Neural Network Input Representations that Produce Accurate
Consensus Sequences from DNA Fragment Assemblies

Allex, C.F(1.2} Shavlik, J.W(1), and Blattner, F.F2.3)

1Computer Sciences Dept., University of Wisconsin — Madison,
1210 West Dayton St., Madison, WI 53706 USA, Tel: (608) 262-1204, FAX: (608) 262-

2DNASTAR Inc., 1228 South Park St., Madison, WI 53715 USA,
Tel: (608) 258-7420, FAX: (608) 258-7439

3Genetics Dept., University of Wisconsin — Madison,
445 Henry Mall, Madison, WI 53706 USA, Tel: (608) 262-2534, FAX: (608) 262-297

*To whom correspondence should be addressed.

Keywords: DNA, fragment assembly, sequencing, neural networks, consensus

To appear irBioinformatics, 15(9):723-728.



Abstract significantly dependent upon careful human
examination and editing of consensus
sequences in fragment assemblies. The hal
process is time-consuming, expensive, and
error-prone, making it unsuitable for large-si
sequencing projects. Automatic methods su
as ours that produce highly accurate consel
calls reduce errors and alleviate the need fo
human editing.

One significant way that our system for
nsensus calling differs from most existing
methods is that it directly processes informa
on the shape and intensity of Perkin Elmer
Applied Biosystems (ABI) fluorescent trace

Motivation: Given inputs extracted from an
aligned column of DNA bases and the
underlying Perkin Elmer Applied Biosystems
(ABI) fluorescent traces, our goal is to train a
neural network to correctly determine the
consensus base for the column. Choosing an
appropriate network input representation is
critical to success in this task. We empirically
compare five representations; one uses only
base calls and the others include trace
information.

Results: We attained the most accurate result

from networks that incorporate trace Other methods. such as those iNThER
information into their input representations. bler (Suttbn et al. 1995), and tiSaden

Based on estimates derived from using 10-fol ackag 2 :

L e (Bonfield et al. 1995), examine only
cross-validation, the best network topology previously determined base calls when
produces consensus accuracies ranging from calculating the consensus.

99.26% to over 99.98% for coverages from “"r,5 ayisting assemblers that do conside!

two to six aligned sequences. With a coveragg,ace characteristics aRérap (Green 1997) ar

of six, it makes only three errors in 20,000  H\ASTAR's SeqMan |1, To make a consens
consensus calls. In contrast, the network that call, Phrap chooses the base call in an aligne

only uses base calls in its input representation | imn with the highest-quality trace as

has over double that error rate — eight errors irﬂetermined by its companion base-calling

%0,0tootgorlllsensus calls. d program,Phred (Ewing et al. 1998a, 1998b)
ontact: allex@cs.wisc.edu In SeqMan 11, the consensus is determined |

Introducti method we developed during earlier work
niroduction (Allex et al. 1997). The method extracts and

We have applied neural networks to the task o$ums information about the shape and inter
determining the consensus base in a column dff the traces in an alignment. The sums are
aligned DNA sequences. The problem we used as evidence in determining the most lil

addressed is referred to@msensus calling consensus call.

and is briefly described in Figure 1. Another difference between our system a
Accuracy in consensus sequences is an  others is our use of neural networks. Figure

important concern — the National Human contains a brief description of the operation

Genome Research Institute (NHGRI) seta  heural networks; details can be found in
standard for sequencing accuracy at 99.99% McClelland and Rumelhart (1986). Neural
(NHGRI 1998). Unfortunately, the error rate networks can be a powerful data analysis tc
for sequences in GenBank has been estimatedr problems in molecular biology (Baldi &
to be from 0.3 to 0.03% (Lawrence & Brunak, 1998). Their strength is in their abil
Solovyev 1994) — much higher than the to learn and use complex patterns such as
standard. When imperfect DNA sequences ardound in these types of problems. Despite tl
translated, the effect on the resulting protein the use of neural networks for tasks in DNA
sequence can be substantial. Even the mutati@@guencing has been scarcely explored. In
of a single amino acid can cause critical changegmising example, neural networks are us:

in the character of a predicted protein_ to make base calls in individual DNA sequer
Furthermore, the deletion or insertion of basedGolden et al. 1993). Note that Golden’s wc
can result in frame shifts that lead to calls bases in single sequences whereas th

dramatically increased error rates and the failufork we describe determines the consensu
to recognize open reading frames when the Mmultiple aligned sequences.
DNA is translated.

Currently, sequencing accuracy is



System and Methods

The ability of a neural network to correctly
categorize instances of a problem is critically

dependent upon the input representation (Bal

& Brunak, 1998). For our work, this problem
can be expressed as follows.

Given: An aligned column of base calls and traces
Do: Represent the column as numerical inputs

Os and a singlé that represents either one of
the four bases or a gap.
The input representations use combinatic

ng the four possible input features describec

bove. The simplest network, referred to as
Base Call, uses an input representation that
consists of th®ase Call Fraction and theGap
Fraction features. Th8&ase Call network is
used as the control in testing our hypothesis
that inputs that include trace information

We define four features of an aligned columRroduce more accurate results than those tr

that can be used singly or in combination to
form input representations for a neural
network. Two of the features use information

only consider base calls.
A second network, calletrace Shape, uses
nine inputs that include thigace Peak Shapes

extracted from fluorescent traces. We believe andGap Fraction input features. A third
that much valuable information is lost when thénetwork, Trace Intensity, has five inputs that
traces are reduced to base calls. Our hypothesiseTrace Peak Intensities andGap Fraction

is that a neural network can exploit the trace
information to make consensus calls that are

input features. The fourth network, referred
asTrace Shape and Intensity, uses both the

more accurate than those made with networksTrace Peak Intensities and theTrace Peak

that use only base calls as inputs.
The inputs that use trace information are

Shapes as well as th&ap Fraction features in
its thirteen inputs. Finally, we tested one

weighted by the quality of the trace so that mofeetwork that included all the possible input
emphasis is given to better data. A descriptionfeaturesBase Call, Trace Peak Intensities,
of the calculation of the quality values we use Trace Peak Shapes, andGap Fraction.

appears in Allex et al. (1997). One of the input.  The five network topologies are summari
features that uses fluorescent trace informatiorin Figure 8. To make a consensus call with
captures the shape of the traces. To do this, v these networks, we find the highest outpi
employTrace Classification scores described in value and its corresponding base or gap is
Allex et al. (1996) and summarized in Figure 3zonsensus call. Ambiguous calls may also

The four input features we defined for an
aligned column are listed next.

» Base Call Fraction
The fraction of occurrences of G, A, T, and C.

» Gap Fraction
The fraction of occurrences of gaps.

» Trace Peak Intensities
For each base, the trace peak intensity weighted
by quality and averaged over the number of
aligned sequences.

» Trace Peak Shapes
For each base, the Strong (S) and Medium (M)
Trace Classification scores weighted by quality
and averaged over the number of aligned
sequences.

Figures 4-7 contain the details of calculating th

numerical inputs for these features.

We tested five network topologies. Each ha
five hidden units and five outputs. The desire
outputs for the networks always consist of fou

2

made by setting a threshold. If more than or
output exceeds the threshold, then the
appropriate ambiguous call is made. If only
output is above threshold, the call is
unambiguous. In non-heterozygote DNA
sequences, human editors resolve ambiguc
calls to one of the four bases before submis
to GenBank. Ambiguous calls serve to focu
editors’ attention on areas in the consensus
warrant closer examination. In the case of
heterozygote genomes, ambiguous calls
pinpoint differences between the alleles.

I mplementation

We tested the effectiveness of the networks

examples with various distinct amounts of

coverage (number of aligned sequences). £
Imost any reasonable algorithm can make
orrect calls when the coverage is high, we

entify a superior method is its accuracy ev
hen the coverage is low. In addition, since

%elieve that one criterion that can be used tc



every step required to sequence a fragment adRisfessional |1 software was used for all neu
to the overall expense of sequencing, reducingnetwork tests. We ran this software on an
the needed coverage means a substantial Pentium Pro 6/200 runningfindows NT.
reduction in sequencing costs. In large
sequencing projects, it is typical to produce a Discussion
coverage of at least six in all areas to ensure
accurate consensus sequences. This much
coverage is not needed when using a method
that is highly accurate with fewer aligned
sequences.

To compare the input representations wit

We trained and tested each of the neural

network topologies with the five examples s
For each coverage, we used 10-fold cross-
validation and report accuracies averaged o
h the 10 test sets. During the training phase,

varying amounts of coverage, we created example in a training set was processed on

: ; Accuracy results for the five topologies ar
example sets in which all of the examples for a Y :
particular set have the same coverage. We ~ draphed in Figure 10. Of the five networks,

chose examples with coverages of two, three,{ﬁund th?tTrace Sthape& Intensity ﬁm%gﬁs
four, five, and six to form five sets. Each set 1€ MOSt accurateé consensus calls. Vvith a

contains 20,000 examples of categorized dataCOVerage of six, it makes only three errors i
Ten training and test sets are constructed fro g,gggcfans. The range c])cftacctjraues ésng%
each example set such that each network is  ~<:* ofora coveI;ra_ge of two 1o over 93.
trained on 18,000 examples and tested on the"V! Tha CO\{eraglg(etr(]) tSIX. Vb I
remaining 2000. Each example occurs in inf € r;_e WOTK at uses 8;|y hasetr?al (
exactly one test set and nine training sets  Information in inputsBase Call, has the lowe:
disjoint from the test set. In these sets accuracies at every coverage. With two or tt
’ aligned sequences, this network has

examples with a desired outputgap are far >
outnumbered by examples with desired outpufSuPstantially poorer results than any of the

of G. A T. orC. To enable the networks to _ other four networks. Except when the cover
learn to re,cognfze gapsap examples are is four sequences, differences between the

duplicated in the training sets so that they occ e Call and theTrace Shape & Intensity
with about the same frequency as examples fd}etworks are statistically significant using a
each base. (Note thgap examples are not paired one-tailed t-test at the 95% confidenc
duplicated in test sets.) level. As with the other networks, the best
The example sets are extracted from results using thBase Call network are
fragment assemblies of a 124 kb sectiokof ~achieved when the coverage is six. With six
coli supplied by théE. coli Genome Project at aligned sequences, the error rate is eight in
the University of Wisconsin (Blattner et al. ZOEOOOk—'[rr]n?re thatn dou_bl;e thatt_of the best
1997). The assemblies were created with ~ NEWOrK that USES trace information. .
DNASTAR's SeqMan 11 fragment assembly In additional tests, we experimented with
program. Although most of the data and alternative plausible input representations. |
alignments in the assemblies are quite good, gne 3xper|mtenté, t¥1ve extractled |n||outs froom a
sequence traces do vary in quality and some Proader con et)k(l ttﬁn asingie co ;‘mn ol
areas present more of a challenge for consengj§M!S€ Was that th€ accuracy of th€ conse
calling. Figure 9 contains an example of an  callS could be increased by extending the in

aligned region in one of the test assemblies thif include trace information for one or more
contains a fair amount of discrepancies, ases 5to the base of interest. Parker et al.
indicating imperfect underlying trace data and (1995) and Golden et al. (1993) have repor!
difficulties for consensus calling. The data andthat intensity values for a base are affected’
subsequent alignments included in our testingadjacent bases. For example, Parker et al.
and results cover a wide range of quality from that the intensity of & peak following &G is

near perfect to quite inexact as shown in Figureelatively low. Several patterns such as thes
9. Correct base calls used to categorize data amee described for dye-primer and dye-termir

taken fromE. coli sequences submitted to labeled data (Perkin Elmer 1995, Parker et
GenBank. 1995). We believed that the neural networks
NeuralWare Inc.’sNeuralWorks could be trained to recognize these patterns
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in practice found no improvement in accuracy  277(5331):1453-74.

with the extended inputs. Bonfield, J.K., Smith, K.F. and Staden, R. (1995). ,
In another experiment, we provided not just new DNA sequence assembly prograsncleic Acids

a single intensity input for each trace, but rather Research, 24:4992-4999.

the intensities in a window surrounding the  Ewing, B., Hillier, L., Wendl, M.C., and Green, P.

center of the base peaks. These are the same (1998a). Base-calling of automated sequencer trac

values that we use in calculatifigace using Phred. |. Accuracy assessm&gnome
Clasgfication scores, but rather than Research, 8:175-185.

transforming them algorithmically, we allow  Ewing, B. and Green, P. (1998b). Base-calling of
the network to process them. The network automated sequencer traces using Phred. II. Error

using this alternate input representation requiredprobabilities.Genome Research, 8:186-194.
more inputs but yielded results very similar to Green, P. (1997). Genome sequence assetbly.

the Trace Shape & Intensity network. Annual Conference on Computational Genomics:
Our work demonstrates that neural networks Programand Abstract Book, 15. Herndon, VA: TIGF

can be an effective tool for determining the Science Education Foundation, Inc.

consensus of aligned DNA sequences. In Golden, J.B. Ill, Torgersen, D. and Tibbetts, C. (19!

particular, networks trained with input Pattern recognition for automated DNA sequencir

representations that use fluorescent trace On-line signal conditioning and feature extraction

information and ignore base calls are highly base callingProceedings, First International

accurate. Further studies in utilizing traces in  Conference on Intelligent Systems for Molecular

neural networks for consensus calling and Biology, 136-134. Bethesda, MD: AAAI Press.

related tasks are warranted. Lawrence, C.B. and Solovyev, V.V. (1994).
Assignment of position-specific error probability t
primary DNA sequence datisucleic Acids Research,
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Consensus CGTACTGGCWAK CGGCGT-GCTT

TTCT TA T TT TT
A —
Ti
TACT AA T - TT
TACT AA = TT

Figure 1. Consensus calling. State-of-the-art sequencers such as the Perkin Elmer App
Biosystems (ABI) 377 use fluorescent-dye labeling to determine DNA fragment sequences
(Ansorge et al. 1986, Smith et al. 1986). For each fragment, the sequencing process prot
intensities in four sets of fluorescent traces. Here we have an example of three fragments
been sequenced and aligned. For each fragment, traces and corresponding base calls ou
ABI software are shown. Once sequences have been aligned, the consensus sequence,

above the alignment, is calculated.

In most columns in this example, the base calls indicated by the traces exhibit total agreen
However, in the first two highlighted columns, the base calls and traces conflict and the
appropriate ambiguity code is listed as the consensusWalidicatesA or T andK indicatesT
or G.) In the rightmost highlighted column, a base call has been erroneously inserted in th
fragment and the consensus shows a gap, meaning no base exists there.



outputs
(consensus call)

inputs
(avg. peak intensities)

Inputs: Average relative G, A, T, and C trace peak intensities

Outputs: A consensus call for the aligned column

Categorized Examples

Inputs Desired Outputs
example 1: .32 .01 0 .03 1 0 0 0
example 2: .05 0 .01 .35 0
example n: .38 .01 .04 0 1 0 0 0

Figure 2: Neural networks. A feed-forward backpropagation neural network learns to
categorize patterns ofputs. Inputs are numerical representations of features of a problem.
Typically, there is oneutput for each category of the problem; tiesired output is 1 for the
correct category and is 0 otherwise. First the netwdrkiised by processing a set odtegorized
examples (atraining set). A categorized example is an instance of the problem that includes its
inputs and desired outputs. During training, weighted connections in the network are adju:
that the error in the actual output is reduced. Hidden units in the network aid by allowing tr
representation to be transformed. When the difference between the desired and actual inp
sufficiently low, training is halted and the network can be used to categorize previously un:
instances of the problem. Future accuracy of the trained network is estimated by measurir
trained network's performance on a disjoint seesifng exampl es.

In this figure, we have an example of a simple neural network whose function is to call the
consensus for a single aligned column of DNA bases when given inputs extracted from flu
traces. The network is given four inputs (the relafiyé\, T, andC trace intensity averages), a
outputs a consensus cdl,(A, T, or C).



(@)

Peaks (negative curvature)

Strong Medium Weak
sign change shoulder with otherwise
in slope zero slope
(b)
Example
Score
Strong 0.57
Medium 0.43
Weak 0

Figure 3: Trace Classifications. A peakTrace Classification is a set of three scores that
capture the shape and intensity of the traces associated with a single base call. (a) The cl
the criteria used to distinguish among them are listed and illustrated. A score from 0 to 1 is
assigned for each of three classes that reflects the amdanrgg (S), Medium (M), andWeak
(W) peak characteristic that is exhibited by the trace. (b) In this example, one of the four s
traces is shown. The scores for the trace indicate a combiSaiog-Medium peak.

.. CGAAGTAATA ..
.. CGAACTAATA ..
.. CGAACTAATA ..
.CGAA -TAATA ..

4 Inputs: 025 0 0 05

Figure 4. Base Call Fraction. There are four aligned sequences in the highlighted colun
this example. For each base call we divide the number of their occurrences by the numbel
sequences. T8 base call occurs once in four sequences, so its input is set to 0.25. Likev
the inputs foA, T, andC are 0, 0, and 0.5 (2 of 4), respectively.



.. CGAAGTAATA ..
.. CGAACTAATA ..
.. CGAACTAATA ..
.CGAA -TAATA ..

1 Input: 0.25

Figure 5. Gap Fraction. For this example, we again have four aligned sequences in the
highlighted column. For this input, we are only interested in gaps, so the single input is th
number of gap occurrences divided by the number of sequences. Here a gap occurs once
sequences so the input is 0.25.



Maximum intensity = 1600

Peak Intensity
(relative to maximum)

Quality| G A T C

/\ 037 | 0 011 069 0
S ARA Kl 0) (0.04) (0.26) (0)

Aligned column

0.42 0 0 0.18 0
\ © (0 (0.08) ()
TATTATT CTCA

040 | 0 0 015 0.01
©) (0 (0.06) (0)

TATTATTCTCA

Weighted Average 0 0 0.13 0

4lnputs: O O 0.13 O

Figure 6. Trace Peak Intensities. Three sequences are aligned in the highlighted columr
For each of the four bases in each sequence, the intensity (value at the center of the colur
trace is divided by the maximum possible trace value. This fraction is then multiplied by the
value (Allex et al. 1997) assigned to the sequence. The average over the weighted values
input for each base. In this example, the maximum trace value is 1600 (a typical value for .
traces). In the first sequence, the intensity offth@ce is 1104 and its intensity relative to the
maximum is 0.69 (1104/1600). Values for all other bases in each sequence are calculated
same way. The values are then weighted by the quality and the results are given in parent
below each relative intensity. When averaged, the values yield the inputs 0, 0, 0.13, and



Aligned column

Trace Classification Scores

A T

Quality | S M S M S M S M
0.37 0 0 0.04 0.03 028 0.22 0 0
TATTATT T A 0) (0) (0.01) (0.01) (0.10) (0.08) (0) ©)
0.42 0 0 0 0 0.25 0.20 0 0
© O © (© (011) (0.08) (© (0
ATTAT A
0.40 0 0 0 0 0.15 0.10 0 0
@ O © (0 (006 (004 (© (0
TATTATTCTCA
Weighted Average 0 0 0 0 0.09 0.07 0 0
8 Inputs: 0 0 0.09 0.07 0 0

Figure 7: Trace Peak Shapes. To form the inputs for the three aligned sequences in the
highlighted column, we extract trace information usingee Classification scores (Allex et al.

1996). We first compute tH&rong (S) andMedium (M) peak scores for each of the four trace
each sequence. (We fourMak scores to be irrelevant and do not use them.) Each score is
multiplied by the quality score for its trace. The scores weighted by the quality are given in
parenthesis below the scores. There are two inputs for each base: the average over all the

sequences of the weight8aiong scores and the average of the weigiiedium scores.
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Neural Network

Name # Inputs Input Features
« Base Call Fraction
Base Call > ¢ Gap Fraction
e Trace Peak Shapes
Trace Shape 9 ¢ Gap Fraction
. » Trace Peak Intensities
Trace Intensity 5

¢ Gap Fraction

e Trace Peak Shapes
13 e Trace Peak Intensities
e Gap Fraction

Trace Shape
and Intensity

Base Call Fraction
Trace Peak Shapes
Trace Peak Intensities
Gap Fraction

All 17

Figure 8: Network topologies. Each of the five networks has five hidden units and five
outputs. The number of inputs range from five to 17.

GCAANTAAAAANT GT TCCT TTGEEGET GAANANCCAAANATN- CCCNGCTGEGT
GCAATGAAATACT GTGCGT - - GEEGTGAG- AGECGAACAT T- CCCECTGEG -
GCAATGAAATATTATGCG\- - GEEGT GAGAGGEECGAACAT TCCCCECTGEG -

GCAATGAAATACT GINCGIN- GEENTAAA- AGEC- AANNNTCOCCGENNGG -
P2 2 2 207 2.0 00 7 2007 2 97 27

Figure 9: Test assembly alignment. The data used for testing is of varying quality.
Displayed here is a region with four aligned sequences from one of the test assemblies. C
whose base calls are not in total agreement are marked with a *?.” There is a fair amount ¢
disagreement among the base calls, implying poorer-quality underlying trace data. Consel
calling in this region is more difficult than in areas with near-perfect data.
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% Accuracy

100.0 —
99.9 —— =
99.8 i
99.7+
99.6
99.5+
99.41
99.3
99.27%
99.1*—,L* Trace Shape & Intensity [
/ _ :
9901 Trace Intensity ||
o8 9,L ;| Al |
) — == Trace Shape
98.87 Base Call B
98.7 | | |
2 3 4 5 6
Coverage

Figure 10: Results. TheTrace Shape & Intensity network produces the most accurate resu
every coverage. With a coverage of four or more, the accuracies for all networks that use
information are above 99.9%.
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