequences.

• Trace Peak Shapes
For each base, the Strong (S) and Medium (M)
Trace Classification scores weighted by quality
and averaged over the number of aligned
sequences.

Figures 4-7 contain the details of calculating the
numerical inputs for these features.

We tested five network topologies. Each has
five hidden units and five outputs. The desired
outputs for the networks always consist of four

0s and a single 1 that represents either one of
the four bases or a gap. 

The input representations use combinations
of the four possible input features described
above. The simplest network, referred to as
Base Call, uses an input representation that
consists of the Base Call Fraction and the Gap
Fraction features. The Base Call network is
used as the control in testing our hypothesis
that inputs that include trace information
produce more accurate results than those that
only consider base calls.

A second network, called Trace Shape, uses
nine inputs that include the Trace Peak Shapes
and Gap Fraction input features. A third
network, Trace Intensity, has five inputs that
use Trace Peak Intensities andGap Fraction
input features. The fourth network, referred to
as Trace Shape and Intensity, uses both the
Trace Peak Intensities and the Trace Peak
Shapes as well as the Gap Fraction features in
its thirteen inputs. Finally, we tested one
network that included all the possible input
features: Base Call, Trace Peak Intensities,
Trace Peak Shapes, and Gap Fraction.

The five network topologies are summarized
in Figure 8. To make a consensus call with one
of these networks, we find the highest output
value and its corresponding base or gap is the
consensus call. Ambiguous calls may also be
made by setting a threshold. If more than one
output exceeds the threshold, then the
appropriate ambiguous call is made. If only one
output is above threshold, the call is
unambiguous. In non-heterozygote DNA
sequences, human editors resolve ambiguous
calls to one of the four bases before submission
to GenBank. Ambiguous calls serve to focus
editors’ attention on areas in the consensus that
warrant closer examination. In the case of
heterozygote genomes, ambiguous calls
pinpoint differences between the alleles.

Implementation

We tested the effectiveness of the networks on
examples with various distinct amounts of
coverage (number of aligned sequences). Since
almost any reasonable algorithm can make
correct calls when the coverage is high, we
believe that one criterion that can be used to
identify a superior method is its accuracy even
when the coverage is low. In addition, since

2



every step required to sequence a fragment adds
to the overall expense of sequencing, reducing
the needed coverage means a substantial
reduction in sequencing costs. In large
sequencing projects, it is typical to produce a
coverage of at least six in all areas to ensure
accurate consensus sequences. This much
coverage is not needed when using a method
that is highly accurate with fewer aligned
sequences. 

To compare the input representations with
varying amounts of coverage, we created
example sets in which all of the examples for a
particular set have the same coverage. We
chose examples with coverages of two, three,
four, five, and six to form five sets. Each set
contains 20,000 examples of categorized data.
Ten training and test sets are constructed from
each example set such that each network is
trained on 18,000 examples and tested on the
remaining 2000. Each example occurs in
exactly one test set and nine training sets
disjoint from the test set. In these sets,
examples with a desired output of gap are far
outnumbered by examples with desired outputs
of G, A, T, or C. To enable the networks to
learn to recognize gaps, gap examples are
duplicated in the training sets so that they occur
with about the same frequency as examples for
each base. (Note that gap examples are not
duplicated in test sets.)

The example sets are extracted from
fragment assemblies of a 124 kb section of E.
coli supplied by the E. coli Genome Project at
the University of Wisconsin (Blattner et al.
1997). The assemblies were created with
DNASTAR’s SeqMan II fragment assembly
program. Although most of the data and
alignments in the assemblies are quite good,
sequence traces do vary in quality and some
areas present more of a challenge for consensus
calling. Figure 9 contains an example of an
aligned region in one of the test assemblies that
contains a fair amount of discrepancies,
indicating imperfect underlying trace data and
difficulties for consensus calling. The data and
subsequent alignments included in our testing
and results cover a wide range of quality from
near perfect to quite inexact as shown in Figure
9. Correct base calls used to categorize data are
taken from E. coli sequences submitted to
GenBank.

NeuralWare Inc.’s NeuralWorks

Professional II software was used for all neural
network tests. We ran this software on an HP
Pentium Pro 6/200 running Windows NT. 

Discussion

We trained and tested each of the neural
network topologies with the five examples sets.
For each coverage, we used 10-fold cross-
validation and report accuracies averaged over
the 10 test sets. During the training phase, each
example in a training set was processed once. 

Accuracy results for the five topologies are
graphed in Figure 10. Of the five networks, we
found that Trace Shape & Intensity produces
the most accurate consensus calls. With a
coverage of six, it makes only three errors in
20,000 calls. The range of accuracies is from
99.26% for a coverage of two to over 99.98%
with a coverage of six.

The network that uses only base call
information in inputs, Base Call, has the lowest
accuracies at every coverage. With two or three
aligned sequences, this network has
substantially poorer results than any of the
other four networks. Except when the coverage
is four sequences, differences between the
Base Call and the Trace Shape & Intensity
networks are statistically significant using a
paired one-tailed t-test at the 95% confidence
level. As with the other networks, the best
results using the Base Call network are
achieved when the coverage is six. With six
aligned sequences, the error rate is eight in
20,000 – more than double that of the best
network that uses trace information.

In additional tests, we experimented with
alternative plausible input representations. In
one experiment, we extracted inputs from a
broader context than a single column. Our
premise was that the accuracy of the consensus
calls could be increased by extending the inputs
to include trace information for one or more
bases 5' to the base of interest. Parker et al.
(1995) and Golden et al. (1993) have reported
that intensity values for a base are affected by 5'
adjacent bases. For example, Parker et al. show
that the intensity of a C peak following a G is
relatively low. Several patterns such as these
are described for dye-primer and dye-terminator
labeled data (Perkin Elmer 1995, Parker et al.
1995). We believed that the neural networks
could be trained to recognize these patterns, but
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in practice found no improvement in accuracy
with the extended inputs. 

In another experiment, we provided not just
a single intensity input for each trace, but rather
the intensities in a window surrounding the
center of the base peaks. These are the same
values that we use in calculating Trace
Classification scores, but rather than
transforming them algorithmically, we allow
the network to process them. The network
using this alternate input representation required
more inputs but yielded results very similar to
the Trace Shape & Intensity network.

Our work demonstrates that neural networks
can be an effective tool for determining the
consensus of aligned DNA sequences. In
particular, networks trained with input
representations that use fluorescent trace
information and ignore base calls are highly
accurate. Further studies in utilizing traces in
neural networks for consensus calling and
related tasks are warranted. 
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CG T A CT G G CWAK CG G CG T - G CTT

CG TA CT G G C AA G CG GCG T - G CT T

CG T TC T GG C TA T CG G C GT TG CT T

CG TA CT G G C AA G CGGC G T - GCT T

G
A
T
C

Consensus

Figure 1: Consensus calling. State-of-the-art sequencers such as the Perkin Elmer Applied
Biosystems (ABI) 377 use fluorescent-dye labeling to determine DNA fragment sequences
(Ansorge et al. 1986, Smith et al. 1986). For each fragment, the sequencing process produces dye
intensities in four sets of fluorescent traces. Here we have an example of three fragments that have
been sequenced and aligned. For each fragment, traces and corresponding base calls output by
ABI software are shown. Once sequences have been aligned, the consensus sequence, as listed
above the alignment, is calculated.

In most columns in this example, the base calls indicated by the traces exhibit total agreement.
However, in the first two highlighted columns, the base calls and traces conflict and the
appropriate ambiguity code is listed as the consensus call. (W indicates A or T and K indicates T
or G.) In the rightmost highlighted column, a base call has been erroneously inserted in the first
fragment and the consensus shows a gap, meaning no base exists there. 
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weighted connections

inputs
(avg. peak intensities)

outputs
(consensus call)

hidden units

CG A T

CG A T

Categorized Examples

example 1:

example n:

…
example 2:

.32

.05

.38

.01

0

.01

0

.01

.04

.03

.35

0

Inputs

0

0

0

0

0

0

0

0

10

1

1

Desired Outputs

Inputs:  

Outputs:

Average relative G, A, T, and C trace peak intensities

A consensus call for the aligned column

Figure 2: Neural networks. A feed-forward backpropagation neural network learns to
categorize patterns of inputs. Inputs are numerical representations of features of a problem.
Typically, there is one output for each category of the problem; the desired output is 1 for the
correct category and is 0 otherwise. First the network is trained by processing a set of categorized
examples (a training set). A categorized example is an instance of the problem that includes its
inputs and desired outputs. During training, weighted connections in the network are adjusted so
that the error in the actual output is reduced. Hidden units in the network aid by allowing the input
representation to be transformed. When the difference between the desired and actual inputs is
sufficiently low, training is halted and the network can be used to categorize previously unseen
instances of the problem. Future accuracy of the trained network is estimated by measuring a
trained network's performance on a disjoint set of testing examples.

In this figure, we have an example of a simple neural network whose function is to call the
consensus for a single aligned column of DNA bases when given inputs extracted from fluorescent
traces. The network is given four inputs (the relative G, A, T, and C trace intensity averages), and
outputs a consensus call (G, A, T, or C).
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Peaks (negative curvature)

sign change 
in slope

Strong

otherwise

Weak
shoulder with 

zero slope

Medium

Example

Strong

Medium

Weak

0.57

0.43

0

Score

(a)

(b)

Figure 3: Trace Classifications. A peak Trace Classification is a set of three scores that
capture the shape and intensity of the traces associated with a single base call. (a) The classes and
the criteria used to distinguish among them are listed and illustrated. A score from 0 to 1 is
assigned for each of three classes that reflects the amount of Strong (S), Medium (M), and Weak
(W) peak characteristic that is exhibited by the trace. (b) In this example, one of the four sets of
traces is shown. The scores for the trace indicate a combination Strong-Medium peak.

0.25   0   0   0.54 Inputs:

G AC A A AT T A-… …
G AC A A AT T AC… …

G AC A A AT T AC… …
G AC A A ATTTTTTTT TTTTTTTT AG… …

Figure 4: Base Call Fraction. There are four aligned sequences in the highlighted column in
this example. For each base call we divide the number of their occurrences by the number of
sequences. The G base call occurs once in four sequences, so its input is set to 0.25. Likewise,
the inputs for A, T, and C are 0, 0, and 0.5 (2 of 4), respectively.
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0.251 Input:

G AC A A AT T A-… …
G AC A A AT T AC… …

G AC A A AT T AC… …
G AC A A ATTTTTTTT TTTTTTTT AG… …

Figure 5: Gap Fraction. For this example, we again have four aligned sequences in the
highlighted column. For this input, we are only interested in gaps, so the single input is the
number of gap occurrences divided by the number of sequences. Here a gap occurs once in four
sequences so the input is 0.25.

8



4 Inputs: 0    0   0.13   0

 Maximum intensity = 1600

Aligned column

Quality

0.37

0.42

0.40

Weighted Average

 Peak Intensity
(relative to maximum)

TATTATTCTCAC

TAT TATTCTCAC

TATTATTCTCAC

A

0.11

0

0

0

(0.04)

(0)

(0)

G

0

0

0

0

(0)

(0)

(0)

C

0

0

0.01

0

(0)

(0)

(0)

T

0.69

0.18

0.15

0.13

(0.26)

(0.08)

(0.06)

Figure 6: Trace Peak Intensities. Three sequences are aligned in the highlighted column.
For each of the four bases in each sequence, the intensity (value at the center of the column) of the
trace is divided by the maximum possible trace value. This fraction is then multiplied by the quality
value (Allex et al. 1997) assigned to the sequence. The average over the weighted values forms the
input for each base. In this example, the maximum trace value is 1600 (a typical value for ABI
traces). In the first sequence, the intensity of the T trace is 1104 and its intensity relative to the
maximum is 0.69 (1104/1600). Values for all other bases in each sequence are calculated in the
same way. The values are then weighted by the quality and the results are given in parenthesis
below each relative intensity. When averaged, the values yield the inputs 0, 0, 0.13, and 0.
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8 Inputs: 0       0       0       0       0.09       0.07       0       0

Aligned column
Trace Classification Scores

Quality

0.37

0.42

0.40

Weighted Average

G

0

0

0

0

(0)

(0)

(0)

S M

0

0

0

0

(0)

(0)

(0)

A
M

0.03

0

0

0

(0.01)

(0)

(0)

S

0.04

0

0

0

(0.01)

(0)

(0)

T
S

0.28

0.25

0.15

0.09

(0.10)

(0.11)

(0.06)

M

0.22

0.20

0.10

0.07

(0.08)

(0.08)

(0.04)

C

0

0

0

0

(0)

(0)

(0)

S M

0

0

0

0

(0)

(0)

(0)

TATTATTCTCAC

TATTATTCTCAC

TATTATTCTCAC

Figure 7: Trace Peak Shapes. To form the inputs for the three aligned sequences in the
highlighted column, we extract trace information using Trace Classification scores (Allex et al.
1996). We first compute the Strong (S) and Medium (M) peak scores for each of the four traces in
each sequence. (We found Weak scores to be irrelevant and do not use them.) Each score is then
multiplied by the quality score for its trace. The scores weighted by the quality are given in
parenthesis below the scores. There are two inputs for each base: the average over all the
sequences of the weighted Strong scores and the average of the weighted Medium scores.
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Neural Network
Name Input Features

Trace Shape
•  Trace Peak Shapes
•  Gap Fraction

# Inputs

9

Trace Intensity
•  Trace Peak Intensities
•  Gap Fraction5

Trace Shape 
and Intensity

•  Trace Peak Shapes
•  Trace Peak Intensities
•  Gap Fraction

13

Base Call
•  Base Call Fraction
•  Gap Fraction5

All

•  Base Call Fraction
•  Trace Peak Shapes
•  Trace Peak Intensities
•  Gap Fraction

17

Figure 8: Network topologies. Each of the five networks has five hidden units and five
outputs. The number of inputs range from five to 17.

GCAANTAAAAANTGTTCCTTTGGGGTGAANANCCAAANATN-CCCNGCTGGGT
GCAATGAAATACTGTGCGT--GGGGTGAG-AGGCGAACATT-CCCGGCTGG--
GCAATGAAATATTATGCGN--GGGGTGAGAGGGCGAACATTCCCCGGCTGG--
GCAATGAAATACTGTNCGTN-GGGNTAAA-AGGC-AANNNTCCCCGGNNGG--
    ??   ? ? ? ? ????   ? ? ????? ?  ?????   ? ??  ??

Figure 9: Test assembly alignment. The data used for testing is of varying quality.
Displayed here is a region with four aligned sequences from one of the test assemblies. Columns
whose base calls are not in total agreement are marked with a ‘?.’ There is a fair amount of
disagreement among the base calls, implying poorer-quality underlying trace data. Consensus
calling in this region is more difficult than in areas with near-perfect data.
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2 3 4 5 6

98.7

98.8

98.9

99.0

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100.0

Base Call

Trace Intensity

Trace Shape
All

Trace Shape & Intensity

Coverage

% Accuracy

Figure 10: Results. The Trace Shape & Intensity network produces the most accurate results at
every coverage. With a coverage of four or more, the accuracies for all networks that use trace
information are above 99.9%.
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