HARDWARE TECHNIQUES TO IMPROVE THE PERFORMANCE

OF THE PROCESSOR'MEMORY |INTERFACE

by

DouGLAS CHRISTOPHER BURGER

A dissertation submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

1998

© copyright by Douglas C. Burger 1999
All Rights Reserved

Abstract

Technology trends are making communication, both on and off the microprocessor chip, more
expensive relative to computation. In this dissertation, it is shown how a current-generation
microprocessor spends over two-thirds of its time performing no useful work, stalled for
memory. For the aggressive, modern processors that were measured, over half of the stalls due
to memory result from insufficient memory bandwidth, as opposed to bank access or data
transmission latency.

While bandwidth limitations can be obviated by paying a sufficiently high price, in this dis-
sertation hardware techniques to mitigate bandwidth-related performance losses are explored.
The efficiency of caches is measured, showing that the fraction of useful data in the cache over
time is generally under 20%. A theoretical lower bound is placed on the amount of bus traffic
that a cache may produce, and it is shown that current caches generally produce one to two
orders of magnitude more traffic than is necessary.

A number of solutions are proposed for reducing traffic to improve performance. Two tech-
niques are measured that dynamically adapt what is fetched upon a block miss, filtering
unneeded data. The first policydsial-size fetchingwhich alternates between fetching large
and small blocks depending on how much spatial locality exists. The secosubldock
prefetchingwhich fetches discontiguous sets of small blocks when stable usage patterns exist.
A technique calledbus prioritization schedules speculative fetches on the bus, to reduce
gueueing delays for data that are needed by the processor.

Cache and physical memory hybrids are explored, to better manage large on-processor
memories. A memory hierarchy taxonomy is proposed, and a hybrid calldddinect Cache
(ICE)—which manages an on-chip cache much like a physical memory, with its own page
table and translation buffer—is evaluated. It is shown that the performance of ICE is both
superior to and more stable than conventional alternatives.

Finally, the distribution of processing power into physical memory, to reduce both memory
latency and traffic, is explored. One such architecture is evaluated in detail (the DataScalar
architecture), and it is shown that—for memory-limited applications—this scheme can offer

significant speedups (9% to 100%).

Acknowledgments

This dissertation is the culmination of not only years of effort, but also of the training, teach-
ing, and support of many people. | would first like to acknowledge gratefully the Wisconsin
architecture faculty, who have educated me and trained me in innumerable aspects of a
research and academic career: Jim Goodman, my advisor, David Wood, Mark Hill, Guri Sohi,
and Jim Smith. | cannot thank them enough for their support, advice, training, squash, and
friendship. | hope that my subsequent career makes them proud.

Equally important in my development (and enjoyment of the process) were the Wisconsin
architecture students, who helped to create an environment and excitement that will be diffi-
cult to replicate ever again. Babak Falsafi, Scott Breach, Alain Kagi, and T.N. Vijaykumar
were my closest friends through graduate school; wonderful people with whom | studied,
worked, lived, and played. | also owe Stefanos Kaxiras, Andreas Moshovos, Subbarao Pala-
charla, Todd Austin, Steve Reinhardt, and Alvy Lebeck a debt of thanks, for both their intel-
lectual support, collaborations, and friendship.

| would also like to acknowledge the institutions that provided our group with funds and
equipment that supported my research: the Intel Research Council, for funds, workstations,
and my fellowship; Sun Microsystems, for their workstation donations, and the National Sci-
ence Foundation, whose grants funded the majority of my graduate career.

Last and most important, | thank my family: my parents, Ann and Bob Burger, and my
brother Bob, who gave me the upbringing and education that allowed me to reach this point. |
never could have done it without them.

Given the large number of people who have provided me with advice, support, and technical
interaction, | have chosen to write the dissertation in the first person plural. By doing so, | am
acknowledging the daily intangible contributions of many of my advisors and peers. | will
mention explicitly significant and concrete contributions that others have made to this work,

so that others’ contributions are not hidden or buried in my choice to use “we” instead of “I”.

Contents
ADSHIaCT . . . e I
ACKNOWIEdgmMENtS il
Chapter 1 IntroducCtion e 1
1.1 Dissertation roadmap and contributions 3
1.2 Increasing importance of memory bandwidth 6
1.2.1 Increasing bandwidthneeds, 6
1.2.2 The interactions of latency and bandwidth 9
1.3 Bandwidth-specific solutions 15
1.3.1 Tuningthe PMI e 16
1.3.1.1 Traffic-efficientcaches 16
1.3.1.2 Largeon-chipcaches 18
1.3.2 Distributingthe PMI 20
1.3.3 Flatteningthe PMI 21
1.3.4 Shrinkingthe PMI 22
1.4 Aword about COSto 23
Chapter 2 Experimental Methodology. 24
2.1 Software simulation 24

2.2 The SimpleScalartools e 27

2.21 Machinemodel........ 28
2.2.2 Functional simulation 32
2.2.3 Timing simulation e 32
2.3 SPECO95 benchmarks 35
2.3.1 Choosingtheinputset 35
2.3.2 Benchmark characterizations 36
2.3.3 SPECY95 benchmark analysis 44
2.3.3.1 SPECOY9Sintegercodesiii 46
2.3.3.2 SPECOY95 floating pointcodes 49
2.4 Sampling validation 53
Chapter 3 Measuring Cache and Traffic Efficiency. 57
3.1 Cache effiCiency i 57
3.1.1 Methodology 60
3.1.2 Measurement of cache efficiencies 61
3.2 Trafficefficiency 63
3.2.1 Definitionof trafficratios i 63
3.2.2 Definition of traffic efficiency 65
3.2.3 Measurementoftrafficratios 67
3.2.4 Methodology for measuring traffic efficiency 68
3.2.5 Measuring traffic efficiency 72

3.2.6 Factorization of traffic efficiency 73

Chapter 4 Reducing the Impact of Memory Traffic. 78
4.1 WhattofetCh 79
4.2 Dual-sizefetching 83
4.3 Subblock prefetching 88
44 UnifyingDSFand SBP 93
4.5 BUS Priontization 96
Chapter 5 Merging Caches and Physical Memory. 101
5.1 Ataxonomy for memory hierarchies 104
5.2 Alogical hybrid - the Indirect Cache 107
5.2.1 Additional hitlatency i 109
5211 Tagcachemisses i 110
5.2.1.2 Complexreplacement.............. 111
5.2.2 CONEreNCeISSUBS e 113
5.2.3 Performance analysis i 114
5.3 Physical hybrids 117
5.4 Processor/memory integration 120
Chapter 6 Memory-Centric Architectures 124
6.1 The Massive Memory Machine i, 126
6.1.1 Operation ofthe MMM 126
6.1.2 Limitationsofthe MMM 128
6.2 DataScalar Architectures 128

6.2.1 Asynchronous ESP (traffic reduction) 129

6.2.2 Datathreading (latency reduction) 130
6.2.3 Implementation iSSUES 132
6.2.3.1 Cachecorrespondence 132
6.2.3.2 Speculative execution 135
6.2.3.3 Inter-chip communication 136
6.2.4 Other pertinentiSSUES i e 137
6.3 Evaluating DataScalar architectures 138
6.3.1 Trafficreduction 139
6.3.2 Datathreadlengths 139
6.3.3 Performance evaluation 142
Chapter 7 CoNncClUSIONS. 150
7.1 SUMMAIY .ottt e e e e e e 150
7.2 Lookingback 153
ReferenCes. 157. ..
Appendix A Quantifying Latency and Bandwidth Stalls. 167

Appendix B Cache performance of SPEC95. 181

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:

vii

List of Figures

Typical modern memory hierarchy. 2
Processor pin COUNTSottt e e 8
Raw performance per pin e 8
Performance per processor pin bandwidth 9
Fraction of processor transistors devotedtocache 19
Overview of the SimpleScalartools 28
Summary of SimpleScalar instructions. 29
SimpleScalar architecture instruction formats 30
Virtual memory organization 31
Pipeline for sim-outorder 33
Structure of the Register Update Unitcore......................... 33
Examples of block liveness. 59
Efficiency measurements 61
Extending Belady’s min algorithm 71
Total traffic generated by different cache and MTC sizes 74
Logic for dual-size fetch policy 84
Logic for subblock prefetching policy 90
Datapath for bus prioritization 97
Performance of traffic optimization schemes 99
Access penalties for levels in the memory hierarchy 102
Trends in microprocessor memory hierarchies. 103
A sample of points in the taxonomy space 106
Organization ofthebase ICE 109
Acceleratingtag cache misSses.t 111
Performance of an ICE with traffic optimization schemes. 115
Comparing ICE++ to traditional caches 117

Performance of perfect L2 caches. 121

Figure 6-1: Operation of the ESP Massive Memory Machine 127
Figure 6-2: Replicated vs. communicated memoryccviuiinn.. 127
Figure 6-3: Comparing off-chip access serializations 131
Figure 6-4: Cache correspondenceexample 135
Figure 6-5: Comparing two IRAM organizations, 143
Figure 6-6: Simulated DataScalar chip datapath. 143
Figure 6-7: Timing simulation results of a DataScalar architecture. 147
Figure 6-8: Sensitivity analysis of DataScalar experiments 148
Figure A-1: Execution time breakdown for E1 (SPEC92) 172
Figure A-2: Execution time breakdown for E2 (SPEC95) 175

Figure A-3: Execution time breakdown for E3 (SPEC95) 178

Table 1-1:
Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 2-7:
Table 2-8:
Table 2-9:
Table 2-10:
Table 2-11:
Table 2-12:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 3-5:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 4-9:

List of Tables
Effect of memory latency optimizations on execution time breakdown ... 14
SimpleScalar architecture register definitions 29
Simulation speeds of the five simulators 37
Instruction profile for SPECINTO5 38
Instruction profile for SPECFPO5 39
Memory operation profile for SPECINTOS 40
Memory operation profile for SPECFP95 41
Data set and segment sizes for SPECINT9S 42
Data set and segment sizes for SPECFP95 43
Cache miss rates for varied SPECINT95 datasets 44
Cache miss rates for varied SPECFP95 datasets 45
Sampling validation for SPECINTO5, 54
Sampling validation for SPECFPO5 55
Traffic ratios for 32-byte block, direct-mapped caches 68
Traffic efficiencies for 32-byte block, direct-mapped caches 73
Experimental parametersfor Table 3-4 75
Efficiency gap for different optimizations 76
Fraction of traffic efficiency perfactor 76
Performance versus pollution points 82
Dual-size fetch functional results, part1 85
Dual-size fetch functional results, part2 86
Dual-size fetch functional results, part3 87
Subblock prefetch functional results, part 1 91
Subblock prefetch functional results, part 2 92
Subblock prefetch functional results, part3 93
Trading off misses and traffic for a 1MB, 4-way set associative L2 95

Policy efficiencies e 95

Table 5-1: Performance impact of an imperfect tag cache (IMBICE) 112
Table 5-2: Relative missesforthe ICE 113
Table 5-3: Performance impact of 16-way subblockedtags) 113
Table 5-4: Mean speedup (across SPEC95) of ICE++ 116
Table 5-5: Global miss rates for physical hybrid experiments 119
Table 6-1: Fractions of off-chip data traffic reduced by ESP 140
Table 6-2: Approximate datathread measurements for a four-processor system141
Table 6-3: DataScalar broadcast statistics 149
Table A-1: Input files used for benchmarks in experiments E1-E3 169
Table A-2: Memory system simulation parameters 169
Table A-3: Processor simulation parameters (EL/E2/E3) 170
Table A-4: ShiftfromfLtofBforELl 174
Table A-5: ShiftfromfLtofBforE2 177
Table A-6: ShiftfromfLtofBforE3 179
Table B-1: Miss rates for varied associativities on the SPECINT95 data stream 181
Table B-2: Miss rates for varied associativities on the SPECFP95 data stream 182
Table B-3: Cache missrates for 099.90 e 183
Table B-4: Cache miss rates for 124.m88ksim 183
Table B-5: Cache miss rates for 026.9CC 184
Table B-6: Cache miss rates for 129.compresscu . 185
Table B-7: Cache missratesfor 130.li i, 186
Table B-8: Cache missratesfor 132.0jpeg oo ittt e 187
Table B-9: Cache missrates for 134.perl 187
Table B-10:Cache miss rates for 147.VOrtexot 188
Table B-11:Cache miss rates for 101.tomcatv 189
Table B-12:Cache miss rates for 102.swWim i 190
Table B-13:Cache miss rates for 103.SU2COro oo e 191
Table B-14:Cache miss rates for 104.hydro2d 191
Table B-15:Cache miss rates for 107.mgridc .. 192

Table B-16:Cache miss rates for 110.applu i 193

Table B-17:Cache miss rates for 125.turb3d i 194
Table B-18:Cache missrates for 141.apsSiottt e 195
Table B-19:Cache miss rates for 145.fpppp . . -« o oot 195
Table B-20:Cache miss rates for 146.waveb 196

Table B-21: Cache performance varying simulator and indexing for SPECINT95198
Table B-22: Cache performance varying simulator and indexing for SPECFP95 198

Chapter 1

Introduction

The purpose of a computer is to perform useful processing of information. In modern, gen-
eral-purpose computers, this purpose is achieved with an electronic engine that performs
arithmetic computations on data. These data must be stored in such a way that the arithmetic
engine, orprocessoy can access them quickly and simply. Modern computer systems store
data as bits of information in th@emory systenWe believe that there are two fundamental
issues in computer system design. One is the orchestration of the communication between the
arithmetic units and the stored data (thecessor/memory interfage(The other is the
method of expressing an algorithm to the computational hardware). Effective communication

between the processor and memory is crucial in preventing overall computing performance.

The ideal processor/memory interface (to which we shall henceforth refer as the PMI, for
brevity) would allow any computational unit to receive any needed operand instantaneously.
An ideal memory system has three desirable properties: it is fast (the processor may access
any operand quickly), it is large (the memory system holds all the operands that the processor
needs), and it is cheap. Unfortunately, technology permits only two of these properties to be
improved at the expense of the third [17]. It is therefore possible to build large, cheap memo-
ries that are slow (disks and tapes), or fast, cheap memories that are small (registers and level-
one caches), and so on. Since the ideal memory system (and consequently the PMI) is not
implementable, the PMI must be carefully designed so as not to be the bottleneck for good

overall system performance.

The ubiquitous approach for building cost-effective, high performance interfaces between
the processor and memory is the use of a merh@sarchy In a memory hierarchy, a central-

ized processing core is connected to multiple memories, each of which is larger, slower, and

Level 1 LEaChebUs | avel 2/3 Mem.bus| physical
I/D caches% cache meymory
I
Registers
I/0O bus

Processor ,
‘ NI >

Figure 1-1: Typical modern memory hierarchy

cheaper (per bit) than the memories closer to the processing core. In Figure 1-1, we depict a
memory hierarchy that is typical for 1998, in which a small, fast memory (the register file)
contains the most important subset of data, a slightly larger, slower memory (the level-one
cache) contains a larger subset of data, and so on. At the bottom of this particular hierarchy is
the disk (or network), which is extremely slow but holds all of the operands. By varying size
and speed, a memory hierarchy may provide the illusion of a single large, fast, cost-effective
memory, which can match the rate at which the processor consumes instructions and data (the

processor bandwidt[80]).

If microprocessor cores become sufficiently powerful, streaming data into a centralized core
at a sufficiently high rate may not be possible to do cost-effectively. A potential solution is to
distribute the PMI among multiple processing cores [49, 57, 76, 133], each with its own mem-
ory hierarchy. A distributed PMI is more difficult to program, and its relative effectiveness
may be highly dependent on application behavior. The burden of distributing the communica-
tion between processing cores and memory must be placed on the programmer, the compiler,
the run-time system software, the hardware, or a combination of the four. Most distributed
PMI architectures also use memory hierarchies (SIMD and processor-in-memory approaches
can be an exception [7, 49, 50, 57, 67, 75, 76, 130]), both above the level of distribution and
below (for instance, SMPs have registers, L1, and L2 caches above the distribution point,
physical memory and disk below). The level at which distribution occurs is now often chosen

to widen the PMI cost-effectivelye(g.higher bandwidth out of the register banks in clustered

3
architectures, such as in the Alpha 21264 [55] and proposed MultiCluster architecture [37],

and higher instruction fetch bandwidth in Multiscalar processors [114]). Choosing other levels
in the memory hierarchy at which to distribute the PMI can result in interesting architectures,

as we shall see in Chapter 6.

1.1 Dissertation roadmap and contributions

In this dissertation, we demonstrate experimentally that careful consideration of the PMI is
becoming increasingly important to system designers. Although much previous research has
focused on average memory latency (or depthof the PMI), we discuss in this introduction

how it is memorybandwidth(the width of the PMI) that is coming to limit microprocessor
performance. Consequently, the focus of the rest of the dissertation is on techniques to
improve system performance by reducing cache and memory bus traffic, thus increasing the
system’s effective bandwidth. One of our previous papers [13] pointed out both that many of
the traditional latency tolerance techniques have little effect on bandwidth-bound programs,
and that programs are becoming more bandwidth bound. To our knowledge, it was the first to

make this case comprehensively.

We show in Chapter 3 that traditional memory hierarchies (caches in particular) make rather
poor use of both of their capacity and available memory bandwidth. We show that on average,
caches generally use less than 20% of their capacity effectively. We also place and measure a
formal upper bound on the effectiveness of caches at reducing communication, and show that
the potential exists for up to two orders of magnitude in traffic reduction. This was the first
formal bound on cache traffic that we have seen, and it has been extended recently by others
[122]. We extend this bound analysis by dissecting the gap between optimal and actual traffic
into a breakdown of cache mechanisms, which measures the usefulness of each cache mecha-

nism at reducing memory traffic.

Using the results of the bounded traffic analysis, in Chapter 4 we propose a number of tech-
niques to improve the bandwidth performance of traditional, cache-based memory hierarchies

that assume a centralized PMI. The techniques we propose in this chapter are designed to

4
make cache traffic morefficient(reducing unneeded communication) for caches of a fixed

size. These traffic optimization techniques are: dual-size fetching, subblock prefetching, and
bus prioritization. Taken together, they are an aggressive attempt to improve performance by
reducing memory traffic, thus increasing effective bandwidth and mitigating bandwidth limi-
tations.

In Chapter 5, we examine how the cache hierarchy may change with the emergence of large
(multi-megabyte) on-chip memories. We describe a new memory hierarchy taxonomy, which
compares cache mechanisms to those of physical memory, the goals being to rethink on-chip
memory management mechanisms and to propose new, alternative cache organizations. We
propose three classes of cache/memory hybhadgcal, physical andunified Using the tax-
onomy, we propose a logical hybrid for large caches called an Indirect Cache, which uses
page-table-like structures to manage large on-chip level two caches efficiently. We show that
the Indirect Cache works synergistically with the traffic optimization techniques described in
Chapter 4 improving overall performance across a wide range of benchmarks. We present
some brief functional results for a simple physical hybrid, showing that for extremely large
on-chip memories, it is possible to map a fraction of physical memory on-chip and incur the
same or fewer number of slow off chip accesses. Finally, we examine the effect that manufac-
turing technology may have on improving the PMI, by integrating more of the system
(DRAM) onto the processor, which includes eventually combining all memory and logic onto
a single substrate [13, 92, 100]. If the processes permit, merging the DRAM and logic on one
die may allow the memory hierarchy to be “flatter,” bringing it closer to the ideal and thus
reducing the need for distributing it. We present some simulation results that indicate that,
with current processors and workloads, full processor/memory integration is unlikely to pro-
vide the performance boosts necessary to make it cost-effective. This space has been well-tra-
versed by the IRAM group [42, 78], and our results confirm theirs. We make no
fundamentally new contributions in this section, but include it for completeness.

In case centralized PMIs prove unsuitable for high-performance processors in the future, we
explore a class of distributed PMI architectures in Chapter 6 catleshory-centric architec-

tures in which processors are distributed to portions of the physical memory. The architecture

5
described in this chapter is the DataScalar architecture, which relies on the hardware to per-

form the distribution of work across the multiple PMIs. We show that the DataScalar architec-
ture can reduce the global traffic significantly—thus improving performance—without
placing any complexity burdens on the programmer or compiler. While the base execution
model of DataScalar is not new (it was first proposed by the Massive Memory Machine work
[45]), we recognized that this execution model could improve performance for modern, asyn-
chronous processors. We also proposed new techniques that solved the problems associated
with running this execution model on an implementation that actually improved performance
(these problems included asynchronous communication, speculation, and caching). In our last
chapter (Chapter 7), we summarize our results and draw conclusions about the long-term
implications of this work.

Both technology trends (the oft-cited fact that processor clocks are outstripping DRAM
access speeds) and our experimental results indicate that the processor/memory interface will
play a more critical role in determining sustained system performance than it has in the past.
A number of publications [71, 132] have referred to the unequal scaling of processor and
memory performance as a “wall.” Implicit in that term (and explicit in some papers [132]) is
the assumption that the memory system will act as an eventual hard limit on the growth of sys-
tem performance. This belief is mistaken; system designers will redesign the PMI as needed to
keep it balanced and cost-effective. The divergent trends may result in less conventional solu-
tions to keeping the system in balance, ranging from more sophisticated and complex memory
hierarchies to distributed processor/memory interfaces. In later chapters, this dissertation pro-
poses and explores a number of such solutions. For the rest of this chapter, however, we
explore the subtle relationship between memory latency and memory bandwidth, and make
the case that memory bandwidth will be a significantly more important resource in driving

future designs.

1.2 Increasing importance of memory bandwidth

The memory system must provide operands to the processor with both low latency and high
bandwidth. If the memory system provides a high-bandwidth, high-latency path to the proces-
sor, data dependences on the critical path will limit the rate at which the processor may
request data, resulting in a low effective use of the bandwidth. If the memory system provides
a low-latency, low-bandwidth path to the processor, the saturated connection will cause con-
tention delays on the critical path, effectively lengthening the critical path with non-critical
work. It is therefore important that the memory system support both a sufficiently low average
latency per request and a sufficiently high rate of request completions. While much work in
the past has focused on reducing memory latency, the focus has not generally been on the
additional latency incurred as a result of insufficient memory bandwidth. In the following sub-
section, we make the case that the latter will soon be a more important component of memory

system performance than row access latency alone.

1.2.1 Increasing bandwidth needs

Memory bandwidth issues will come to dominate performance considerations in microproces-
sor-based systems for three reasons: (1) exponential performance growth, (2) unequal scaling
of bandwidth costs for different components in the system, and (3) the nascent capability to
place as many functional units on a die as needed to consume the available memory band-
width.

As performance increases exponentially, the rate at which instructions and operands are con-
sumed increases correspondingly. Furthermore, as data sets and binaries grow, the micropro-
cessor must consume larger data sets in a shorter period of time. This requirement increases
the rate at which large quantities of data must be moved from disk or main memory all the
way up the memory hierarchy into the processor’s registers.

We predict that the primary bandwidth bottleneck—for processors that are sensitive to pack-
aging costs—will be at the processor pin interface, not the on-chip buses, system buses, or

DRAM interfaces. The on-chip buses will not be a problem because in the foreseeable future,

-
the primary problem with moving data from the pin interface to the registers will be latency,

not bandwidth. Increased device counts will allow replication of key structures and wide paths
on-chip, so bandwidth will be less of an issue than will the delays associated with long on-
chip wires [86]. In terms of sustaining sufficient bandwidth, the pin interface will be a consid-
erably more serious problem, simply because it cannot be widened nearly as much as the on-
chip paths. Furthermore, the processor pins cannot be distributed, replicated, or interleaved
cheaply as can other communication resources in the system (such as replication of buses, or
interleaving of DRAM banks). While carefully designed transmission lines, such as the vari-
ous Rambus interfaces [96] may bring data across the pins at a rate keeping pace with proces-
sor clock improvements, increased exploitation of both instruction-level parallelism (ILP) and
speculation will continue to increase pin counts.

If pin counts could scale indefinitely with performance, processor bandwidth would not be
an issue. However, we believe that packages are unlikely to scale cost-effectively (in the
absence of bandwidth-specific solutions) with on-chip device counts. In Figure 1-2, we show
the growth in microprocessor package pin counts over the past 20 years. We compiled this
data by hand, from both the processors’ original manuals and back issivésroprocessor
Report The y-axis uses log scales, and the x-axis use a linear scale. Plotting a line with a
least-mean-squares analysis, we find that, for the microprocessors surveyed, pin counts have
been growing an average of 16% per year for this period. For the next decade, the 1997 SIA
National Technology Roadmap [102] forecasts a lower (~11%/year) increase, predicting pack-
ages of 7300 pins for the high-performance microprocessor of 2012. Should these dramati-
cally large packages prove too costly, other techniques must compensate by providing higher
effective bandwidth across a narrower channel.

This disparity in pin counts versus performance is by no means limited to future projections.
The rate of increase of processor pins has traditionally been much slower than that of transis-
tor densityand performance. In Figure 1-4, we plot (again on a semi-log scale) processor per-
formancé per pin versus time over the past 20 years. The raw performance per pin is
increasing exponentially, despite the increase rate in pin count shown in Figure 1-2. This

graph, however, does not consider pin frequency (the rate at which signals are clocked across

1000

500

250

Number of pins

PA8000
Harpl °
@ R10000
UltraSparc,~ @
[21164
°

. P6
. “Pentium
e °

e 68060
80486 68040 ® @

e ® ©® sSparc2
80386 68030 R3000
125 e - o
0
7 68020
80286~
64 0 e
68000
8086~
®
82 T T T T T T T T 1
1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997
Year
Figure 1-2: Processor pin counts
3.2
21164 ®
R10000
1.3+ UIIraSpE;rc °
P6 PAB000
054 68060
- SSpacm. !Harpl
68040 Pentium
0.2
R3000
< ®
2 68030 @
& 0.08 68020 @ 80486
s [
0.03-]
6800030386
[)
0.01-]
0.005-]
s0s6 80286
®]
0.002 T T T T T T T 1
1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997
Year
Figure 1-3: Raw performance per pin

the pins)—packages and buses are designed to provide sufficient off-chip bandwidth to each
generation of processors. In Figure 1-4, we therefore incorporate increased pin signalling

speeds, and plot the raw performance to total package bandwidth ratio versus time. The graph
shows that performance increases are also exponentially outstripping the growth in raw peak

package bandwidth.

In terms of future projections, the projected package pin count of 2012 is about a factor of
ten greater than is typical today, but performance is projected to increase 700-fold. Since the

processor bandwidth will likely increase by a proportional factor (or even more, if aggressive

1. Performance here is measured in VAX MIPS for the 680x0 and early 80x86 processors, and issue
width times clock rate for the others. These two measures cannot be compared directly, but are suffi-
cient to view 20-year trends.

1.6
R10000
1.04 SSparc2 @ [
)
P6 21164
Harpl@yitra8parc

0.64-

0.40 °

68060

0254 80486 ©
° °

P Pentium

R3000 PA8000

0.16

0.100] 68030
68390 65020 ©
0.064] °

(MIPS)/(Pin MB/S)

(]
0.040 80386
0.025-

0.016
8086

0.0104 @ 80286
°

0.006 T T T T T T T T 1
1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997
Year

Figure 1-4: Performance per processor pin bandwidth

speculation increases processor bandwidth requirements more quickly than performance), the
effective off-chip bandwidth will need to be increased by a factor of 70 without adding pins.
Assuming a ten-fold increase in pin frequencies, the off-chip traffic must still be reduced by a
factor of seven to balance the PMI. Techniques to reduce off-chip traffic could play an impor-

tant role in rebalancing the system.

While these numbers are debatable—as applications and cache access patterns are likely to
affect off-chip bandwidth requirements significantly more than raw processor performance—
it is clear that reducing off-chip traffic would ease the difficulty of scaling the processor chip
interface along with processor performance growth. Even if this scaling is technologically fea-
sible, adding bandwidth adds cost. Reducing the need for extra bandwidth will make future
systems cheaper while achieving the same level of performance (since, as the supercomputer
domain has shown, more bandwidth is always available if the customer is willing to pay.) We
discuss techniques and structures to reduce off-chip traffic in Chapter 4, Chapter 5, and

Chapter 6.

1.2.2 The interactions of latency and bandwidth

The relationship between latency and bandwidth in the memory system is intricate and subtle.
Some techniques (such as increasing the bus clock) that reduce the latency of a single request

will improve memory bandwidth, while others (such as hardware prefetching) actually reduce

10
effective memory bandwidth. When the available memory bandwidth is insufficient, other

requests may be stalled or queued in the memory system due to contention for shared
resources (such as buses, cache ports, or memory ports). This queueing is manifested as addi-
tional latency, which may reduce processor performance. In the end, limited bandwidth is
measured as additional latency for memory requests. When we describe “trading latency off
for bandwidth,” we mean that some latencies are reduced while other latencies are increased

as a result of more memory traffic.

There has been a historical focus on memory latency because it has been growing relative to
processor cycles. The number of cycles required to service a main memory access has steadily
increased over the past 20 years. This trend is the result of two factors. First, DRAM access
times are being outstripped by processor clock speeds, since DRAM chips are generally opti-
mized for capacity (through high density), while microprocessors are optimized for speed.
(This is true even though DRAM access times have dropped considerably over the years, at
the rate of approximately 7% per year [97].) Second, the path lengths to main memory have
increased, as both the depth and complexity of the memory hierarchy (non-blocking caches
[79], multiple levels or cache, and sophisticated memory scheduling and data transmission

[30]) have increased.

Consequently, researchers have proposed numerous technigues to reduce (and/or tolerate)
the average effective memory access latency. Some of these techniques include multithread-
ing, dynamic scheduling, decoupling, hardware prefetching, software prefetching, and more
aggressive hardware in the memory system. In modern processors, however, some of these
optimizations that were intended to reduce average memory latency actually worsen it. While
they may improve the latency of a single operation, they may also slow down other operations
by generating extra traffic and thus causing contention that results in a higher average memory
latency, and worse overall performance. As processors exploit more instruction-level parallel-
ism, and memory systems come to resemble queueing systems more than single-transaction
systems, sustained memory bandwidth will become a more important quantity than the mean

latency of individual requests.

11
Traditional metrics—such as cache miss ratio or average memory access time—may pro-

vide a first-order approximation to memory system performance, but they neither translate

directly into system performance, nor do they provide insight as to the sources of performance
loss in the memory system. For example, four simultaneous cache misses in a lockup-free
cache will appear as one cache miss latency to the processor, but would count as four distinct

misses when calculating average memory access time.

In this subsection, we address this problem by dissecting execution time into three discrete
componentsprocessor timelatency time andbandwidth timeThese categories are not dis-
crete time periods of execution. They are more similar to “assignments of responsibility” for
underutilized resources. Thus, at any given cycle in a program’s execution, various underuti-
lized resources in the microprocessor may be contributing to all three categories simulta-

neously.

Processor times the time in which the processor is either fully utilized, or is underutilized
due to insufficient fine-grained parallelism (as opposed to the memory system). In an ideal
system with a perfectly balanced PMI, processor time would equal the program execution
time (.e., the processor would never suffer lower utilization due to the memory system). Such
a situation does not represent an upper bound on processor performance; execution time could

still be decreased by improving the processor core (better branch prediction, wider issue, etc.)

Latency timas the increase in execution time caused by untolerataaentionlessnemory
latencies. These latencies include the time required to resolve cache misses, access cache or
memory banks, and the minimum time required to transmit the data back to the processor. By
contentionless we mean that the latency measured is never increased by interference of multi-
ple requests. Thus, adding more bandwidth anywhere in the memory system should never

reduce latency time.

Bandwidth timds the increase in execution time caused by contention in the memory sys-
tem, resultant from insufficient bandwidth between levels of the memory hierarchy. Queueing
delays can occur at either the memory banks or at the buses. When memory requests experi-

ence queueing delays in the memory system, their latencies to completion are increased. That

12
increase may inflate total program execution time. Bandwidth time measures the inflation

caused by memory queueing delays.

We now define this execution time dissection formally. Ldte a program’s execution time.
Tp, T, andTg are a partitioning of, the time spent in each of these three categories (process-
ing, latency, and bandwidth, respectively). ligtf, , andfg be these times normalized 10
(thus representing the fractions of time spent in processor, latency, and bandwidth time). We
defineTp as the execution time of the program assuming a perfect memory hierarchy (i.e.,
every memory access completes in one cydlgls measured as the execution time of the pro-
gram assuming an infinitely wide pathe(, infinite bandwidth) in between adjacent levels of

the memory hierarchyfg, f, andfg are computed as follows:

fg=Tg/T=(T-T)/T (1-3)

These metrics enable us to estimate more accurately the performance impact of an imperfect
PMI in complex modern processors, which cannot be calculated directly from average mem-
ory latency or miss ratio. They also enable us to view the performance impact of latency toler-
ance and reduction techniques directly, which we discuss in the next subsection. We note that
a similar dissection was independently proposed by Kontothameasdi§7 7].

There are two major classes of techniques for reducing the impact of long memory latencies:
latency reductiorand latency tolerancelLatency reduction decreases the time between the
issue of a memory request and the return of the needed operand. Some latency reduction tech-
niques include hardware prefetching [21, 43, 47] (which speculatively bring in data before
they are requested), increased cache block size, larger caches (improved hit ratio), and more
aggressive memory hierarchies.q, faster buses, sub-banked caches, and lower-latency
DRAM cores). Latency tolerance involves performing other computation while a memory

request is being serviced, so that the memory latency for that request is partially or completely

13
hidden. Some common latency tolerance techniques include software prefetching [18, 22, 31,

54, 124], dynamic scheduling [123] (allowing instructions ahead of a load in the dynamic
instruction stream to execute), decoupling [108, 109] (allowing the memory unit to run (or
slip) ahead of the execute unit), and multithreading [1, 107, 125] (switching to other threads
during long-latency operations).

In Table 1-1, we list the effects that various latency reduction techniques (Table 1-1A),
latency tolerance techniques (Table 1-1B), and processor enhancements (Table 1-1C), may
have upon overall system performance. The arrows in the table represent the relative change to
each fractional component of execution time when the optimization in question is applied. For
example, an up arrow indicates that an optimization will cause that fraction of execution time
to increase. A question mark indicates that a given fraction is not directly affected by the opti-
mization, but may either increase or decrease depending on the relative contributions of the
other two fractions.

The latency reduction techniques listed in Table 1-1A incrdgsi two ways: (1) by
increasing the amount of traffic that must be moved across the PMI, and (2) by successfully
reducingf;, which reduces the execution time, and therefore increases the rate at which the
same amount of data must be moved across the pins. Hardware prefetching will increase
bandwidth stallsfg) by fetching unnecessary data (when the prefetch is unneeded), but it will
generally reduce latency stall§ X when it does successfully issue a needed request in
advance. If the latency stall reduction outweighs the bandwidth stall increase, the fraction of
time spent doing useful computatiofp) will increase, if fg outweighsf, then fp will
decrease. Larger cache blocks have an effect similar to hardware prefetching, rédacidg
increasingfg. Both techniques, however, could increds# pushed too far, due to interfer-
ence/cache pollution effects.

As do the latency reduction techniquad, of the latency tolerance techniques that we list
reduce memory latency stalls at the expense of increasing bandwidth stalls. The first four
latency tolerance techniques listed in Table 1-1B increase bandwidth stalls only by reducing
execution time, thus increasing the rate at which the same quantity of data must be moved

across the PMI. Lockup-free caches allow the processor to overlap memory requests, thus

14

A. Latency reduction fp | fL | fB
Hardware prefetching ? ! 1

Larger cache blocks ? ! 1

B. Latency tolerance fp | fL | T

Lockup-free caches 1 ! 1
Software prefetching 1 ! 1
Intelligent load scheduling 1 l 1
Data value speculation 1 l 1

? ! 1

? ! 1

Speculative loads
Multithreading

C. Processor enhancements | fp | fL | fg

Faster clock ! ? 1

Wider issue ! 1 1
Dynamic scheduling ? ! 1
CMPs ! ? 1

Speculative threads ? ? 1

Table 1-1: Effect of memory latency optimizations on execution time breakdown

reducing execution time but increasing the rate at which data must be brought in (and there-
fore increasing contention). Software prefetching, aggressive load scheduling, and data value
speculation all reduce latency stalls by early acquisition (or speculation) of the result of loads.
Such techniques do not reduce bandwidth stalls, since memory traffic is not reduced (with
data value speculation, the operands must still be fetched from memory to validate the specu-
lation). However, since these four techniques incréass well adg, a larger relative fraction

of execution time is spent both doing useful work and stalling for contention.

The fifth and sixth optimizations listed in Table 1-1B increase memory traffic, unlike the
first four listed in section B of the table. Speculative loads increase total memory traffic with
each misspeculation. Multithreading increases total memory traffic when threads interfere in
the cache, causing more cache misses and thus more memory traffic. This additional memory
traffic will increasefg in addition to the increases caused by execution time reduction. If the
increases irfig outweigh the reduction ify , the result will be a lower processor utilization (a
decrease irfp). Conceptually, a technique such as multithreading can be effective for a
latency-bound program, but multithreading will become less effective as a program becomes

more bandwidth-bound.€,, fg increases), and may even be detrimental. Finally, if the cache

15
interference caused by multithreading grows sufficiently highwill also increase. (This

effect corresponds to the pollution effect previously discussed for large cache blocks).

In Table 1-1C we list the effects that some common microprocessor ILP-style enhancements
have on our execution time breakdown. All of the enhancements listed in this part of the table
reduce the time it takes to perform the computations, whether by executing the computations
faster (increased clock speed), and/or by executing more operations in parallel (increased
issue width, speculative threads, or chip multiprocessors). None of these techniques reduce
memory traffic, and some may actually increase it (speculative threads may generate extra
memory traffic due to both cache interference and coarse-grain misspeculations). As a result,

these techniques incredgauniformly.

The techniques discussed in this subsection focus on reducing execution time by reducing
either latency stallsf() or processing timefg). As programs become more bandwidth-bound
(fg grows larger), for the reasons discussed previously in this chapter, these techniques will all
become less effective. In previous studies [13, 14], we measured the execution time dissection
experimentally for current-generation memory systems, and foundghain fact growing
substantially as processors become more aggressive. For simple prociess@s,14% of
execution time. For fast, aggressive out-of-order processors that incorporated prefetching and
speculative execution, the time spent stalling for memory was over 50% of execution time,
and over a third of execution time was consumed by bandwidth time. We present the experi-

mental results from the previous papers with an expanded analysis in Appendix A.

The remainder of this introduction is dedicated to a survey and classification of the band-

width-specific techniques that we propose in this dissertation.

1.3 Bandwidth-specific solutions

There are a variety of ways to improve the effective width of the FMI the effective band-
width). In this section, we survey four such categories. The first is the improvement of cache
memories in a traditional memory hierarchy with optimizations that reduce traffic, but do not

incur correspondingly large penalties in latency. The second category is distribution of proces-

16
sors into the memory, splitting the processor/memory interface into multiple points (ideally

making a wide PMI more cost-effective). The third category is flattening the memory hierar-
chy with tighter integration (specifically, placing the processor and physical memory together
on one or more chips), using new manufacturing processes. The fourth and final category we
describe to improve cost-effective bandwidth is the only method that we do not address in this
dissertation, outside of this chapter. This category consists of techniques to reduce the funda-

mental, intrinsic amount of PMI communication required to solve a particular problem.

1.3.1 Tuning the PMI (reducing memory hierarchy traffic)

Most of the cache research of the past two decades has focused on two issues: reducing miss
rates and improving cache access time (throughput), without necessarily considering memory
traffic. Since reducing miss rates may also reduce memory traffic [51], the two goals are
closely related. However, minimizing the miss ratio at the expense of increased memory traffic
can degrade performance, as we shall see in Chapter 4. For our cache studies, we focus on two
related goals: (1) how to reduce memory traffic with only minor increases in the miss ratio,
and (2) how to reduce the number of misses without paying the price of significantly increased

traffic.

1.3.1.1 Traffic-efficient caches

We will show in Chapter 3 that caches have a lefficiency most of the space of a typical
cache holds useless bits at any given time. This result led us to hypothesize that improved
mappings could reduce hit rates by holding more useful data on-chip. We also hypothesized
that much of the wasted space resulted from unnecessary bytes being loaded from memory,
thereby also wasting bandwidth. We validated this hypothesis by performing experiments
(presented in Chapter 3) that measured a lower bound on the amount of memory traffic that a
cache could produce. We found that caches produce significantly more memory traffic (factors
of 2 to 100) than is theoretically necessary. We dissected this gap into the factors by which the
lower bound differs from a traditional cache (block size, write policy, associativity, and

replacement policy), measuring the relative combinations of each. Our results showed that

17

block size is, unsurprisingly, the largest contributor, but that the other three factors can each be

equally or more important, depending on the application.

Since all four of the cache factors we measured have the potential to help reduce memory

traffic, we propose distinct solutions for each factor, aimed at reducing traffic without incur-

ring penalties that offset the gains from traffic reduction:

Block size/read traffic. we propose three techniques to reduce unnecessary read traffic.
The first isdual-size fetchingin which cache misses may either bring in an entire block

or simply a subblock into a subblocked cache, based on the expected spatial locality in the
block. The second technique ssibblock prefetchingwvhich loads a subset of subblocks
within an address upon a miss to that block. Ideally, the hardware will load only the sub-
blocks that will be needed, preventing the useless (non-loaded) subblocks from consuming
bus bandwidth. The third techniquebss prioritization in which non-critical subblocks,
specified by the former two policies, are speculatively loaded across the bus so long as
there are no other requests pending. Upon arrival of a higher-priority request, the hardware
finishes loading the current subblock and then allows the higher-priority request to pro-

ceed.

Write traffic . we propose one techniques to eliminate write traffic. By using redundant
computation at multiple processors, we can completely eliminate write traffic from the
inter-processor bus, at the cost of some extra read traffic. We will describe this scheme in

more detail in Section 1.3.2.

Associativity: cache conflicts can generally be reduced by increasing set associativity
(barring pathological interaction of the application and replacement policy). In this fol-
lowing subsection, we will discuss a cache organization that borrows from virtual memory

designs to allow full associativity with less impact upon hit time than conventional con-

1. Multiple terms exist to describe sector caches [84], in which a lsegtoris broken up into multiple
blocks Sector caches are sometimes called subblocked caches, and the sectors are referred to as
address blocksThe blocks are sometimes also caltemhsfer blocksor subblocksFor consistency,
throughout the dissertation we will refer to address blocks (sectors) simflipelss, and transfer
blocks asubblocks

18
tent-addressable memories.

* Replacement policy the ideal replacement policy would use prescience to predict the
best victim in a set. Many caches today use either a least-recently-used (LRU) policy, or
an LRU approximation. Our study of optimal caches shows that while this policy is gener-
ally effective, there are cases where further improvements are possible. We ptopese
lated replacementin which the address of a block influences the choice of its
replacement, as a technique for improving cache efficiency by better identifying dead
blocks in the cache.

The goal of these techniques is to make both the use of the cache capacity and the transmis-
sion interconnect more efficient, by loading and storing less useless data. One might argue that
all this additional complexity is not worth the trouble, as cache sizes are growing relentlessly
with each new generation of chips. We believe that cross-chip wiring delays will force chips to
be heavily partitioned, and these partitions will have a finite capacity, and will thus benefit
from being more efficient since their size may be restricted. We discuss this issue further in
Chapter 6. For now, we turn to a discussion of design strategies for large on-chip caches of the

near future.

1.3.1.2 Large on-chip caches

Given the performance increases of microprocessors and the growing difficulty of balancing
the PMI, processor designers have been building progressively larger caches with each
improved process generation. For example, the Hewlett-Packard has announced that their PA-
8500 processor will have 1.5 MB of on-chip cache, in a radical departure from their previous
design strategy (such as the PA-8000 and the PA-8200, which had no on-chip caches, but
high-performance connections to large off-chip caches.) The Compaq Alpha 21364 will also

have 1.5MB of on-chip cache.

This trend of increasing cache sizes shows no sign of abatement in the near future. Even if
caches consume the same proportion of the processor die that they do today, the exponential
growth in device counts presages giant on-chip memories. In Figure 1-5 we show that the pro-

portion of processor chip transistors consumed by caches is growing, now accounting for

19

100 4

Al 21364
904 - X86 processors ©

777777 Motorola Pentium Pro 512
PA 7320LC

Merced (est)
e}

80
PA 8500
Pentium Pro 256 £y
1(1)64
70 4 v
210842 PowerPC 604e

v -
PowerPC601 " Cyrix M2
- (e

60 | P
486 SX 486x4_~
21064 -
" PowerPC 604
g Y.

21264
50 -| 2

AMD K6
o

486 DX o
40 4 X P55C

Percent cache transistors

AMD K5
[=)
30 o
Cyrix M1
Pentium
o

20

104 o8¢0 PA7200

0 386 SX 386 SL PA 7100 PA 8000 PA 8200

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Year

Figure 1-5: Fraction of processor transistors devoted to cache

between 50% and 92% of the on-chip transistor budget. If these trends continue, future pro-
cessors will be mostly memory.

These large caches will shield the lower levels of the memory system from much of the
increased processor bandwidth requirements. Current cache designs, while they will doubtless
work well for these large caches, may not be the best operating point for such huge caches. In
Chapter 4, we revisit cache design, and propose a taxonomy of mechanisms for individual lev-
els in a memory hierarchy. Using this taxonomy, we propose designs for these huge on-chip
caches that may be better suited to traffic-sensitive systems than simply increasing the size of
current designs. Specifically, we propose and evaluate an alternative that we call an Indirect
Cache (ICE). The ICE is a cache that is managed like a page table, with indirect indexing and
a translation cache.

The goal of the optimizations described in this subsection is to improve the performance of
conventional systems by improving cache performance. In the next subsection, we describe a

more radical approach to improving scalability of the processor-memory interface.

20
1.3.2 Distributing the PMI (memory-centric architectures)

Traditional uniprocessors have been designed assuming a centralized processing core that is
connected to the memory hierarchy using a single logical interface. As the processor grows
more powerful and the required physical space for both the processor and the supporting
memory system increases, supporting communication through a single logical pipe becomes
harder to do. Distributing the PMI among multiple computational units and memories is a
more scalable approach, but can introduce significant difficulties in mapping the computation

onto the distributed substrate.

Many examples of distributed PMIs have already appeared in both the literature and in prac-
tice. Traditional parallel processors are distributed processor/memory interface machines.
Symmetric multiprocessors (SMPs), for example, are distributed at the L2 cache level, and
distributed shared memory machines (DSMs) are distributed at the physical memory level. To
date, however, most of these machines were constructed not because of an unscalable PMI,
but because volumes of commodity components (either CPU chips in SMPs or workstation
boxes in DSMs) offered significant cost savings over comparably powered alternatives. The
proposed RAW architecture [128] is an exception, distributing multiple processors on-chip,
each with its own data cache and instruction store, to increase total effective bandwidth out of
the PMI. However, the RAW architecture assumes that nearly all distribution of data and
assignments of computation to processing nodes is done by the compiler. Henceforth, we will
restrict our discussions of distributed PMI organizations to those that assume a logically

sequential instruction streare(a uniprocessor programming interface).

Examples of distributed PMIs with sequential programming interfaces exist, with the distri-
bution occurring at different levels in the memory hierarchy. At the register level, clustered
architectures, such as the Alpha 21264 (or proposed MultiCluster architecture [37]) distribute
the register interface to multiple banks of functional units, thus achieving high, yet cost-effec-
tive, bandwidth out of the global register files. Multiscalar processors [41, 114] increase

instruction fetch bandwidth by distributing the instruction fetch (at the L1 I-cache interface) as

21
well as the register banks. The Multiscalar work assumed centralized L1 data caches, although

more recent proposals distribute the L1 data caches as well [53].

To our knowledge, the only proposal (besides our own) of an architecture with a serial pro-
gramming interface that distributes the PMI at any level of the memory hierarchy lower than
the level-one caches is the Massive Memory Machine [45], from which our work is derived. In
Chapter 6, we propose a related class of architectures aakadory-centric architectures
which distribute the PMI to the physical memory. These architectures execute unmodified
serial binaries, and they reduce inter-processor traffic significantly. We propose two such
architectures: DataScalar and Dynamic Data Threaded (DDT). The DataScalar architecture
[15] uses redundant computation to reduce memory latencies and traffic. DataScalar architec-
tures completely eliminate all request and writeback traffic, at the expense of some extra read
traffic. DDT architectures perform a partial dynamic parallelization (in hardware) of the serial
program, thus eliminating some of the read traffic, as well as the write and request traffic that

DataScalar architectures eliminate.

1.3.3 Flattening the PMI (integrating the processor and physical memory)

In the previous two subsections, we discussed ways of improving systems’ effective band-
width by reducing traffic in conventional hierarchies and by distributing processing power
(moving the PMI) into the physical memory. A third alternative is to reduce the number of lev-
els in the memory hierarchy by bringing the large physical memory closer to the processor.
Physical memories have already begun to become more tightly coupled with the processor.
The Rambus interface [30] provides close electrical coupling between some processors and
physical memory. However, a tight physical coupling is also possible, if the entire system
memory and the processing logic were integrated on a single substrate. Such integration is
possible only if two factors hold: (1) there is a market for systems with only as much memory
capacity (at least for the base models) as can be held on one processor, (2) merged memory
and logic processes can be developed that support both fast gates and dense memory cells.
Otherwise, the chip will have either insufficient performance or insufficient capacity to be a

viable product in the market. Whether the processor support is developed depends on the per-

22

formance advantages of putting all of the physical memory on-chip. In Chapter 5, we perform

a trend and performance analysis, and find that complete integration improves the perfor-

mance of current systems surprisingly little.

1.3.4 Shrinking the PMI (reducing processor/memory communication)

The previous three subsections dealt with organizing the distribution of processors and various

memories to improve the cost-effectiveness of communication between processing logic and

storage. An alternative solution to optimizing communication is to actually reduce the need

for communication across that interface. We do not evaluate such solutions in this dissertation,

but survey three of them here.

Algorithmic : If the PMI becomes a major system bottleneck, different algorithms may be
selected that use less cross-PMI communication. In addition to choosing different algo-
rithms, code tuning that improves memory system behavior, such as cache blocking [19],
may reduce PMI limitations. Finally, other optimizations exist that reduce PMI communi-
cation for a given algorithm (such as common subexpression elimination, which reduces

register accesses, or memoization, which reduces both memory and register accesses).

Compression If the bandwidth of a certain level of the memory hierarchy is difficult to
scale, and/or becomes a bottleneck, compression of the transmissions to increase the effec-
tive bandwidth may be a viable solution. Particularly as computation becomes less expen-
sive relative to communication, compression is a feasible way of reducing the expense of
communication. Researchers have examined numerous techniques for compressing vari-
ous information being transmitted over the memory bus, such as data [24, 94], addresses

[38], and instructions [28].

Instruction reuse: Another way to reduce PMI communication is to avoid doing redun-
dant operations, e.g. avoiding a load if the result of the load is already available in the pro-
cessor coddnstruction reuseloes exactly that; an on-chip buffer keeps track of operation
results based on their input values, and when an operation is fetched whose inputs match
those in the buffer, the result is returned from the buffer rather than computed or brought

from memory [112]. In this manner, both register accesses and memory operations may be

23
reduced. In some sense, instruction reuse is a hardware version of memoization, albeit at a

finer grain.

While these techniques may reduce the volume of communication across the PMI, the notion
of operating on data is fundamental to computing. These techniques may help to alleviate bot-
tlenecks and balance the processor and memory system; however, the very nature of comput-
ing makes it impossible to push these methods sufficiently far to be a comprehensive solution.
We also note that these algorithmic techniques for increasing effective memory bandwidth are

orthogonal and complimentary to those evaluated in this dissertation.

1.4 A word about cost

One of the things that makes quantitative computer architecture hard is sensitivity of the
“best” solutions to cost. Throughout this introduction, we have talked about cost-effectiveness
and cost/performance, but have no cost models to back up these assertions. It is possible to
produce reasonably accurate cost models for current-generation systems. For example, Micro-
processor Report has a complex cost model that estimates manufacturing costs for current-
generation microprocessors. Also, Wood and Hill have proposed a cost model for current-gen-
eration multiprocessors [131], and showed that costup was a better metric than speedup for
scaling parallel simulation systems, and that the dominant costs of these systems was memory.
While similar models for future systems would be useful in evaluating tradeoffs among the

systems, they are nigh impossible to construct with any confidence in their accuracy.

We attempted to model cost using several different metrics, such as bits of storage, package
pins, dollars, and silicon area. Unfortunately, there are too many parameters affecting costs,
the constants are frequently closely guarded secrets, and how they scale into the future is
determined by market forces that are wholly unpredictable. We will therefore not address the
issue of cost quantitatively in this dissertation, but will address performance tradeoffs quanti-
tatively and cost qualitatively, leaving it to the interested industrial reader to determine if the

performance gains are worth the price.

24

Chapter 2

Experimental Methodology

We performed all of the experiments in this dissertation uswfgvare simulationin which
a microprocessor (called tharge?) is modeled in software at various levels of detail by a soft-
ware simulator, which executes on thest The simulation environment we used was the
SimpleScalar tool suite [9, 8], originally written by Todd Austin and extended for this disser-
tation research.

In this chapter, we first describe the limitations associated with our experimental methodol-
ogy. We then describe both our simulation environment and our simulated target in detail. We
conclude this chapter with an characterization of our benchmark suite, including validation of

our sampling methodology.

2.1 Software simulation

There are risks involved with using software simulation as the sole methodology. Most sig-
nificant, our tools have never been validated against an actual hardware implementation.
Black and Shen [6] showed that microprocessor timing simulators can contain numerous bugs
that can affect results significantly (errors on the order of 3% to 5%); specifically, they showed
that small bugs can cause significant instability in the reported execution time of a simulated
microprocessor, and that the correction of one bug can cause the error in simulated execution
time to increase or even change signs.

An advantage to using the SimpleScalar tool suite, however, is that it is now being used
extensively throughout the architecture research community. Several bugs have been reported
by other people using the tools (and subsequently fixed, of course). In addition, we have made

our memory hierarchy extensions (described later in this chapter) public, and they are now

25
being used by several research groups. While the extensive distribution of the tools does not

guarantee their accuracy or correctness, our confidence in their accuracy is substantially

higher with the extensive external sanity checking.

Another serious concern with software simulation is the size of programs and data sets that
can be simulated. Our simulation environment supports two levels of simulation accuracy;
cycle-by-cycle microarchitectural simulation, in which the simulated execution time is the
output {iming simulation and fast simulation, in which the execution trace for the simulated
program is generated, but the only statistics that are maintained are a few cofumtetisral
simulatior). The former (timing simulation) models the microarchitectural state, but incurs a
four order-of-magnitude slowdown over running the target benchmark on real hardware. The
functional simulation incurs only a two order-of-magnitude slowdown, but gives little useful
data other than number of instructions traced and a few other statistics.

We have characterized the attempt to evaluate future microprocessors with software simula-
tion as “simulating the processors of tomorrow on the machines of today with the benchmarks
of yesterday” [15]. Even using yesterday’s benchmarks (such as SPEC95) with small data
sets, a four order-of-magnitude slowdown is prohibitively large. For example, simulating the
longest-running SPEC95 benchmark with our timing simulator would require approximately
100 days. There are a number of possibilities for reducing the simulation time sufficiently to
perform tractable timing simulation of these benchmarks. We list them below in order of least
to greatest complexity:

« Small inputs: by simulating the benchmarks with small inputs, the number of instructions
that the target benchmark takes to execute may be reduced. However, small inputs have
two disadvantages: they may demonstrate different memory system behavior (requiring a
less aggressive memory system for a balanced PMI), and they may spend a disproportion-
ate amount of time in specialized routines (such as initialization) for which the execution

characteristics are atypical of the program when executed with large inputs. When the

26
effects of these two conditions are acceptably small, running benchmarks with data sets

that reduce execution time is an acceptable solution.

Simulate an initial fraction of the instructions: it is possible to simulate a benchmark
with its full data set, terminating the simulation before the benchmark completes, thus
simulating some initial fraction of the benchmark execution. The main drawback with this
strategy is that, as with small inputs, the initial fraction may capture an atypical period of
execution (the initialization phase is a particular problem with this strategy). The initial-
ization issue may be countered by starting up the timing simulation after some fraction of
the program has already been simulated by a faster simuatppérforming functional
simulation to get through initialization, and then timing a fraction of the execution). This
solution eliminates the most visible problem (initialization behavior), but the fraction of
the program measured with timing simulation may still be atypical of the execution as a

whole.

Sampling: an improvement on the latter scheme is to simulate small fractions of the exe-
cution with a detailed (timing) simulator, racing from os@mpleto the next with a faster
simulator (such as a functional simulator). The statistics taken from each sample are
aggregated upon completion of the simulation, and should ideally approximate the simu-
lated behavior of the entire application. Sampling has two drawbacks: the time required to
move from sample to sample (which can be significant, even with a fast functional simula-
tor), andcold starteffects at the commencement of each sample (the simulator state is
stale at the beginning of each sample, thus affecting the sample results until it is brought
up to date, owarm). The overhead of moving from sample to sample may be eliminated
by saving the architectural and I/O state at intervals (savsigt@ checkpoiptand jump-

ing directly to the next checkpoint when a sample period completes, to begin the next sam-
ple (the drawback to this strategy is that each checkpoint requires disk space). Cold start
effects may be mitigated by either ensuring that the samples are each sufficiently long, or
by explicitly warming up the simulatori.é., branch predictor and cache) state before

beginning the measurement of each sample.

Parallel simulation: if completion time of a particular simulation is critical, the period

between each state checkpoint may be simulated in full on different machines, in parallel,

27
effectively reducing the simulation time by a factor of as many machines are available

(provided enough disk space is available to hold the checkpoints). The drawbacks to this
approach are that maintaining numerous runs (and aggregating the statistics) becomes
more complicated, plus this approach does not improve throughput, only latency. If time
to completion of a particular run is not critical, each machine could be dedicated to run-
ning its own independent simulation, reducing the complexity of statistics aggregation. If
throughput is critical, the techniques listed above (or a combination thereof) should be
used instead.
The approach we take in this dissertation is twofold. For some benchmarks, which have data
sets that lend themselves to reduction, we alter the inputs to reduce the number of instructions
that must be simulated to run the benchmark to completion, but maintain the behavior typical
of the full reference data sets. For some others, we use sampling. For still others, we use a

combination of the two techniques.

2.2 The SimpleScalar tools

The SimpleScalar tools were originally developed by Todd Austin for his thesis work, while
working for Guri Sohi in the MultiScalar project. Alain K&gi wrote the first instance of the
detailed memory hierarchy simulator, extending the cache module to support callbacks (in
which the requests and responses to the memory system are decoupled), non-blocking caches,
and MSHRs. We extended his efforts by adding a virtual memory system, with address trans-
lation (physical or virtual caches), a generalized cache and bus network, back pressure
throughout the memory system, and subblocked caches.

Software simulators may be eithieace-drivenor execution-drivenTrace-driven simulators
accept a stream of execution events (from the benchmark) and calculate results based on that
stream, whereas execution-driven simulators perform the execution of the benchmark as part
of the actual simulation engined., results from the simulation engine can affect the execu-
tion itself). We depict the organization of the SimpleScalar simulation environment in
Figure 2-1. The tools generate an execution trace in a functional simulator, which is fed on-

the-fly to a simulation engine (the timing simulator). The timing simulator is thus a trace-

28

FORTRAN C Simulator source
oenchmaik source benchma1< source (e.g., sim-outorder.c)
> SimpleScala
pGCC Host C compiler
SimpleScalar
assembly _
SimpleScal Execution
implescalar Functional trace Timing
o) R)
¢ Object files

SimpleScalar Timing result s

executables Functional results

(e.g., inst. profiles)
Figure 2-1: Overview of the SimpleScalar tools

driven simulator, albeit one tightly coupled with the execution engine. The separation of tim-
ing and execution is a source for some concern, as bugs in the timing simulator will not affect
correctness of the benchmark execution (making them harder to detect). Ravi Rajwar merged
our timing simulator with the functional core, resulting in a true execution-driven simulator,
which was useful as a sanity check for the split simulation model. The simulators take binaries
compiled to the SimpleScalar assembly format, decode the program text, and execute the
instructions one by one. Correct execution of the benchmarks may be verified by comparing

the outputs against outputs from binaries run on native machines.

2.2.1 Machine model

We assume a single machine model for the simulation results presented in this dissertation.
In Figure 2-2, we list the SimpleScalar instruction set (ISA). The SimpleScalar ISA is similar
to that of MIPS [95], except that there are no architected delay slots, and SimpleScalar sup-
ports both some additional instructions (square root) and some additional addressing modes

(register+register addressing and auto increment/decrement). In Table 2-1, we show the archi-

Load/Store

Ib - load byte

Ibu - load byte unsigned

Ih - load half (short)

Ihu - load half (short) unsigned
Iw - load word

diw - load double word

l.s - load single-precision FP
l.d - load double-precision FP
sb - store byte

sbu - store byte unsigned

sh - store half (short)

shu - store half (short) unsigned
Sw - store word

dsw - store double word

S.s - store single-precision FP
s.d - store double-precision FP

Miscellaneous

nop - no operation
syscall - system call
break - declare program error

Addressing modes:

@) , .

(reg+C) (with pre/post inc/dec)
(reg+reg) (with pre/post inc/dec)

Integer Arithmetic

add - integer add

addu - int. add unsigned
sub - integer subtract
subu - int.sub.unsigned
mult - integer multiply
multu - int. mult. unsigned
div - integer divide

divu - int. div. unsigned
and - logical AND

or - logical OR

xor - logical XOR

nor - logical NOR

sll - shift left logical

srl - shift right logical

sra - shift right arithmetic
slt - set less than

sltu - set less than unsigned

29

Floating Point Arithmetic
add.s - single-precision (SP) add
add.d - double-precision (DP) add
sub.s - SP subtract

sub.d - DP subtract

mult.s - SP multiply

mult.d - DP multiply

div.s - SP divide

div.d - DP divide

abs.s - SP absolute value

abs.d - DP absolute value

neg.s - SP negation

neg.d - DP negation

sqrt.s - SP square root

sqrt.d - DP square root

cvt - int., single, double conversion
.S - SP compare

c.d - DP compare

Control

] - jump _
jal - jump and link
jr - jump register

jalr - jump and link register

beq - branch == 0
bne - branch =0

blez - branch <=0

bgtz - branch > 0

bltz - branch < 0

bgez - branch >=0

bct - branch FCC TRUE
bcf - branch FCC FALSE

Figure 2-2: Summary of SimpleScalar instructions
Hardware Software Name Description
Name

$0 $zero zero-valued source/sink
$1 $at reserved by assembler
$2-$3 $v0-$v1 fn return result regs
$4-$7 $a0-$a3 fn argument value regs
$8-$15 $t0-$t7 temp regs, caller saved
$16-$23 $s0-$s7 saved regs, callee saved
$25-$25 $t8-$t9 temp regs, caller saved
$26-$27 $kO-$k1 reserved by OS
$28 $agp global pointer
$29 $sp stack pointer
$30 $s8 saved regs, callee saved
$31 $ra return address reg
$hi $hi high result register
$lo $lo low result register
$f0-$f31 $f0-$f31 floating point registers
$fcc $fce | floating point condition code

Table 2-1: SimpleScalar architecture register definitions

30

16-annote 16-opcode 8-rs 8-rt 8-rd 8-ru/shamt
Register format: | | | | | | |
63 3231 0
16-annote 16-opcode 8-rs 8-rt 16-imm
Immediate format: | | | | | |
63 3231 0
16-annote 16-opcode 6-unused 26-target
Jump format; | | | | |
63 3231 0

Figure 2-3: SimpleScalar architecture instruction formats

tectural registers supported in our machine model (32 integer registers, distributed as
described in the figure, 32 floating point registers, and three special-purpose registers for hold-
ing results and condition codes). The SS ISA supports three formats of instructions—register,
immediate, and jump—depicted in Figure 2-3. The instructions are 64 bits long, and each
include a 16-bit annote field, which can be used for passing extra information to the hardware.
Although the instructions are 64 bits long, our simulators have the capability to simulate

instruction fetch as if they were 32 bits, since we are simulating a 32-bit machine.

In Figure 2-4, we depict the virtual memory organization that we assume in our system. At
some point in the target’'s memory hierarchy, address translation is needed to provide a physi-
cal address, whether to access physical memory or a physically tagged cache. We assume a
32-bit virtual address space, with 4KB pages. Upon a translation, the high-order 20 bits of the
virtual address—the virtual tag—is forwarded to the translation lookaside buffer (TLB), if the
system has one (refer {@) in Figure 2-4). On a TLB hi{b), the physical tag is combined
with the 12 low-order bits of the virtual address (the page off>.to produce the physical
address. On a TLB migsl), or if the system has no TLBe), the virtual tag is shifted right 10
bits to produce the virtual addre@$ of the page table entry (PTE). The page table occupies
the low 4 MB in the virtual address space. Once the virtual address of the PTE is obtained, it
must also be translated to produce the physical address of the PTE. To do this translation, the
high-order 20 bits (actually bits 13-22, since the high-order 10 bits are zero) are passed to a

table that we call the MMU (for memory management unit), which holds 1024 virtual to phys-

TLB hit

(b)

Start of address translation = —— = Virtual address (32)

31

| Virtual tag (20) | Offset (12) |
(TLB lookup) < TLB exists (8 ‘ ©
(e)
@ | TLBmiss () No TLB
B Virtual PTE address (32)
(0000000000 | Virtual tag (20) |00
@) MMU lookup : _
9){ (1024 entries) Virtual PTE index (10)
(h)
\
@) | Physical PTE tag (20) | PTE offset (12) |

\
GO

y

Page table lookup Physical PTE address (32)
(and TLB fil) =)=

¢ 0

| Physical tag (20) | Offset (12) I

ical mappings of PTE pagdg). Since the PTEs are each 4 bytes, each page of PTEs can thus
hold 1024 PTEs. Since each PTE maps one page (4 KB), each page of PTEs maps 4MB (4KB
* 1024). Since the MMU holds translations for 1K PTE pages, it can cover 4GB of virtual
address space, which is complete coverage for a 32-bit address space. Once the physical tag
for the PTE page is obtained from the MMU, it is concatenated with the offset from the PTE
virtual addresgh) to obtain the PTE physical address. With that address, the PTE can be
obtained, providing the physical tag for the requested translation. If the system has a TLB, the

PTE is loaded into the TLB). The memory access then continues using the required physical

addresg)).

Figure 2-4: Virtual memory organization

P Physical address (32)

32
2.2.2 Functional simulation

Functional simulation merely executes the benchmark program operations without accounting
for time (.e., how long it takes to execute those instructions). The SimpleScalar tools include
two functional simulators that we use in this dissertatisim-profile and sim-cache sim-

profile maintains statistics based on individual instructions, which we use to characterize our
benchmarks later in this chaptemm-cachetracks miss ratios for a functional cache module,
which does not account for contention or finite resources (having no notion of time). Our
modified version ofim-cachesupports virtually or physically tagged caches, and as many
levels of cache as desired connected in an arbitrary topology. These simulations run roughly

an order of magnitude faster than the timing simulator described in the following section.

2.2.3 Timing simulation

The timing simulator gim-outorder) models a dynamically scheduled microprocessor, per-
forming cycle-by-cycle simulation at a high level. The effects of circuit technology are not
modeled; all delays are specified whole numbers of cycles. The simulated microprocessor is a
five-stage execution pipeline (with a sixth stage for commitment of instructions), depicted in
Figure 2-5. Instructions are fetched, and the branch predictor accessed to determine a specula-
tive address from which to fetch on branches. Téteh engings set to run at an integer mul-

tiple of the core speed, and can fetch across one fewer taken branches than the ratio of fetch
engine speed to core speed. In all our simulations, we assumed that the fetch and core speeds

were identical, so a taken branch would terminate fetches within a given cycle.

Once fetched, instructions are decoded and sent to the reservation stationslisptieh
stage of the pipeline. The execution coreswh-outorder is derived from the Register Update
Unit (RUU) [113], depicted in Figure 2-6. The RUU is a centralized structure that effectively
acts as a combined register renaming unit, reservation station pool [123], and reorder buffer
[110, 115]. The RUU is implemented as a circular queue, with head and tail pointers. The tail

pointer is advanced as new instructions are dispatched to the RUU, and the head moves as the

33

v |
Fetch [—|Dispatch [—¥|Scheduler|—¥%| Exec |—®{Writeback [-%»Commit
gﬂc?lrgga/er Loads Stores

S

I-TLB I-Cache\ /D-Cache D-TLB
Physical memory

Figure 2-5: Pipeline for sim-outorder

(Head Tail)
Register update unit
~
\ ~
Head / Tail \ >

Load/store queue | >
(-)
/ ~ \ > .
/ ~ \ ~
~

/ ~ Source 1 Tag/Ready/Content

~ Source 2 Tag/Ready/Content
Load/store Address/Data/Ready Destination Tag/Ready/Content

RUU entry ID PC | Functional unit ID
Dispatched | Executed Dispatched | Executed

Figure 2-6: Structure of the Register Update Unit core

oldest instructions are committed to the architectural state. Operands are stored in the RUU,
and are identified with unique tags to preserve data dependences. Once an operation’s input
operands are all available, it is marked as ready for issue. Each cycle, a number of ready
instructions are issued to the functional units through the scheduler, shown in Figure 2-5.
Branches, memory operations, and long latency operations (such as multiplies) are always
inserted directly at the head of the ready queue since they are most likely to be on the pro-

gram’s critical path. All other instructions are queued so that they are issued in program order.

When a load is dispatched to the issue units, it is split into two components. A slot is
reserved in the RUU for the effective address computation, and a slot is reserved in a compan-
ion structure called thiwad/store queuéLSQ), which performs the actual communication to

memory. The LSQ is responsible for identifying which loads may be sent to memory—Iloads

34
are not issued if an earlier store with an unresolved address is in the LSQ. (A more aggressive

implementation might perform data dependence speculation [89], allowing the loads to issue
speculatively). If an earlier store’s address is resolved and it matches an unissued load’s
address, the value is forwarded to the load directly in the LSQ. Our simulator does not con-
sider whether a value is a partial woreld, store byte instructions) when matching addresses

on word boundaries, which introduces some inaccuracy. Another potential source of inaccu-
racy occurs when the program uses a double word (held in two registers) as an input; the input
dependence tracking in the simulator only creates a dependence link for one of the two regis-
ters holding the double word. If the two halves become available at different times, this
assumption may allow the dependent instruction to issue early.

The simulator does not issue ready instructions if there are insufficient resources available
(functional units or cache ports) for that class of instruction. Instructions that are blocked due
to insufficient resources are returned to the ready list; the issue unit attempts to reissue the
ready instructions each successive cycle.

The writebackstage of the pipeline is that which returns computed values to the execution
core. When an instruction completes, its result is written back on the result bus (to the RUU),
the value is copied into the RUU entries of the instructions that depend on that result, and
those instructions were waiting solely for the result in question are marked as ready for issue.
This stage is the point at which mispredicted branches are resolved, so pipeline flushes occur
when identified in the writeback stage.

The final stage of the pipeline, which is generally off the execution’s critical path, is the
commitstage. In this stage, results are written back to the RUU in program order. We assume
in our simulations that the number of instructions that can be committed to the architectural
register file each cycle is the same as the fetch and issue widths. It is in this stage that stores
are issued to the memory system, since they are guaranteed not to be mis-speculative stores.
Retirement of instructions can be blocked if a store takes a cache or TLB miss, or if there are
insufficient store ports to the memory system. The commit stage can affect program perfor-
mance when it is blocked for enough timed.a long latency cache miss) that the RUU or

LSQ fills up, preventing instructions from being dispatched. Streams of stores cause a similar

35
effect even without cache misses, since the number of cache store ports we assume is less than

the commit width.

Our simulations model user-level programs down to the physical memory. We do not cur-
rently simulate disk accesses (demand paging), nor do we simulate operating system code.
System calls in SimpleScalar are handled thropgixy system callsn which a system call
generated by a SimpleScalar binary is intercepted by the simulator, translated into an equiva-
lent call on the host system, and then called directly on the host. Upon completion of the sys-
tem call, the results are copied back into the appropriate registers for the target system, and
simulation resumes. From the target’s perspective, it appears as if system calls occur instanta-

neously.

2.3 SPEC95 benchmarks

The benchmarks we use throughout this dissertation are those from the SPEC95 suite. These
benchmarks are well understood by the architecture research community, and consist of sev-
eral different application types. There are 18 total benchmarks in the suite; 8 integer bench-
marks (SPECINT95) and 10 floating-point benchmarks (SPECFP95). These benchmarks are
not without their problems; their data sets (particularly their code sizes) are much smaller than
many applications today, as are their corresponding footprints in memory. However, the diffi-
culty of obtaining sources (or traces, for that matter) of current-generation industrial applica-

tions restricts us to using these benchmarks for this dissertation.

2.3.1 Choosing the input set

Each of the SPEC95 benchmarks is distributed with three data sets: a téssgea (train-
ing set frain), and a reference data se¢f). The test inputs are intended as small inputs that
allow the user to see if the benchmark runs to completion. The training inputs were intended
for use in training a compiler with profile-directed feedback. Both data sets are intended to be
significantly smaller than the reference data set, which is the data set intended for actually

running to measure the performance of various machine configurations. Howeveregince

36
was intended for long runs on real machines, most of the reference sets take too long to simu-

late to completion with timing simulation. The simulation times wghktandtrain tend to be

more tractable, but they may not provide an accurate characterization of real programs’ execu-
tion (either because their data sets are too small, or because they are dominated by initializa-
tion code). To choose which inputs to use, we take a two-tiered approach. For the floating
point codes, most of which are loop-bound, we userdialata set with reduced numbers of
iterations. We ensure that the number of iterations is sufficiently large that initialization is no
more than 10% of the total running time (with a few exceptions as discussed in Section 2.3.3).
For the integer codes and the floating point codes that are not amenable to reduced numbers of
iterations, we profile the three data sets and use the data set that requires the smallest number
of instructions while exhibiting behavior similar to thatref.

When trying to determine how long a program we can simulate, we must consider the
speeds of the various simulators.ble 2-2, we list the simulation speed ranges of the five
simulators we use (the speed of each one varies depending on the execution characteristics of
the benchmark). We also list the low and high times required to simulate one billion instruc-
tions with each simulator. We took the measurements on a 266-MHz Pentium II. The slowest,
most detailed simulator required approximately one day for each billion instructions simu-

lated.

2.3.2 Benchmark characterizations

In this subsection, we characterize the behavior of each benchmark experimentally. We
choose one input set for each experiment (trying to minimize the number of instructions simu-
lated while maintaining behavior similar to simulating tieé¢ data set in full). We refer to this
set collectively as thetandardinput set (orstd). We choose thstd input set for each bench-
mark based on profiled program characteristics. Our goal is to simulate benchmarks with as
large a data set as possible (since the SPEC95 data sets are already generally smaller than typ-
ical applications today), but to simulate as few instructions as possible while retaining the
behavior typical of the full application. Since the focus of this dissertation is the PMI, we want

to choose the workloads that stress the memory system. We therefore choose the data sets that

37

Simulator sim-fast sim-cheetah sim-cache sim-profile sim-outorder
Speed (insts/s) 2M-3M 400K-700K 200K-400K 30K-300K 10K-80K
Time/G inst (low) 8.3 min. 41.7 min. 1.4 hr. 9.3 hr. 27.8 hr.
Time/G inst (high) 5.6 min. 23.8 min. 41.7 min. 55.6 min. 3.5hr.

Table 2-2: Simulation speeds of the five simulators

sustain high miss rates, but must ensure that we do not reduce execution so that compulsory

(cold start) misses inflate the cache miss rates.

We list the number of instructions for each input set of SPECINT95 in Table 2-3, as well as
the breakdown of instructions into memory, computation, and control (we obtained all results
in the following four tables wittsim-profile). In Table 2-4, we display similar statistics for
SPECFP95. In all subsequent tables in this section, we will represesttthgut set in bold-
face. These profiles show that the integer codes are much more control-bound than the float-
ing-point codes; the integer codes’ instructions are generally 15%-25% control, with the one
exception being ijpeg, for which control instructions account for about 8% of the total. There
is more variance among the distribution of computation versus memory for the integer codes;
the over half of the vortex instructions are memory operations, whereas the memory instruc-
tions for ijpeg account for about a quarter of the total. The rest of the benchmarks fall some-
where in between. The floating-point codes have more consistent distributions; they typically
have between 25% and 35% memory operations (the one exception is fpppp, at about 53%),
less than 8% control instructions (the sole exception is hydro2d, at 12%), and high percent-
ages of computation (greater than 60%, except for fpppp, at 45%).

The instruction counts listed range from 3.5M (compress withdbtinput) to 175G (fpppp
with theref input). Thestd inputs we chose (described in more detail in Section 2.3) have a
maximum instruction count of 16G instructions (go), placing an upper bound of 18 days of
simulation time for any benchmark with the slowest simulator. On averagstdheputs run
for approximately 29 hours witsim-outorder, and about 4 hours wiim-cache

In Table 2-5, we list memory operation profiles for SPECINT95, showing the breakdown of
memory operations into loads and stores, plus the distribution of memory operations to the

data, stack, and heap segments. In Table 2-6, we show the same results for SPECFP95. The

38

benchmark input inst %comp %mem %ctrl
099.go | test 16389.6 0.563 0.290 0.148
train 548.1 0.567 0.287 0.146
ref 33119.1 0.564 0.288 0.148
124.m88ksim | test 416.5 0.474 0.311 0.216
train 111.9 0.483 0.333 0.184
ref 63408.5 0.460 0.350 0.190
126.gcc | test 1265.2 0.396 0.405 0.199
train 1277.6 0.389 0.409 0.201
ref 1023.2 0.400 0.403 0.198
129.compress | test (100) 35 0.292 0.611 0.096
train (10K) 35.7 0.454 0.374 0.172
std (400K) 1257.5 0.472 0.320 0.208
ref (14M) 43064.8 0.473 0.324 0.204
1300 | test 956.7 0.288 0.476 0.236
train 183.3 0.347 0.425 0.228
ref 76570.0 0.332 0.430 0.238
132.jpeg | test 553.1 0.652 0.255 0.093
train 1462.5 0.664 0.255 0.081
refl (vigo) 30819.9 0.668 0.258 0.074
ref2 (specmun) 27011.4 0.670 0.258 0.072
ref3 (penguin) 29810.1 0.671 0.256 0.073
134.perl | test 10.5 0.349 0.447 0.204
train 2391.5 0.370 0.436 0.193
refl (primes) 14282.3 0.330 0.480 0.190
ref2 (scrabble) 24240.3 0.345 0.462 0.193
147.vortex | test 9051.6 0.309 0.526 0.165
train 2520.2 0.308 0.528 0.164
ref.lit 7712.7 0.309 0.526 0.165
ref (14 it) 74014.3 0.312 0.514 0.174

Table 2-3: Instruction profile for SPECINT95

integer benchmarks tend to have a higher percentage of stores than the floating-point bench-
marks; the floating benchmarks tend to use about 20%-25% stores (75%-80% loads), with
two notable exceptions: mgrid (96%/4% loads/stores) and turb3d (60%/40% loads/stores).
The integer codes are roughly 63% loads, except for ijpeg and go, which are 70% and 75%

loads, respectively.

The distribution of the memory operations among the data segment, heap, and stack vary
widely across the benchmarks, particularly the integer codes. The floating point codes tend to
make a much higher use of the data segment (a notable exception is tomcatv, which issues

over 90% of its memory operations to the stack), and they almost never access the heap.

39

benchmark input inst %comp %mem %octrl
101.tomcatv | test 2798.9 0.532 0.310 0.157
train 17660.7 0.715 0.259 0.026
ref.62it 10651.7 0.673 0.270 0.057
ref (750 it) 105323.2 0.718 0.258 0.025
102.swim | test 849.9 0.630 0.310 0.060
train 849.9 0.630 0.310 0.060
ref.45it 2846.2 0.650 0.322 0.028
ref (900 it) 51613.0 0.659 0.327 0.015
103.su2cor | test 1054.1 0.583 0.329 0.088
train 19851.1 0.614 0.324 0.062
ref.5it 11548.7 0.589 0.327 0.084
ref (40 it) 62616.3 0.614 0.324 0.062
104.hydro2d | test 9745 0.600 0.264 0.136
train 7583.0 0.635 0.247 0.118
ref.6it 2443.1 0.624 0.252 0.124
ref (200 it) 73666.6 0.639 0.244 0.116
107.mgrid | test 4422.3 0.619 0.367 0.013
test.4it 480.3 0.621 0.363 0.017
train 14292.1 0.622 0.363 0.015
ref (40 it) 110556.9 0.619 0.367 0.013
110.applu | test 19408.1 0.712 0.255 0.034
train 531.9 0.711 0.255 0.034
ref.5it 1748.1 0.713 0.254 0.033
ref (300 it) 93423.3 0.712 0.255 0.034
125.turb3d | test, train 17120.6 0.720 0.227 0.052
ref.2it 2836.8 0.717 0.230 0.052
ref (111 it) 169598.6 0.717 0.231 0.053
141.apsi | test 9191.7 0.639 0.316 0.046
train 2350.0 0.623 0.323 0.054
ref.6it 318.2 0.643 0.310 0.047
ref (960 it) 47883.2 0.648 0.311 0.041
145.fpppp | test 1872.3 0.456 0.531 0.013
train 331.1 0.454 0.532 0.014
ref 175465.0 0.464 0.520 0.016
146.waveb | test 4627.1 0.605 0.324 0.071
train 3132.8 0.603 0.318 0.079
ref.10it 13072.9 0.608 0.332 0.060
ref (40 it) 44888.9 0.610 0.337 0.053

Table 2-4: Instruction profile for SPECFP95

In Table 2-7, we show the sizes of each segment for SPECINT95 (text, data, heap, and stack
segments). We show the sum of these four segments, and compare that with the total data set
that was statically allocated for each benchmark. Simply examining the size of the statically

allocated segments is insufficient because most of the FORTRAN benchmarks (and some of

40

benchmark input %loads Oostores %data %heap bstack
099.go0 | test 0.737 0.263 0.679 0.000 0.321
train 0.737 0.263 0.668 0.000 0.332
ref 0.741 0.259 0.687 0.000 0.313
124.m88ksim | test 0.669 0.331 0.656 0.075 0.269
train 0.615 0.385 0.355 0.112 0.533
ref 0.638 0.362 0.501 0.052 0.447
126.gcc | test 0.637 0.363 0.160 0.215 0.625
train 0.649 0.351 0.162 0.222 0.616
ref 0.638 0.362 0.164 0.216 0.620
129.compress | test 0.123 0.877 0.973 0.003 0.025
train 0.552 0.448 0.914 0.000 0.085
std 0.649 0.351 0.925 0.000 0.075
ref 0.644 0.356 0.925 0.000 0.075
130.0i | test 0.629 0.371 0.182 0.362 0.456
train 0.610 0.390 0.163 0.395 0.442
ref 0.634 0.366 0.138 0.451 0.411
132.jpeg | test 0.692 0.308 0.035 0.598 0.366
train 0.699 0.301 0.032 0.647 0.321
refl (vigo) 0.703 0.297 0.030 0.657 0.312
ref2 (specmun) 0.705 0.295 0.030 0.670 0.300
ref3 (penguin) 0.704 0.296 0.030 0.662 0.308
134.perl | test 0.613 0.387 0.130 0.337 0.533
train 0.591 0.409 0.112 0.392 0.495
refl (primes) 0.633 0.367 0.130 0.297 0.573
ref2 (scrabble) 0.607 0.393 0.140 0.361 0.499
147 .vortex | test 0.586 0.414 0.120 0.150 0.730
train 0.581 0.419 0.116 0.152 0.732
ref.lit 0.584 0.416 0.120 0.149 0.731
ref 0.619 0.381 0.138 0.167 0.695

Table 2-5: Memory operation profile for SPECINT95

the integer codes) statically allocate some maximum data set, but access only an input-depen-
dent fraction. We measured accessed regions of memory at a 4KB (page) graniéarifya(

single word in a single page is touched, that 4KB page is counted toward the total). This met-
ric thus quantifies the application’s footprint in physical memory. In Table 2-8, we show the
same statistics for SPECFP95. We obtained these numbers using a modified version of the

sim-cachesimulator.

Thestd data set sizes vary widely across the benchmarks as well. li and fpppp have data sets
of less than 1MB. Most of the integer codes have data sets between 1MB and 10MB: go,

m88ksim, gcc, compress, and ijpeg. apsi, hydro2d, and mgrid are the floating-point bench-

benchmark input %loads Oostores %data Boheap bstack
101.tomcatv | test 0.674 0.326 0.287 0.050 0.663
train 0.794 0.206 0.028 0.002 0.970
ref.62it 0.762 0.238 0.097 0.015 0.888
ref (750 it) 0.796 0.204 0.024 0.002 0.975
102.swim | test 0.778 0.222 0.818 0.000 0.182
train 0.778 0.222 0.818 0.000 0.182
ref.45it 0.806 0.194 0.948 0.000 0.052
ref (900 it) 0.816 0.184 0.997 0.000 0.003
103.su2cor | test 0.756 0.244 0.319 0.026 0.655
train 0.767 0.233 0.343 0.003 0.653
ref.5it 0.756 0.244 0.334 0.019 0.647
ref (40 it) 0.768 0.232 0.342 0.003 0.655
104.hydro2d | test 0.763 0.237 0.802 0.022 0.177
train 0.807 0.193 0.936 0.003 0.062
ref.6it 0.792 0.208 0.892 0.009 0.099
ref (200 it) 0.813 0.187 0.955 0.000 0.045
107.mgrid | test 0.962 0.038 0.784 0.000 0.216
test.4it 0.954 0.046 0.777 0.000 0.223
train 0.960 0.040 0.783 0.000 0.217
ref (40 it) 0.962 0.038 0.784 0.000 0.216
110.applu | test 0.815 0.185 0.667 0.000 0.333
train 0.814 0.186 0.667 0.000 0.333
ref.5it 0.817 0.183 0.669 0.000 0.331
ref (300 it) 0.815 0.185 0.667 0.000 0.333
125.turb3d | test 0.610 0.390 0.218 0.000 0.782
train 0.610 0.390 0.218 0.000 0.782
ref.2it 0.607 0.393 0.217 0.000 0.783
ref 0.606 0.394 0.211 0.000 0.789
141.apsi | test 0.724 0.276 0.641 0.000 0.359
train 0.712 0.288 0.584 0.000 0.416
ref.6it 0.725 0.275 0.633 0.002 0.365
ref 0.731 0.269 0.660 0.000 0.340
145.fpppp | test 0.725 0.275 0.420 0.000 0.580
train 0.722 0.278 0.420 0.000 0.580
ref 0.733 0.267 0.418 0.000 0.582
146.waveb | test 0.722 0.278 0.889 0.000 0.111
train 0.717 0.283 0.848 0.000 0.152
ref.10it 0.732 0.268 0.930 0.000 0.070
ref 0.736 0.264 0.960 0.000 0.040

Table 2-6: Memory operation profile for SPECFP95

41

42

benchmark input text data heap stack total allpcated
099.g0 test 580 K 524K 20K 8K 11 M I1.IM
train 560 K 496 K 24 K 8 K 1.0M 1.1 M
ref 584 K 528 K 24 K 8K 1.1 M 1.1 M
124.m88ksim test 248 K 128 K 472 K 12 K 860 K 918 K
train 252 K 128 K 3.8 M 12K 41 M 42 M
ref 268 K 128 K 185 M 12K 189 M 189 M
126.gcc test I9M 252K 16 M 308K 41 M 39 M
train 19M 252 K 1.3 M 200 K 3.7M 3.6 M
ref 1.9M 252 K 2.8 M 568 K 55M 51M
129.compress test 80K 536 K 20K 8K 644 K 422 M
train 80 K 640 K 20K 8K 748 K 422 M
std 80 K 15M 20K 8K 1.6 M 422 M
ref 80 K 34.8 M 20K 8K 349 M 422 M
130.1i test 152K 20K 84K 12K 268 K 304K
train 144 K 20K 160 K 28 K 352 K 380K
ref 156 K 20K 392 K 28 K 596 K 612 K
132.ijpeg test 268 K 36 K 43 M 12K 46 M 21.0M
train 268 K 40 K 7.8 M 12K 8.1M 245 M
ref (vigo) 268 K 224 K 7.4 M 12K 7.9 M 25.6 M
ref (specmun) 268 K 172 K 6.6 M 12K 7.1 M 247 M
ref (penguin) 268 K 196 K 7.1 M 12K 7.6 M 253 M
134.perl test 392K 72K 56 K 8K 528 K 685K
train 432 K 72 K 25.0M 8K 255 M 25.6 M
ref (primes) 392K 72 K 56 K 8K 528 K 625 K
ref (scrabble) 428 K 72 K 184 M 12K 189 M 19.0 M
147 .vortex test 896 K 116 K 252 M 12K 26.2M 26.3 M
train 896 K 116 K 10.3 M 12K 11.3 M 114 M
ref.lit 896 K 1116 K 29.1 M 12K 30.1 M 30.2M
ref 896 K 116 K 457 M 12K 46.7 M 46.8 M

Table 2-7: Data set and segment sizes for SPECINT95

marks that fall into that category. Tomcatv and Swim are the two codes whose data sets fall
between 10MB and 20MB. The six benchmarks with the largest data sets, all over 20MB, are

perl, vortex, su2cor, applu, turb3D, and waveb.

In Table 2-9 and Table 2-10, we list cache miss rates fostténputs of SPECINT95 and
SPECFP95, respectively. We show miss rates for direct-mapped, write-allocate caches with
32-bytes blocks, and sizes ranging from 4KB to 1MB. Dotted lines denote cache sizes that are
larger than the data set sizes, which we therefore did not simulate. We obtained these results
using sim-cheetah which couples the SimpleScalar functional simulator with the Cheetah

cache simulation library developed at Michigan [119]. In Appendix B (Section B.3), we vali-

benchmark input text data heap stack total allpcated

101.tomcatv test 160 K 28K 36 K 140 M 142 M 143 M
train 160 K 28 K 36 K 7.0M 7.2 M 14.3 M

ref.62it 160 K 28 K 36 K 140M 14.2 M 14.3 M
ref 160 K 28 K 36 K 14.0M 142 M 14.3 M
102.swim test 160 K 140M 24K 12K 142 M 142 M
train 160 K 14.0M 24 K 12K 142 M 14.2 M

ref.45it 160 K 14.0M 24 K 12K 14.2 M 14.2M
ref 160 K 14.0M 24 K 12K 14.2 M 14.2 M
103.su2cor test 256 K 22 M 36 K 57M 8.2 M 8.6 M
train 256 K 3.7M 36 K 8.3 M 124 M 8.6 M

ref.5it 256 K 8.3 M 36 K 13.6 M 22.2M 8.6 M
ref 256 K 8.3 M 36 K 13.6 M 222 M 8.6 M
104.hydro2d test 208 K 8.4 M 40K I6 K 86 M 8.7M
train 208 K 8.4 M 40 K 16 K 8.6 M 8.7M

ref.6it 208 K 8.4 M 48 K 16 K 8.6 M 8.7M
ref 208 K 8.4 M 40 K 16 K 8.6 M 8.7M
107.mgrid test 168 K 7.3 M 24K 12K 75 M 75 M
test.4it 168 K 7.3 M 24 K 12K 75M 75 M
train 168 K 1.0M 24 K 12K 1.2M 7.5M
ref 168 K 7.3 M 24 K 12K 7.5M 7.5M
110.applu test 228K 135 M 24K 28K 137 M 31.8M
train 228 K 3.0M 24 K 28 K 3.2M 31.8M

ref.5it 228 K 28.7 M 24 K 28 K 29.0 M 31.8 M
ref 228 K 28.7M 24 K 28 K 29.0 M 31.8 M
125.turb3d test 228K 247M 36 K 12K 25.0 M 25.0M
train 228 K 24.7 M 36 K 12K 25.0 M 25.0M

ref.2it 228 K 247 M 36 K 12 K 25.0 M 25.0 M
ref 228 K 247 M 44 K 12K 25.0 M 25.0M
141.apsi test 340K 556 K 48 K 16 K 960 K 9.6 M
train 340 K 184 K 48 K 16 K 588 K 9.6 M

ref.6it 340 K 19M 48 K 16 K 2.3 M 9.6 M
ref 340 K 19M 48 K 16 K 2.3 M 9.6 M
145 Tpppp test 284K 140K 24K 24K 472K 803K
train 284 K 136 K 24 K 24 K 468 K 803 K
ref 284 K 232K 24 K 24 K 564 K 803 K
146.waveb test 312K 272 M 32K 12K 275 M 412 M
train 312K 27.2 M 32K 12K 275 M 41.2 M

ref.10it 308 K 40.1 M 36 K 12K 40.5M 41.2 M
ref 308 K 401 M 32K 12 K 405 M 41.2 M

Table 2-8: Data set and segment sizes for SPECFP95

43

44

benchmark |input 4KB 8KB [I6KB 32KB G4KB 1P28KB 2%6KB 512KB 1MB

099.go | test [28.007 [21.403 | 9.971 |5.468 [3.035 | 1.681 | 1.481 | 0.001 | 0.000
train |24.305 {18.014 | 6.070 | 2.935 | 1.590 | 0.097 | 0.065 | 0.009 | 0.004
ref |28.974 |22.209 |10.644 | 5.772 | 3.255 | 1.846 | 1.587 | 0.001 | 0.000
124.m88ksim test | 4546 | 2564 | 1.522 [0.904 | 0.426 | 0.141 | 0.132 | 0.007 | ------
train | 3.268 | 2.407 | 1.111 |0.669 |0.528 | 0.423 | 0.334 | 0.328 |0.326
ref | 4.016 | 2583 | 1.173 | 0.556 | 0.313 | 0.052 | 0.008 | 0.007 | ------
126.gcc test| 7.951 | 5.146 | 3.265 [1.975 | 1.043 | 0.619 | 0.359 | 0.128 | 0.064
train | 8.332 | 5.218 | 3.197 | 1.960 | 1.021 | 0.553 | 0.309 | 0.096 | 0.060
ref | 8.136 | 5.385 | 3.428 | 2.143 | 1.126 | 0.735 | 0.465 | 0.215 | 0.109
129.compress test | 5.617 | 5519 | 5.466 | 5.427 [5.380 | 5.162 | 1.113 | 0.369 | ------
train | 7.873 | 6.157 | 4.912 | 3.654 | 2.643 | 1.539 | 0.920 | 0.126 | ------
std |15.722 |13.458 [11.758 |9.745 | 7.858 | 5.407 | 2.561 | 0.228 |0.168
ref [15.137 |12.851 |11.166 | 9.215 | 7.399 | 5.121 | 2.642 | 0.206 | 0.165
130.0 test | 3.829 | 2241 | 1.127 [0.476 | 0.016 | 0.000 | 0.000 | - ---—---
train | 4.929 | 3.231 | 2.178 |1.464 |0.810 | 0.136 | 0.004 | ------ | ------
ref | 4912 | 3.085 | 2.152 | 1.519 | 1.035 | 0.585 | 0.125 | ----—- | ------
132.ijpeg test | 9.607 | 3.577] 1.843[0.826 | 0.552 | 0.360 | 0.278 | 0.233 | 0.217
train (10.499 | 3.988 | 1.837 |1.148 |0.795 | 0.638 | 0.515 | 0.465 |0.449
refl (18.107 | 8.171 | 4.175| 1.171 | 0.469 | 0.349 | 0.255 | 0.230 | 0.210
ref2 |17.596 | 8.371 | 4.343 | 1.336 | 0.676 | 0.444 | 0.281 | 0.235 | 0.216
ref3 {16.069 | 8.243 | 4.223 | 1.200 | 0.873 | 0.340 | 0.278 | 0.252 | 0.215
134.perl test | 6.817 | 3.014 | 1.790 | 1.304 | 0.869 | 0.77/8 | 0.021 | 0.021 | 0.021
train | 5.688 | 3.145 | 2.150 |1.679 |0.801 | 0.495 | 0.257 | 0.205 |0.165
refl | 6.108 | 2.841 | 1.038 | 0.779 | 0.007 | 0.006 | 0.000 | 0.000 | 0.000
ref2 | 8.934 | 5944 | 3.880 | 2.443 | 0.829 | 0.654 | 0.019 | 0.016 | 0.014
147 .vortex test | 6.955 [5.103 | 3.141 | 1.464 | 0.922 | 0.519 | 0.318 | 0.215 | 0.133
train | 7.342 | 5537 | 4.263 | 2.356 | 1.738 | 0.538 | 0.364 | 0.229 | 0.143
ref.lit | 7.017 | 5.094 | 2.548 |1.700 |1.184 | 0.794 | 0.464 | 0.350 |0.161

ref | 6.772 | 3.469 | 2.365 | 1.669 | 1.135 | 0.720 | 0.480 | 0.317 | 0.217

Table 2-9: Cache miss rates for varied SPECINT95 data sets (data stream)

date the Cheetah simulation by comparing it with miss rates fiomcache(and vice-versa).
Also in Appendix B, we provide a comprehensive set of cache miss rates for SPEC95, show-
ing miss rates for varied associativities (Section B.1) and block sizes (Section B.2), using

three reference streams (instruction, data, and unified).

2.3.3 SPEC95 benchmark analysis

In this subsection, we describe each of the benchmarks (the eight integer benchmarks fol-
lowed by the ten floating-point benchmarks). We justify our choice ofstideinput set for

each benchmark, and characterize each benchmark’s behavior with that input set. Most of the

45

benchmark

input

4KB

8KB

16KB

-
v

2KB 6

4KB 1

PBKB 21

p6KB 5]

101.tomcatv

test

8.955

7.561

4.275

1.933

1.175

1.157

1.145

train

24.021

22.557

14.626

6.774

4.134

4.102

4.063

ref.62it

20.989

19.507

12.542

5.817

3.534

3.486

3.457

ref

24.550

23.001

14.960

6.954

4.223

4.167

4.133

102.swim

test

49.698

39.780

21.024

6.658

2.015

1.989

1.976

train

49.698

39.780

21.024

6.658

2.015

1.989

1.976

ref.45it

65.062

52.319

27.894

8.314

2.299

2.265

2.248

ref

70.934

57.111

30.520

8.947

2.408

2.371

2.353

103.su2cor

test

10.110

8.058

7.279

6.693

2.350

1.883

1.372

train

9.940

8.465

7.794

7.326

2.381

2.005

1.557

ref.5it

9.775

7.843

7.136

6.623

2.229

2.051

1.740

ref

9.952

8.440

7.811

7.311

2.406

2.200

1.862

104.hydro2d

test

5.203

4.258

3.539

2.880

2.728

2.660

2.636

train

5.520

4.578

3.990

3.297

3.158

3.076

3.049

ref.6it

5.425

4.482

3.855

3.173

3.029

2.952

2.925

ref

5.561

4.619

4.047

3.350

3.211

3.128

3.100

107.mgrid

test

5.934

2.620

1.865

1.457

1.235

0.966

0.901

test.4it

5.941

2.635

1.884

1.480

1.259

0.992

0.928

train

5.409

3.986

3.126

2.447

2.248

2.136

2.033

ref

5.934

2.620

1.865

1.437

1.235

0.966

0.901

110.applu

test

5.092

2.630

1.913

1573

1.380

1.266

1.226

train

4.949

2.549

1.902

1.574

1.387

1.208

1.054

ref.5it

5.105

2571

1.839

1.494

1.319

1.228

1.179

ref

5.194

2.677

1.934

1.574

1.393

1.299

1.250

125.turb3d

test

4.065

3.461

3.255

2.158

1.364

1.271

0.871

train

4.065

3.461

3.255

2.158

1.364

1.271

0.871

ref.2it

4.010

3.408

3.202

2.111

1.426

1.345

0.909

ref

3.839

3.228

3.019

1.908

1.293

1.198

0.801

141.apsi

test

6.995

5911

5.646

4.450

2.943

1.673

0.816

train

6.306

5.369

3.070

1.731

0.838

0.119

0.000

ref.6it

11.056

5.675

4.945

4.832

4.572

4.408

2.914

ref

11.327

5.761

5.019

4.908

4.641

4.486

2.945

145.fpppp

test

5.638

4.334

3.726

2.986

2921

2.823

0.000

train

5.689

4.401

3.798

3.064

2.988

2.898

0.001

ref

5.631

4.160

3.441

2.652

2.605

2.508

0.003

146.waveb

test

24.882

21.038

12.873

7.568

1.888

1.057

0.824

train

23.635

19.994

12.247

7.213

1.797

1.001

0.772

ref.10it

26.548

22.492

13.769

8.138

2.004

1.155

0.922

ref

27.820

23.619

14.553

8.763

2.343

1.466

1.195

Table 2-10: Cache miss rates for varied SPECFP95 data sets (data stream)

46
benchmarks showed less than a 2% difference betweestdlamdref data sets for instruction

distribution, load/store distribution, and segment access distribution. In the following descrip-
tions of individual benchmarks, we note and address only those disparities for sttliahd

ref differ by more than 2%.

2.3.3.1 SPEC95 integer codes

 099.g0

The go benchmark is a simplified version of a program that plays the game Go. The bench-
mark plays against itself, and spends much of its execution doing pattern matching, managing
data structures, and doing look-ahead computations on the board. For Go, we tsst the
input set astd, since all three data sets have approximately the same data set sizmiihe

set has the fewest instructions, but has a vastly different profile than doesftdata set
(about 60% computational instructions as opposed to about 108éfjoiT hetestdata set has

a similar percentage of loads, instruction distributions, and cache miss rates.
e 124.m88ksim

m88ksim is a timing simulator that models the Motorola 88100 microprocessor. Like Sim-
pleScalar, it takes target binaries and simulates them, passing proxy system calls through to
the host. Bothtest andtrain have small instruction counts (400M and 100M, respectively),
while ref has an intractably large instruction count (60t does little actual simulation
other than initializing the simulator, and has a much smaller data set than the othatwo.
performs actual simulation, and has a 4.2 MB data set. Althoglghas a much larger data set
than doedrain (18.9 MB), train’s cache miss rates are much higher, due to the inflated
effects of compulsory misseBdin issues about 40 references per byte of its data set, whereas
ref issues about 3000 references per byte). The instruction distributions bataeeandref

differ more than the difference betwestd andref for any other benchmarkrain issues

fewer (15% fewer of all memory operations) to the data segment, but 6% and 8% more mem-

ory operations to the heap and stack, respectively. Despite these differences, trvagnuas

47
the std set, sincetrain does perform a complete simulation of a small benchmark, and the

number of instructions iref is too large.
» 126.gcc

gcc is a version of the Free Software Foundation’s GNU C compiler version 2.5.3. The bench-
mark compiles pre-processed C source files into optimized Sparc assembly language files. The
ref data set is actually a collection of multiple distinct compilations. Since our simulation
environment does not currently support multiple distinct initiations from a shell, we chose the
largest of the C files in theef data set to use for the simulation. All three data sets have
extremely similar profiles and instruction counts. We thereforereféor std, sinceref has

the largest data set size and highest cache miss rate of the three.
e 129.compress

compress applies the adaptive Lempel-Ziv compression algorithm to a buffer in memory (the
SPEC version implements three statically allocated 14 MB buffers that are used for the input,
comparison, and output buffers). The major data structures are a hash table of approximately
400KB, and the memory buffers. The inputs each consist of a number that represents the num-
ber of bytes to compress from the memory buffer. Téstinput compresses 1KBrain com-
presses 10KB, ancef compresses the full 14MB buffer. Since the number of instructions is
roughly linear in the number of bytes from the memory buffer that are compressed, we can
effectively choose the simulation length by setting the input. fidfenput set requires an
intractable 43G instructions. We chostl to be 400KB, which gives a total data set size of

merely a megabyte, but requires a more tractable 1.2G instructions.
e 130.i

li is a Lisp interpreter written in C. We udeain as thestd input set, since it has the largest

data set (about 200K) of any of the inputs with a tractable number of instructions (111M as
opposed to 76G foref). train differs fromref in the distribution of loads and stores to the
memory segments (6% fewer accesses to the heap, and about 3% more stores). Another draw-

back to usingrain is the fact that only theef input set has significant cache miss rates for

48
caches larger than about 64K. However, as with m88ksim, we are unable to find an intermedi-

ate input, and sinaef is far too long, we usiain for std.

» 132.ijpeg

The ijpeg benchmark reads an image into a memory buffer and processes the image repeatedly
with different compression settings. Like gcc, teé data set processes multiple files indepen-
dently but sequentially. We present the profiles for each of those filgs (specmun, and

penguin) separately. Fostd, we use thdrain input set, since it has an instruction profile,

data set size, and cache miss rate comparable to each of the three input files frefrstig

but only produces 1.4G instructions, instead of the 27G-30G produced iigy ihputs.

e 134.perl

The perl benchmark interprets code files written in the Perl scripting language. Like gcc and
ijpeg, the perkef set contains multiple (two) filegrimes andscrabble . Thetestsetis a
smaller version oprimes , and thetrain set uses a file calledmble . We use thdrain set

(2.4G instructions) fostd, since theref set executions are prohibitively long (14G and 24G
instructions) andestis tiny (10M instructions)train also has a data set size that is, surpris-
ingly, larger than that of any of thef files (and also generates higher cache miss rates). The
execution profile of train is slightly different from either of the two ref data files (3% more
heap accesses and 4% more computation instructions). However, the difference between the
two ref data files is even larger, so the difference is an inevitable consequence of interpreting
different scripts.

o 147.vortex

vortex is a object-oriented database benchmark, coded in C, that uses “schema” to map appli-
cation queries into the database files. The benchmark accesses three different benchmarks
through the schema: a mailing list, a parts list, and geometric data. The database distributed
with SPEC95 holds about 45MB of data. We use iéfeinput set with one iteration fostd,

since theref data set is significantly larger data set thigmn or test (30MB). By running for

only one iteration, the data set size is smaller thaf) since the amount of data accessed
increases with the number of iterations. Unfortunately, the initialization is high with only one

iteration, accounting for 34% of the execution time (5.1G instructions per iteration plus 2.6G

49
instructions for initialization). Since the number of instructions per iteration is so high, we pay

the price of having to simulate a high fraction of initialization instructions. We view this as
justifiable since the instruction profiles in Table 2-3 and the memory operation profiles in
Table 2-5 for ourstd input more closely resemble thef set than does theain set, which
was the alternative candidate f&td (plus, the differences betwestd andref instruction and

access distributions are all less than 4%)).

2.3.3.2 SPEC95 floating point codes

All of the floating-point codes were originally written in FORTRAN, and converted to C using
AT&T’s f2ctool. The benchmarks were then compiled with ple@k optimizations that SPEC
defines (which includes -O3), using the version of gcc 2.6.3 retargeted to SimpleScalar assem-
bly.

For the loop-based floating point codes, we can adjust the number of loop iterations in the
input files, to reduce the running length of the benchmarks. We can obtain a first-order estima-

tion of the loop-based codes’ execution time using the following equation:

T =1+El (2-1)

T is the running time of the program (number of instructions executed), is the number of
“overhead” instructions (initialization and cleanup/outpu), is the number of instructions
executed per loop iteration, aihd is the number of loop iterations. This is only an approxima-
tion, and sincd anB# depend on the input, the data set must be held constant when adjusting
the number of iterations. By measuriig for two valued of , we can solvEfor land .We
want to find the minimal such that is less than or equal to a certain fraction of the total
number of instructions. We adjust , the number of iterations, such that initialization is no
more than 10% of the total execution time. There are a few exceptions where even at 10% the
program running time is still too long; in these cases we reduce the number of iterations fur-

ther so that initialization accounts for no more that 20% of all execution instructions.

e 101.tomcatv

50
tomcatv is a vectorized mesh generation program that performs finite difference approxima-

tion and LU factorization on two two-dimensional arrays. Tést input does little other than
initialization, at 2.7G instructiondrain uses a smaller data set (7MB instead of 14MB for
testandref), and runs for 17.6G instructionf runs for 750 outer loop iterations, for a total
of 105G instructions. We ran thref set with 60 iterations, and found thgt = 137.6M and
| = 2.12G instructions. Since holding initialization to 10% of execution would result in a
execution length of over 20G instructions, we set the initialization to be less than 20%, which
resulted in 62 loop iterations for trstd input set (just over 10G instructions). The ref data set
uses almost all stack references and little control. The higher fraction of initialization results
in the std input set issuing 9% of the references to the data segment instead of the stack. Also
in std, 3% more of the instructions thah are branches, rather than computation.
e 102.swim

Swim solves a system of shallow water equations (also using finite difference approxima-
tions) on a two-dimensional grid. Tmef data set runs for 900 iteratiortestandtrain run on
the same data set, but for a mere 10 iterations. Solvingfor land , we fint th&79.5M
andE = 57.0M instructions. We set the numbeistd iterations to be 45, at which initializa-
tion is under 10%. Even so, tistd input issues 5% more of the memory accesses to the stack
(theref set issues almost no accesses to the stack).
* 103.su2cor

Su2cor is a vectorizable program that computes the masses of elementary particles with a
monte carlo methodestandtrain use data sets that are about a third and a half atheata
set size, respectively. Our measurements show that, usingtitata setE = 1.52G and
| = 1.77Ginstructions. Given this high number of instructions needed for initialization, lim-
iting initialization to 10% requires too high of an instruction count (18.5G). Fostdénput,
we therefore limit initialization to 20%, running thef data set for 5 iterations (9.4G).
* 104.hydro2d

Hydro2d uses double-precision floating point computations for solving the astrophysics
problem of computing galactical jets, using hydrodynamic Navier-Stokes equations. All the

inputs use the same data set, and simply run for differing numbers of iterations (2, 20, and

51
200, fortest, train, andref, respectively). The 200 iterations foef require 62G instructions

of simulation. Our measurements showed that 367.1IM arel 240.3V1 instructions.
We hold initialization to under 10% fastd by running theref data set for 6 iterations, requir-
ing 2.4G instructions. The residual effects of the initialization cause an extra 5% of memory

access to go to the stack (5%eh and 10% irstd) instead of the data segment.
e 107.mgrid

Mgrid implements a multigrid solver for computing a three-dimensional potential field. The
input files specify a grid size, a number of points to solve, and a number of timesteps to calcu-
late solutions for each point. The execution is a two-deep nested loop, with the outer loop
incrementing through each spatial point from the input, and the inner loop running through the
timesteps for each point. THestandref inputs both use a grid that is twice as large in each
dimension as th&ain input. test computes one point for 40 timesteps, aaticomputes the
effect of 25 points for 40 timesteps each. Since the effects of each point on the grid are inde-
pendent, we simulate the effects of only one poist,(thetestinput set) for thestd input set.

Since our measurements show that, for one pdnt 109.5 lard42.3 instructions, we

run for 4 timesteps to keep the initialization under 10%.
* 110.applu

Applu, from the NAS benchmark suite [4], is a solver for five coupled partial differential
equations. The code solves a computational fluid dynamics (CFD) problem on a three-dimen-
sional grid. Theref data set is larger (29MB) thaest or train (13MB and 3MB, respec-
tively), so we use theef input with a reduced number of iterations f&td. Our results show
thatE = 315.0M andl = 173.0M instructions, so we run for 5 iterations to keep initializa-

tion under 10%.
e 125.turb3d

Turb3d simulates turbulence in a cube with periodic boundary conditions in all three spatial
dimensions. It does so by solving the Navier-Stokes equations using a pseudo-spectral

method. All three input filestést, train, ref) use the same data set, but they differ in the num-

52
ber of iterationstestandtrain are identical with 11 iterations each, ared runs for 111 iter-

ations). Our results show thEt» | , so we setstidenput to run only 2 iterations.
* 141.apsi

Apsi is an atmospheric simulator that uses double-precision floating point code to compute
the variations of potential temperature, wind components, mesoscale vertical velocity pressure
and distribution of pollutants in a three-dimensional environment. rEfiedata set size is
2MB, larger than both that dest (1MB) andtrain (512KB).ref runs for 960 iterations and
47G instructions, which is prohibitively long. Our measurements showghat 29.2M and
| = 48.6M instructions, so we use thef data set with 6 iterations fetd.
» 145.fpppp

Fpppp is a quantum chemistry benchmark that simulates an important computational kernel,
the two electron integral derivative. The input is a number of atoms, and the execution time is
proportional to the fourth power of the number of atoms. The data se¢sbfrain, andref
are of similar magnitudes (472KB, 468KB, and 564KB, respectively). Since computation time
grows so explosively with increases in data set size (number of atoms), we usErith@put,
which has a short (333.1M instructions) running time but has similar execution characteristics
to the other inputs. The profiled statistics—including instruction type, load/store ratio, and
distribution of memory access to different segments—differ betvreém andref by no more
than 1.2%, and generally much less than that.
» 146.wave5

Wave5 solves Maxwell’s equations on a two-dimensional mesh with double precision float-
ing point arithmetic. The computation is used to study plasma phenomena. Unlike many of the
other SPECFP benchmarks, Wave5 uses heavy indirect addretesihgndtrain have the
same data set size (27MB). Tref data set is much larger, at 40MB. Our measurements show
thatE = 1061.2M andl = 2440.9M instructions. Given the large number of instructions
per loop iteration, we limit the initialization to 20% instead of 10%, and sestdenput to
use theref data set for 10 loop iterations (thef input runs for 40 iterations). The larger frac-
tion of initialization affects the distribution by issuing 3% more of the total memory opera-

tions to the stack instead of the data segment.

53

2.4 Sampling validation

Since sampling may introduce unknown error into the simulation, we validate our sampling
methodology against a baseline for a range of sampling parameters. In Table 2-11 and
Table 2-12 we present our sampling validation for the SPEC integer and floating point bench-
marks, respectively. For each benchmark, we perform two baseline simulations, the perfor-
mance of which (in IPC) are listed in the third column. The two baseline simulations use the
same set of target parameters as the timing experiments described in Chapter 4 (including the
Rambus timing model), except that we measure a 4-wide issue superscalar processor here
instead of an 8-wide issue machine (with 64KB split level-one caches and a 1MB, 4-way set
associative level-two cache). The first baseline for each benchmark, listed in the “cold” row,
represents the IPC of the target system. The second baseline, listed in the “perfect” row, repre-

sents the IPC of the target CPU core assuming perfect memory and perfect branch prediction.

For each benchmark, we display the IPC of the sampled runs, normalized to their respective
baselines. We take samples at intervals of one, ten, and one hundred million instructions com-
mitted (listed in the second heading row of each table). For each interval, we perform timing
simulation for 1/5, 1/20, and 1/100 of the sample interval (the fractions of timing simulation
are listed in the first heading row of each table). There are three modes for each set of sam-
pling parameters: cold, lukewarm, and warm. Cold sampling means that we run in bare-bones
functional mode in between timing intervals. Warm sampling means that in the functional
(fast) portions in between timing intervals, we send memory references to the cache hierarchy
and branch decisions to the branch predictors, keeping both of them updated, eliminating cold
start effects at the beginning of each timing interval. In lukewarm sampling, we run in cold
mode for most of the non-timing parts of the sampling interval, but then switch to warm mode
for a period equal to the length of the timing interval, to warm up the state right before switch-
ing into timing mode. The only present cold results for the perfect memory and branch predic-
tion set, since there is no difference between cold and warm mode if the cache or branch

predictors aren’t used.

54

Fract. sampled/period 1/5 1/20 1/100
Benchmark | Method IPC iM 10M 100M [gM 10M 100M |AIM 10M 100M
099.go cold| 1.321{ 0.97| 0.99 | 1.00| 0.93| 0.98| 0.99(0.84 | 0.95| 0.96
lukewarm 0.95| 0.98| 1.00(| 0.87 | 0.97| 0.98|| 0.76 | 0.91| 0.95
warm 0.93| 0.98| 1.00(0.80 | 0.96 | 0.98|| 0.56 | 0.85| 0.95
perfect | 2.7491 1.00| 1.00 | 1.00|| 1.00 | 1.00| 1.00(| 1.00 | 1.00 | 1.00
124.m88ksim cold| 1.627]|f 1.03| 1.07| 1.08](1.01| 1.06 | 1.06|| 0.92 | 0.97 | 0.98
lukewarm 1.02| 1.07 | 1.09|| 1.01| 1.06 | 1.07|| 0.95| 1.00 | 1.02
warm 1.02| 1.06 | 1.09|| 1.00 | 1.05| 1.07|| 0.93| 0.97 | 1.00
perfect | 2.748| 1.00| 1.00 | 0.96| 1.00 | 1.00 | 0.96 1.00 | 1.00 | 0.96
126.gcc cold| 1.338(0.91| 0.97 | 0.92| 0.77 | 0.90| 0.89{ 0.53 | 0.75| 0.82
lukewarm 0.88| 0.96 | 092 0.72| 0.89| 0.88(| 0.47 | 0.74| 0.83
warm 0.86| 0.95| 0.92(0.67 | 0.86| 0.88|| 0.38 | 0.65| 0.80
perfect| 2.619| 1.00 | 1.00 | 0.99| 1.00 | 1.00 | 0.99(1.00 | 1.00 | 0.99
129.compress cold| 1.347| 1.00| 0.98 | 0.98| 0.98 | 0.96 | 0.94(0.97 | 1.02 | 0.93
lukewarm 0.98| 0.99 | 0.98(0.99 | 0.97| 0.95(1.00 | 1.05| 0.95
warm 0.99| 0.98| 0.98(0.96 | 0.93| 0.94|| 0.98 | 0.95| 0.92
perfect | 2.761| 1.00 | 1.00 | 0.99| 1.00 | 1.00| 0.99(1.00 | 1.00 | 0.99
130.1i cold| 1.917| 1.00| 1.00 | 0.99| 0.97 | 0.98| 0.96(0.86 | 0.89 | 0.86
lukewarm 1.00| 1.00 | 1.00|| 0.98 | 0.99 | 0.99|| 0.92 | 0.95| 0.96
warm 1.00| 1.00 | 1.00|| 0.99 | 0.99 | 0.99|| 0.95| 0.97 | 0.97
perfect| 2.650| 1.00 | 1.00 | 1.00|| 1.00 | 1.00| 1.01/ 1.00 | 1.03 | 1.00
132.ijpeg cold| 2.691| ***| 0.98| 0.99(0.95| 0.95| 0.96(***[0.89 | 0.92
lukewarm okl 0,99 | 0.99(**| 0.97| 097 ***| 0.92| 0.93
warm *% | 098 0.99(0.94| 0.95| 0.95(***| 0.89| 0.87
perfect| 2.806| 1.00| 1.00 | 1.00|| 1.00 | 1.00| 1.00{| 1.00 | 1.00 | 0.99
134.perl cold| 1.569(1.00| 0.98 | 0.96(0.96 | 0.88| 1.03|| 0.80 | 0.83 | 1.00
lukewarm 1.00| 0.99| 0.95|| 0.94| 0.87 | 1.02|| 0.82| 0.82 | 1.00
warm 0.99| 0.98| 0.95(0.96 | 0.88| 1.02|| 0.86 | 0.81| 0.99
perfect | 2.594| 1.00| 1.00 | 1.00|| 1.00 | 1.00| 1.00(| 1.00 | 1.00 | 1.00
147 .vortex cold| 1.639| 0.98| 1.00| 1.00| 0.95| 0.98| 1.00{ 0.88 | 0.93 | 0.97
lukewarm 0.92| 0.97| 0.99(0.86 | 0.94| 0.98|| 0.78 | 0.87 | 0.95
warm 0.88| 0.94| 0.99(0.73 | 0.82| 0.97| ***| 0.59| 0.85
perfect| 2.453| 1.00| 1.00 | 1.00|| 1.00 | 1.00| 1.00{/ 1.00 | 1.00 | 1.00

Table 2-11: Sampling validation for SPECINT95

Fract. sampled/period 1/5 1/20 1/100
Benchmark | Method IPC iM 10M 100M [gM 1O0M 100M (LM 10M 100M
101.tomcatv cold| 1.931(0.92| 0.99| 0.98(0.84 | 0.98| 1.00|| 0.70 | 0.90 | 0.99

lukewarm 0.99 | 1.02| 0.98(0.92| 1.02| 1.01{ 0.79| 0.98 | 1.00
warm 1.02| 1.02| 1.00([0.99| 1.00 | 0.97 | 0.93| 0.99 | 0.94
perfect | 2.883|| 1.00 | 1.00 | 1.00|| 1.00 | 1.00 | 1.00|| 1.00 | 1.00 | 1.00
102.swim cold| 1.772(0.92| 0.99| 0.95| 0.75| 0.99 | 0.96| 0.59 | 0.87 | 0.97
lukewarm 1.02| 1.01| 0.95([0.95| 1.04 | 0.98(0.67 | 1.02 | 0.96
warm 1.00| 1.02| 0.95|| 1.00| 1.03| 0.97| 0.96 | 1.02 | 0.92
perfect| 2.916| 1.00 | 1.00 | 0.98| 1.00 | 1.00 | 1.00|| 1.00 | 1.01 | 0.99
103.su2cor cold| 2.068(0.96 | 0.97 | 1.00(0.93| 0.95| 0.98(0.81 | 0.92 | 0.98
lukewarm 0.96| 0.99| 0.99| 0.95| 0.96 | 0.99| 0.90| 0.92| 1.00
warm 0.97 | 0.99| 0.99(0.96 | 0.98| 0.98(0.93 | 0.96 | 0.99
perfect | 2.761|| 1.00 | 1.00 | 1.00|| 1.00 | 1.00 | 1.00| 0.99 | 0.99 | 1.00
104.hydro2d cold| 1.112(1.03| 1.03| 0.97(1.01| 1.05| 1.08(0.91| 1.05| 1.16
lukewarm 1.04| 1.02| 0.97| 1.02| 1.03| 1.07|[0.92| 1.06 | 1.15
warm 0.99| 1.02| 0.97| 0.96 | 1.02| 1.07| 0.90| 0.99 | 1.14
perfect | 2.494| 1.00 | 1.01| 1.00|| 1.00 | 1.01| 0.91| 1.00 | 1.01 | 0.87
107.mgrid cold| 2.037(0.89| 0.98| 1.02{ 0.82| 1.01| 1.02|| 0.65| 0.95| 1.08
lukewarm 0.90| 0.99| 1.02| 0.86| 1.13| 1.04| 0.84| 1.03 | 1.17
warm 1.00| 1.00| 1.02|[099 | 1.10| 1.04| 0.95| 1.10| 1.27
perfect| 2.817| 1.00| 1.00| 1.00|| 1.00 | 1.00 | 0.99| 1.00 | 1.00 | 0.99
110.applu cold| 1.817(0.98| 1.01| 1.07(0.90| 1.01| 1.02| 0.67 | 0.98 | 1.01
lukewarm 0.99| 1.00| 1.07| 0.96 | 1.02 | 1.03|| 0.82| 1.00 | 1.01
warm 098 1.01| 1.07| 0.93| 1.02| 1.03(0.86 | 0.96 | 1.01
perfect | 2.732|| 1.00 | 1.00 | 1.01|| 1.00 | 1.00 | 1.00| 0.99 | 1.00 | 1.00
125.turb3d cold| 2.294(0.81| 0.95| 0.99(0.54| 0.86| 1.00(| 0.30 | 0.66 | 0.90
lukewarm 094|101 1.00|{ 0.74| 0.98| 1.02|| 0.40| 0.76 | 0.95
warm 0.98| 1.02| 0.99| 0.94| 1.01| 1.01| 0.86| 0.93| 0.90
perfect | 2.785]|| 1.00 | 1.00 | 1.00|| 1.00 | 1.00 | 1.00|| 1.00 | 1.00 | 1.00
141.apsi cold| 1.844(0.95| 0.97 | 1.05(0.83| 0.92| 0.94 0.58 | 0.77 | 0.88
lukewarm 0.97| 0.97| 1.05| 0.93| 0.95| 0.93| 0.69| 0.89 | 0.92
warm 0.97| 0.95| 1.05| 0.93| 0.94| 0.93| 0.78 | 0.87 | 0.94
perfect| 2.090| 1.00 | 0.97 | 1.01|| 0.99 | 0.97 | 0.93| 0.98 | 0.96 | 0.92
145.fpppp cold| 0.539(1.02| 0.95| 0.86(1.02 | 0.97| 1.01| 1.18| 0.93| 2.21
lukewarm 1.02| 095| 0.86(| 1.02| 0.97 | 1.01| 1.14| 0.94 | 2.28
warm 1.02| 095| 0.86|| 1.01| 0.97 | 1.02|| 1.07| 0.93 | 2.30
perfect | 2.554|| 1.00 | 1.00 | 1.01|| 1.00 | 1.00 | 1.00| 0.99 | 1.01 | 0.98
146.waveb cold| 1.968(0.93| 0.98| 1.00(0.81| 0.91| 0.92| 0.55| 0.83| 0.91
lukewarm 094 099 101|086 | 0.97| 0.97(0.74| 0.87 | 0.95
warm 0.97| 1.00| 1.01| 0.90| 0.99 | 0.97| 0.84| 0.94| 0.99
perfect | 2.549]|| 1.00 | 1.00 | 1.00|| 1.00 | 1.00 | 1.00|| 1.00 | 1.00 | 1.00
Table 2-12: Sampling validation for SPECFP95

56
In both tables, we shade the parameter set for each benchmark that we use for sampling in

our experiments. If no table cell is shaded for a particular benchmark, we did not use sampling
for that benchmark, as the simulation time with #te input set was tractable. For most of the
benchmarks, the sampling was inaccurate when the timing period was 1/100 of the sample
interval. Some of the benchmarks were sufficiently accurate at 1/20 timing simulation, but
most of them required 1/5 timing simulation. All of the simulations needed lukewarm or warm
simulation to be maximally accurate. By varying the sampling interval on a per-benchmark
bases, we never exceeded a 1% error in IPC for those benchmarks that were sufficiently long-

running to require sampling.

57

Chapter 3

Measuring Cache and Traffic Efficiency

Caches reduce bus traffic by buffering data so that they may service multiple requests with
only one transmission of data from the next lower level of the memory hierarchy [51]. How-
ever, since cache lines are larger than one word, both cache capacity and bus bandwidth are
wasted when spatial locality is poor. Words that will not be referenced are transmitted across
the bus, wasting a critical resource for the bandwidth-bound programs defined in the previous
chapter. Useless words also reside in the cache, taking up space that could be used to hold
needed data. In this chapter, we define and evaluate two metaicise efficiencandtraffic
efficiencyCache efficiency measures the fraction of useful data that a cache holds at any given
time. Traffic efficiency measures the effectiveness with which bus bandwidth is utilized. By
measuring and analyzing these two metrics, we can discover opportunities for improving the

effectiveness with which both resources are used.

3.1 Cache efficiency

We define theache efficiencgf a given memory to be the average fraction of the cache that
holdslive data [87] over the execution of a program. We define a word in the cachdlitebe
if it will be read again before it is overwritten or evicted. A word in the cachdeadif its
valuewill not be read again before being evicted. If the block is thrown out and subsequently
loaded, that space in the cache is dead between its last read and its eviction. A word in the
cache is also dead in between a read and a write to that word, since the value is destroyed upon
the write and is never reused. Only the period between a write and a read or two reads to a
given value is considered to be live. For simplicity, during the following discussion, we will

assume a cache that uses one-word blocks.

58

When a block is first referenced (we will assume by a read), it is loaded into the cache. Once

that occurs, there are three possibilities:

The second reference to the block is a read. In that case, we define the blodk/&ofbe

the period between the two reads.

The second reference to the block is a write. In that case, we define the blockl¢adbe

for the period in between the read and the write. Even though the block is referenced
again, the data in the block are destroyed (overwritten) with a value produced by the pro-
cessor; thus the contents of the cache block before the write were not needed.

The block in question is replaced by a second block that maps to the same location in the
cache, before a second reference to the first block occurs. In this case, we define the first

block to be dead for the period between the read to the first block and its replacement.

When cache blocks are larger than a single word, the definitions of liveness and efficiency are

slightly more complicated. Liveness of a large block can be measured in two ways:

coarse grainin which we consider the block to be live in between successive reads to that
block. This approach is crude, as it lumps operations to separate addresses into one cate-
gory, and is thus less suitable for evaluating intra-block efficiency.

fine grain in which we consider a block to be live so long as any word in that block is live
(with the definition of liveness for each word being the same as previously defined. This
approach is more difficult to measure, since the determination as to whether a block is live
cannot be made at the time of each reference to that block. For instance, when a read and
then a write are issued to the same cache block, but to different offsets within the block,
the block could be live for the period between the read and the write if the write is fol-
lowed by another read to the same address as the first read (we illustrate this problem with
the two reads to addres€l in Figure 3-1). If the cache block is evicted before another
read to a non-overwritten word, then the block should have been dead for the time in
between the read and the write. Thus, at the time of the write, future knowledge is required

to determine the status of the block.

We depict an example of a cache efficiency calculation in Figure 3-1. In Figure 3-1a, we show

an example of how efficiency would be calculated for a one-word bl¥ckndY are two

cache lines that conflict in the cache. In each box, we show the contents of a cache line after

59

(a) One-word blocks:
Read X Write X Read X Read Y Read Y Read X

| x || x (7777 x | v 77777 v] x| a0%

(b) Two-word blocks:
Read X1 Write X2 Read X1 Read Y1l Write Y1 Read Y2

XWX LA XL Y1 Y1 Y1
Live VLLL/L/A X2 X2 X2 Y2 V27771 Y2 77774 Y2
Dead [N
x 77770 x V777, z_z 7777 v 77770 % | sow

Figure 3-1: Examples of block liveness
the operation above it completes. The bars between the boxes represent live periods for the
block (hatched) and dead periods (grey). Wheis brought into the cache with a read, we
mark it as dead between the read and the write, since the read data are subsequently overwrit-
ten (and thus did not hold useful data). For the next period, it is live, since it will be read again
after the write. The cache line is marked dead, live, and dead over the next three periods, as it
is replaced, consumed, and replaced again, in this example. Assuming unit time periods

between each operation to this line, the efficiency of this line woul¥ Be= 0.40

In Figure 3-1b, we depict an example (measuring efficiency using the fine-grained approach,
in which a block is live if any word in the block is live) with two-word cache lines. Each line
holds two addresses (cache IMeholds wordsX1 andX2, for example). In the upper part of
the two-word figure, we show the status (live or dead) for each word. In the lower part of the
figure, we show the status for the cache line as a whole (applying a logical OR to the “live bit”
of every word in a given cache line). For the first two time periods, wd2dis never live
because it is never read, bXt is live for both periods because it is loaded in and then read
two operations later. All the words in the block are dead between the last referexemtbits
replacement by. There are two methods of measuring efficiency in this case; we can count
the entire line as live if any of its constituent words are live (effectively using a logical OR), or

we can measure the intra-block efficiency, considering words within a cache line that are dead.

60
With the former approach, the efficiency of this line for the time period shown (again assum-

ing constant time between operations) would4ze& = 0.80 . Using the latter approach, the
efficiency would be4/10 = 0.40 . With the latter approach, the efficiency will always be
lower than a cache of equivalent size with one-word blocks, except in pathological cases

where the replacement policy punishes finer-grain mapping of blocks into the cache.

3.1.1 Methodology

We measured cache efficiencies in a previous study [12], the results of which we present here.
In that study—performed before we had brought up our version of the SimpleScalar tools—
we used a modified version of Dinerolll [60] (a cache simulator written by Mark Hill) to scan

address traces produced by Shade [26] (a tracing tool written by Sun Microsystems).

We measured cache efficiencies for caches with 32-byte blocks and a write-allocate, write-
back policy. We simulated all cache sizes that were powers of two between 4KB and 2MB,
and with set associativities of 1, 2, and 4. We did not simulate larger caches because most of
the benchmarks we used for this study were the SPEC92 benchmarks [116], which had small
data sets (all less than 4 MB). We used SPEC92 because SPEC95 was not available at the

time.

The SPEC92 benchmarks we used were compress, eqgntott, swm256, and su2cor. We ran
Compress and Eqgntott with the default inputs. We ran su2cor with a short input, and swm256
with the default input for 20 iterations. In addition to SPEC92, we used two other bench-
marks: buk and g++. Buk is a NAS [4] kernel that implements bucket sort. g++ is release 2.6.0
of the Gnu C++ compiler, which generates the assembly code of the preprocessed CPU mod-
ule of a multiprocessor simulator. We produced all Shade traces using Sun Sparcstation 10

1

workstations, compiled witiO3 -mflat using GCC version 2.6.0.

1. The “mflat” option compiles code without using the SPARC register windows. Running with register
windows would have hidden a fraction of the addresses produced by the benchmark code from our
trace, as instructions from traps on window overflows and underflows are not output by Shade. The
libraries we used were unavoidably compiled with register windows, and therefore generated some
addresses that were not included in our trace.

61

(a) Word-level granularity (b) Block-level granularity
1.00 1.00
0.90 - buk L 0.90
080{ O - compress L 0.80
o70] T eontott L 0.70
— vV — — v g+t /Y\
2 0.60] o o su2cor o o\\\\ L 0.60 >
Boso] oo symzs s A Loso 8
{0 040 ‘ ’ \ 0.40 iT
0.30 - 0.30
0.20 0.20
010 +—- 0.10
0.00 =% — . — Oy 0.00
4K 8K 16K 32K 64K 256K IM 2M 4K 8K 16K 32K 64K 256K M 2M

Size of cache Size of cache

Figure 3-2. Efficiency measurements

To establish that the low efficiencies were caused by poor use of the cache, and not cold-
start or dead data (program commencement and termination effects, respectively), we mea-
sured the dead time before a frame’s first and after a frame’s last reference. Those quantities
were appropriately negligible, indicating that the programs were sufficiently long-running to

prevent endpoint effects from affecting our results.

3.1.2 Measurement of cache efficiencies

In Figure 3-2 we plot the measured efficiency of 4-way set-associative caches. We assume
32-byte blocks for both graphs shown. In Figure 3-2a, we depict efficiencies calculated by dif-
ferentiating between live and dead words within blocks, and in Figure 3-2b, we show cache
efficiencies examining the coarse-grain method of measuring blocks rather than individual
words (e.g., the period in between two reads to different words in the same line would be con-
sidered live).

Caches substantially smaller than the data set size (and/or the working set size) of the traced
application show poor efficiency, as loaded lines are evicted after few uses and the cache
thrashes. Efficiency improves with increasing cache size, peaking at the point where the entire

data set just fits in the cache. Peaks with a lower value occur when the cache is just sufficiently

62
large to hold the working set; two such peaks are visible for swm with a 16KB cache and

su2cor with a 64KB cache. Once the cache is larger than a benchmark’s data set, the efficiency
decreases inversely proportionally to increased cache size, as the added cache is never
touched.

Higher set associativities produce slightly—but not qualitatively—more efficient caches. We
present the 4-way set associative results here to show that the efficiencies are generally low
even with a high associativity. The direct-mapped efficiencies are even lower.

Although the shapes of the curves match our intuition, we found the height of the curves to
be surprisingly low. The word-level granularity efficiencies tend to remain under 20% for
cache sizes that are less than a quarter of an application’s data set size (for block-level granu-
larity, the efficiencies are under 30%). The ratio between the block- and word-level efficien-
cies gives a rough idea of what percentage of the words in the block are actually used. Codes
that access arrays linearly, with a unit stride, will produce similar efficiencies for the word-
and block-level efficiency measurements. The swm benchmark shows this phenomenon. In
general, the word-level efficiencies should always be less than block-level efficiencies, since if
any word in a block is live, block-level runs count the whole block as live. The one data point
where this relation does not hold is Swm with a 2MB cache. The block-level efficiency is
lower than the word-level efficiency here because of the method we used in this experiment
for calculating block liveness (coarse grained); a store marks everything in the block as dead.
In this particular case, blocks that contained multiple live words were declared dead in the
block-level calculation, enough that the block-level efficiency was driven under the word-level
efficiency.

Although the efficiencies for the larger caches tend to be high compared to those for the
smaller caches, these are uninteresting data points because of the close correspondence
between the larger cache sizes and the applications’ data sets. The two benchmarks with larger
data sets (Swm and Buk with 4MB and 6MB, respectively) have efficiencies of under 5% for a
one megabyteache. As with the other benchmarks, efficiency rises precipitously when the
cache is sufficiently large to hold the working set, which for these two benchmarks is about

2MB. Buk and Swm efficiencies for a 4MB cache are lower than those of a 2MB cache (we

63
did not plot the 4MB results). Even when the cache size is closest to the working-set size, the

highest word-level efficiencies were just above 50%, which is ah@strcasautilization.

The implications of these low cache efficiencies are twofold: that the cache moves much
useless data across the bus (data that are dead on arrival), and that the cache keeps once useful
data in the cache longer than necessary. In Chapter 4 and Chapter 5, we propose a number of
techniques for addressing both sources of low efficiency. In the remainder of this chapter, we
guantify the amount of superfluous traffic moved across the bus, and place a lower bound on
bus traffic, thus measuring the highest possible effective bandwidth for a given bus. We note
that these efficiencies do not necessarily correlate directly with performance; it may be possi-
ble to have a cache with a lower efficiency and still have the system demonstrate superior per-
formance. The low efficiencies that we measured are simply an indicator that it may be
possible to improve cache performance; they are evidence that there is potential to make better

use of the cache space.

3.2 Traffic efficiency

In this section, we explore three metrics: {djffic ratio, a well-known metric that measures
how much traffic a cache reduces (or increases) from one level of the memory hierarchy to the
next, (2) optimal traffic ratiq which defines the maximal possible traffic reduction that a
cache of a given capacity could perform, and tf&ffic efficiencywhich quantifies the gap
between how much traffic reduction a caadwaild perform and actuallgloesperform. With

this metric, we are able to quantify how much individual cache features may reduce traffic.

3.2.1 Definition of traffic ratios

In Chapter 1, we discussed how—for a class of programs—stalls caused by insufficient
memory bandwidth may become dominant as processors and memory hierarchies attempt to
tolerate memory latencies more aggressively. On-chip memory plays a crucial role in reducing
off-chip traffic [51]. This reduction increases the effective pin and/or bus bandwidth, as seen

by the processor. When bandwidth limits performance, an important metric is the extent to

64
which caches reduce traffic to lower levels of the memory hierarchy, since the traffic reduction

increases the effective bandwidth to and from those lower levels.

Therefore, in Section 3.2.3, we measure ttadfic ratios of a number of caches, which
allows us to calculate effective memory bandwidth for a given processor. Goodman first pro-
posed the concept of a traffic ratio, calling it bus transfer ratio [51]. Hill and Smith proposed
the term traffic ratio, which we use herein [61]. We generalize this metric to multiple levels of
cache. LeD; represent the traffic volume—the total amount of transmitted bytes—during the
execution of a given program. For a leveh the memory hierarchy, we obtain the data traffic
ratio (R) by dividing the traffic between levelsandi + 1 ;) by the traffic between levels

i—1landi (D;_,):

R = Di/Di_y (3-1)

For example, if a level-one data cache had 1K 4-byte loads issued to it from level O (the regis-

ters), and the cache produced 32 misses (with 32-byte lines), the traffic ratio would be:

R, = D,/D, = (32x 32)/(1024x 4 = 0.25 (3-2)

For simple caches with a write-through policy, we can calcuRytdirectly from the cache

miss ratio, the number of issued loads and stores, and the cache block size. A write-back
cache decouples the direct correlation between miss rate and traffic ratio. Using the miss rate
to estimate traffic ratios becomes less accurate for more complicated memory hierarchies: a
lockup-free cache may combine two misses with one response from memory, prefetching
increases traffic more than it reduces the miss rate, and support for variable transfer sizes

makes it difficult to measure cache traffic accurately with miss rate alone.

We use the traffic ratio at each level in the hierarchy to calculate the effective bandwidth to
the next lower level of the hierarchy. By dividing the bandwidth from lavell of the mem-

ory hierarchy byR;, we obtain theffective bandwidtfrom leveli + 1 . By taking

65

k
P = Py [TR (3-3)
i=1

wherek is the number of levels of on-chip caches, 8 is the pin bandwidth for the pro-
cessor in question, we obtai®", which is the effective pin bandwidth seen by the processor.
Higher traffic ratios for on-chip caches will thus increase the effective pin bandwidth. Note
that this metric assumes uniformity in the access patterns. In a real system, working set
changes will produce “bursty” periods of traffic, which may be followed by underutilized peri-
ods. As memory systems come to look more like queueing systems (as discussed in
Chapter 1), and the processor continues to exploit larger instruction windows, the request rate

will become more uniform.

3.2.2 Definition of traffic efficiency

While the traffic ratio of a cache shows how effective a cache is at traffic reduction, it gives
no indication as to whether the amount of traffic the cache produces close to optimal, or if
there is much remaining potential for traffic reduction. Tdpimal traffic ratio of a cache
allows us to compute a lower bound on memory traffic, and thus an upper bound on effective
memory bandwidth. Assume thB’;Opt is the theoretically minimal volume of traffic that may
be produced by a memory of a given capacity at Iewelthe hierarchy. We compute the opti-
mal traffic ratio R°PY) as follows:

t t
R™ =D"/D,_, (3-4)

This upper bound is only valid if the processor model remains unchanged; it is possible to
change the memory reference stream and therefore further reduce traffic. Also, we note that
the traffic volume at a given levelD;) is dependent on the organization of the memory hier-
archy in the higher levelsl(- i—1). Measurements for different levels in the hierarchy,
whether normally or optimally managed, may not therefore be taken with independent refer-

ence streams and then multiplied.

66
If processor pin bandwidth is the primary bottleneck in a system, we can compute the opti-

mal pin bandwidth (the same could be done for memory bus bandwidth)O‘P_i@ﬁJe the
upper bound on effective pin bandwidth. Using the optimal traffic ratio, we can compute this

upper bound as followk (andBpi” are the same as in Equation 3-6):

k
o™= g™/ [TR™ (3-5)
i=1

Now that we have an expression for the optimal traffic ratio, we can conwadfie efficiency
which we shall denote ds Traffic efficiency measures how close to optimal the traffic reduc-
tion of a given cache is, by expressing the number of times greater the actual cache traffic is
than the minimal amount of traffic. Formally, we defiBas the ratio of the traffic ratios of a
normal cache and a perfectly managed cache of the same size.

The traffic efficiency for levalin the memory hierarchy;, is therefore:

R;:ache D;:ache Di . Dicache
E, = - = x —— = ->1 (3-6)
R_OIO Di—1 D_Op D_Op

whereD;®@"®js the traffic generated by the cache at ldyeindD;°P!is the minimal volume
of traffic that could be generated by a perfectly managed cache at level

A level in the memory hierarchy witlie, = 1 is therefore perfectly managed, in terms of
memory traffic reduction. Large values Bf indicate a memory organization that generates
much more traffic below it than is necessary. Large valueg;aflso indicate that there is
potential to reduce unnecessary traffic.

In this subsection, we have not discussed how to obtain optimal cache traffic volumes. In
Section 3.2.4 we propose a structure that enables us to approxfexperimentally, and

thus obtain botiRCPt andE.

67
3.2.3 Measurement of traffic ratios

We used trace-driven simulation to measure memory traffic for various cache sizes and con-
figurations. We used QPT to generate traces [60]. The traces contained data memory refer-
ences but no instructions or TLB miss traffic. QPT handles double-word memory accesses by

consecutively issuing the two adjacent single-word addresses.

We used the Dinerolll cache simulator [60] to perform our cache simulations. We measured
cache traffic for the same set of SPEC92 benchmarks and inputs as liste@&hdkperiment
set shown in Table A-1. We list results here for one other SPEC92 benchmark not evaluated in

Appendix A: dnasa2, an FFT-based floating-point code, which we ran with a 128x64x64 grid.

We measure the traffic ratio by measuring the total traffic for a given cache with Dinero, and
dividing the total traffic by the product of the loads and stores issued and the load/store size.
“Total traffic” in these experiments includes write-back traffic but not request traféc (
addresses). We flush the cache upon program completion, writing back all dirty data. We

include these flushed write-backs in our traffic measurements.

In Table 3-1, we list traffic ratio measurements for a range of single-level, direct-mapped,
32-byte-block, write-allocate, write-back cache sizes. We saw similar results for caches with
higher associativities. Table cells marked “—" are those for which the cache size in question
is larger than the benchmark’s data set size. This area of the experiment space is uninteresting,

sinceR will always approach 0 when the program runs out of the cache.

WhenR, = 1.0, a cache generates exactly as much total traffic to memory as there would
be with no cache. It is well known [51, 61] that small caches may generate more traffic than a
cacheless reference stream. For five of the eight benchmarks, we see this effect in Table 3-1,
for caches with sizes of 4KB and less. If a block is replaced quickly after its first use—or if
there is little spatial locality associated with the access that caused the miss—the other six or
seven words loaded with the 32-byte block are superfluous, and will contribute to a higher

traffic ratio.

We see the effect of caches increasing total traffic for some larger cache sizes as well. com-

press and su2cor generate more traffic with a 64KB cache than would a cacheless system.

68

Trace 4KB | 8KB [16KB |32KB [|64KB [128KB P56KB $12KB 1MB 2MB

Compress | 1.76 | 1.59 1.46 1.29 1.10 0.82 0.43 — — —
Dnasa2 | 1.34 | 0.94 0.73 0.62 0.29 0.05 — — — —
Eqgntott | 0.55 | 0.47 0.43 0.39 0.34 0.27 0.18 0.11 | 0.06 —

Espresso | 0.39 | 0.20 0.08 0.01 — — — — — —
Su2cor | 6.88 | 6.11 4.75 2.99 1.43 0.82 0.61 0.29 | 0.13 —
Swm | 3.94 | 1.79 0.63 0.60 0.59 0.58 0.58 0.56 — —

Table 3-1: Traffic ratios for 32-byte block, direct-mapped caches

compress repeatedly accesses a large hash table, so its memory reference stream contains little
spatial locality (a larger block size will consequently waste bandwidth). Su2cor iterates over
several large arrays, some of which conflict heavily in its main loop for cache sizes less than
64KB. In contrast to su2cor, swm has roughly the same traffic ratio from 16KB to 1MB cache
sizes. Swm iterates over large arrays, with a reference pattern that contains little locality and
no small working sets [99]. Swm does have high spatial locality, however, allowing one each
cache miss to service multiple loads, thus keeping the traffic ratio under 1.0 for all but the
smallest cache sizes. In geneflranges between 0.1 and 1.0 for caches that are not overly
large or small for a given program.

The generation of machines that these benchmarks were designed to test did not have on-
chip caches larger than 64KB. We therefore calculated the arithmetic mean Rf fireall
caches with sizes greater than or equal to 64KB and less than the data set size of each bench-
mark. The mean across all benchmarks was 0.51. While this estimate cannot be applied to an
individual program/cache combination, we can say that for these benchmarks running on sys-
tems with cache sizes typical of the benchmarks’ generation, the processor traffic is reduced
about in half. Since the SPEC92 benchmarks’ data sets are not large, however, these results
are conservative—many of these programs run out of the caches, whereas larger benchmarks

would incur more conflict misses, thus increasing the traffic ratio.

3.2.4 Methodology for measuring traffic efficiency

In this section, we measure an upper bound on effective memory bandwidth. By experimen-
tally measuring a value that approachBSP, we can calculate traffic efficiency using

Equation 3-6, and thus obtain the highest effective memory bandwidth for a given bus.

69

We approximateD®P! by simulating a special cache organization that comes close to mini-

mizing the traffic it generates from misses and write-backs. We call this structoneimal-

traffic cache and will henceforth refer to it as an MTC. An MTC differs from a traditional

cache in four respects:

Block size both the transfer size and the block size are equal to the request size. Thus,

only data that are needed by the processor are loaded across the bus or stored in the MTC.

Associativity: the MTC is fully associative. No conflicts can therefore ever evict a needed

block, which would cause it to be reloaded and increase traffic.

Replacement policy the ideal replacement policy would choose to evict the block that
will cause the least total memory traffic. Beladysn policy [S]—which uses oracular
knowledge, and thus can never be implemented in a real machine—replaces the block that
the processor will reference the farthest in the future (or any dead block in the cache,
which either will never be referenced again or will be overwritten). firiie policy is an
approximation of the optimal policy; we shall discuss the difference betwaanand
optimal subsequently. If the next reference to the loaded block is of lower priaety (

will be read farther in the future) than any block in the cache, the block bypasses the cache
rather than evicting something of higher priority.

Write policy : the traffic-optimal write policy isvrite-back write-validate[70]. A write-

back policy will always produce less memory traffic than write-through for caches that
have one-word blocks A write-validate policy overwrites the contents of a block and the
block’s associated tag, rather than fetching the block from memory and then overwriting
the word, as in avrite-allocatepolicy. For blocks with multiple words per block, a write-
validate policy requires valid bits for individual words, and if a read accesses part of a
write-validated block that is not valid.€., has not received a store to that particular word),

a read miss occurs. Read misses to write-validated blocks do not occur in an MTC,
because the blocks contain one word, and thus no part of the block is invalid whenever it is
created in the cache by a write. We also incorpowatite bypassnto the MTC, in which a

write that has a lower priority than anything else in the cache—according tanthe

1. For larger cache lines, write-back will have less traffic only when the number of writes to a line
(while it is in the cache) is greater than the number of words in the cache line.

70
replacement policy—is not loaded into the cache, but instead is sent directly to the next

level of the memory hierarchy.
The MTC we measured does not place an optimal lower bound on memory traffic for two rea-
sons. First, themin policy is sub-optimal for write-back caches, since in our application of
min there is an additional cost (extra traffic) associated with replacing a dirty block. Horwitz
et al. proposed an algorithm to manage optimal replacement in the presence of write-backs
[63]. We implemented only thenin algorithm, and not the optimal write-conscious Horwitz
algorithm. We believe that the disparity between the two is small for large caches, and there-
fore not worth the large additional complexity of simulating the Horwitz algorithm.

Second, after we published this study [13], we discovered that, under the constraints
imposed by the MTC, Beladymin algorithm is sub-optimal for read traffic. For write-vali-
date caches with one-word blocks, we can generate less read traffic by modifying Belady’s
algorithm. When prioritizing blocks for replacement, we must ignore both all future writes
and all reads that follow any future writes and are to the same address as the writes. Since
writes effectively create a block (with one-word blocks), the block can be considered to be
dead beforehand, as described in Section 3.1. Since the block is dead before the write, it is a
good candidate for replacement, and when the write to that block occurs, it can be written any-
where in the cache (overwriting another block that may have recently died). We can reduce
misses over Belady’s algorithm essentially because, with one-word blocks and a write-vali-
date policy, we are treating blocks ealuesand notaddresseslf the caching paradigm was
thrown away, and only individual values were considered, Belady's scheduling algorithm
would still be optimal.

We show an example of this extension in Figure 3-3. The figure shows the effects of the two
different priority schemes on an MTC with a fixed reference stream. The reference stream
(time) goes from left to right. The initial contents of the MTC are addrexs&s andZ. In the
original priority scheme, wheWV is loaded (1)Z is the cache block that will be referenced
farthest in the future, sa is replaced byV. The subsequent three accesses (2,3,4) all hit (and
X dies on reference (2); we assume that it won't be referenced again before being evicted).

Finally, Z is loaded, and replaces In the original prioritization, we load a total of two cache

71

Initial contents (1) ReadW (2)Read X (3)WriteY (4)ReadY (5)ReadZz

X X X X X Z
(a) Original: Y Y Y Y Y Y
Z W W W W W
Evict Z X dies Evict X
Load W Load Z
X X X Y Y Y
(b) Modified: Y w w W
z Z Z z Z Z
Evict Y X dies Overwrite X
Load W _
Time >

Figure 3-3: Extending Belady’s min algorithm

blocks from memory. In the modified priority scheme, we 18&d1), and conside¥ to be
dead, since it will be overwritten before the next realt tdVe therefore replaceé with W. We

then readX (2), which subsequently dies. When we write(3), we overwriteX, since it is
dead. The following reads (4,5) % andZ are hits. With the modified priority scheme, we
only loaded one cache block from memory, but loaded two with. Thus,min is non-opti-

mal for read traffic with caches that have a write-validate policy and one-word blotks (
may be non-optimal for write-validate caches with larger blocks as well, but that study is
beyond the scope of this dissertation).

For the above two reasons, are our measuremeri@¥®fare not an optimal bound, but an
approximation. We show in the following section, however, th&b! is still substantially
smaller tharD®2"éin most cases. Finally, we note that we do not consider tag overhead in the
MTC. Since tag overhead increases when smaller blocks are used (because there are more
blocks and the tags are slightly larger), #y@ss cache sizg1] of an MTC with one-word
blocks and a traditional cache with larger blocks will be different. We equate the data capaci-

ties, not the gross cache sizes, in this study.

72
3.2.5 Measuring traffic efficiency

We used QPT-generated traces, coupled with the Dinero cache simulator, to m@ﬁ%ﬂ?%
for the numerator oE;, the traffic efficiency expression shown in Equation 3-6. We approxi-
mate the denominator d&; (D°PY by measurind®™T“—for which the definition of MTC is
as described in Section 3.2.4—with our own two-pass simulator. Since replacement decisions
in an MTC require future knowledge, our simulator scanned each trace once to construct a live
range graph (necessary for prioritizing blocks in the cache for replacement), and once to per-
form the actual cache simulation. Since maintaining live range information for each reference
in the compressed QPT trace would have required prohibitively large disk space (at the time
we did this study), we broke the program down iefmochgconstant segments of time). In the
first pass, we saved to disk only those live ranges that crossed the epoch boundary. During the
second pass, we scanned ahead in the trace and constructed all live ranges within each epoch,
using the file on disk to fill in those inter-epoch live ranges. By increasing epoch size, we
could increase time (scanning each epoch during MTC simulation) at the expense of space

(the inter-epoch disk file).

We used the same benchmarks and inputs as described in Section 3.2.3. The traffic measure-
ments for both simulators also include the same componerdgs \{rite-back traffic) as did
the traffic ratio experiments. For tH2°"®measurements, we assumed direct-mapped, 32-

byte block, write-allocate, write-back caches.

In Table 3-2, we list traffic efficiencies for caches ranging from 4KB to 2MB. Our results
show that there is a wide disparity of values Ebacross the different benchmarks. Four of the
benchmarks have between 20 and 100 (compress, eqntott, espresso, and su2cor)—even for
large caches. The other two—dnasa2 and swm—typically have vallebeaifveen 2 and 10.
These two benchmarks are scientific codes that display little temporal locality, thus the refer-
ence stream contains less opportunity for optimization by a better-managed cache. The large
jump to akE of 124 for swm with a 1MB cache occurs because the MTC (being fully associa-

tive) is able to eliminate the conflicts of the major data arrays, which are significant in swm for

73

Trace 4KB | 8KB |16KB |(32KB |64KB [128KB P56KB 512KB [LMB 2MB

compress | 18.7 | 19.5 21.9 25.5 29.2 30.7 325 — — —
dnasa2 6.2 4.7 4.1 4.6 7.0 10.0 — — — —
egntott | 34.5 | 35.8 49.7 94.4 | 100.5 94.1 72.7 a7.7 28.6 —
espresso | 26.3 | 404 82.2 28.9 — — — — — —
su2cor | 15.1 | 16.4 17.2 21.9 20.1 25.7 40.3 28.7 35.8 —
swm | 17.2 7.9 2.8 2.7 2.8 3.0 3.5 54| 124.1 | 74.8

Table 3-2: Traffic efficiencies for 32-byte block, direct-mapped caches

traditional caches. Only when a traditional cache is sufficiently large (4MB or greater) are

these conflicts in Swm ameliorated.

3.2.6 Factorization of traffic efficiency

These high traffic efficiencies demonstrate that there is a significant opportunity to increase
effective pin bandwidth—between one and two orders of magnitude—by making better use of
the on-chip memory. We now turn to determining which factors contribute to these large gaps.
In Figure 3-4, we show a log-log plot of traffic volumes (in KB) versus cache sizes, for three
of the SPEC92 benchmarks. We include only compress, egntott, and swm, since they are rep-
resentative of the other benchmarks. The top six lines in each graph represent 4-way, set-asso-
ciative caches with block sizes from 4B to 128B. The thick dotted line represents a fully
associative, write-allocate, write-back cache that nsi@sas its replacement policy. The thick
solid line represents the MTC that we used for all traffic efficiency calculations. Large gaps

between a line and the MTC line indicate large traffic efficiencies.

There are three factors visible on Figure 3-4 that contribute to large gaps between cache and
MTC traffic. The first is increased block size. Compress has little spatial locality, since many
of its accesses are to a hash table. Any increase in block size causes a corresponding increase
in traffic. The same effect is visible for Egntott (to a lesser extent), and for Swm when the
cache sizes are smaller than 32KB. Swm shows spatial locality for larger caches (between
32KB and 2MB) because the extra words in larger blocks are used when the block is not
quickly replaced—when the working set fits into the cache. The second factor contributing

substantially to the cache/MTC traffic gap is the combination of associativity and oracular

74

1077 (a) Compress 1078 — (b) Egntott

Traffic (KB)
Traffic (KB)

64 256 1K 4K 16K 64K 256K 1M
Cache and MTC size (bytes)

—_———— 128B blocks
—-—-—-—-—- 64B blocks = .
— ——— 32B blocks X105 T e e
—————— 16B blocks % 1074 “‘ X
------------ 8B blocks =

4B blocks 10734 —

------------ MTC with write-allocate
1012

MTC with write-validate T T T T T T T T
64 256 1K 4K 16K 64K 256K 1M 4M

Cache and MTC size (bytes)

Figure 3-4. Total traffic generated by different cache and MTC sizes

replacement, which causes the large gap for Swm at 1MB. The third factor is the write-vali-
date policy, which causes the majority of the gap for Eqntott.

To better understand which of these factors are significant, we isolate each factor experi-
mentally. Traditional caches and an MTC differ by four factors. To disEento its compo-
nents, we begin with a cache and add one MTC-like factor at a time. We can measure the
addition of each factor by simulating and comparing structures that have all but one factor in
common. We list the factors isolated with the pairs of structures in Table 3-3. In the first col-
umn, we list the factors that we isolated. In the second column, we list the common features of
the experiment pairs for each isolation. The third and fourth columns list the two organiza-
tions used for each isolated factor. We did not isolate cache bypassing as a factor, since it was
implicit in themin replacement policy.

The traffic reduction for each factor depends on the underlying structure—for instaince,
replacement will reduce traffic differently for a write-validate, fully associative, 4-byte block
cache than it will for a write-allocate, 32-byte block, direct-mapped cache. We can add the

four MTC mechanisms successively in a number of orders. There are two restrictions on the

75

Factor Common Expl Exp2
I. Associativity LRU, 32B, write-allocate direct mapped fully associative
Il. Replacement fully assoc., 32B, write-allocate | LRU replacement | min replacement
llla. Blk. size (MTC) min, fully assoc., write-allocate 32B blocks 4B blocks
llIb. BIk. size (cache) || LRU, fully assoc., write-allocate 32B blocks 4B blocks
IV. Write-validate min, fully assoc., 4B write-allocate write-validate

Table 3-3: Experimental parameters for Table 3-4

order; full associativity should be measured befori@ replacement (replacement policy is
irrelevant for a direct-mapped cache), and the small blocks should be measured before the
write-validate policy. With these restrictions, there are still six possible orders in which the
mechanisms may be measured. We show only one such order in Table 3-3. We performed two
separate experiments for isolating the effect of block size—onemiith(Factor Illa) and one

with LRU replacement (Factor 1lIb). The block size experiment with LRU replacement is
shaded because it is not part of the successive addition of factors that the other four experi-

ments are.

In Table 3-4, we quantify how toggling each factor affdet®r each benchmark. The values
in the table show the change in traffic efficiency as each factor is toggled. We simulated one
cache size per benchmark, using 64KB data caches for all benchmarks except espresso, for
which we simulated a cache size of 16KB (because of its small data set). In these experiments,
we do not include request traffic, which increases with smaller block sizes, and thus our traffic

results are biased in favor of smaller blocks.

Below the four rows for individual mechanisms, we compare the sum of the contributions of
the individual factors to the traffic efficiency. The rows containing the sumEasdould be
equal. We are not yet able to adequately explain the gap between the two rows (which ranges

from 0.2 to 1.0).

In Table 3-5, we show the relative fraction of traffic efficiency that each mechanism contrib-
utes to the total. Of these mechanisms, reduced block size is, unsurprisingly, the largest con-
tributor to E, constituting the largest component of two of the benchmarks (compress and
egntott, at 0.48 and 0.37) and the second largest for another two (su2cor and swm, at 0.25 and

0.11). The other three mechanisms are the largest componErfooht least one benchmark

76

Benchmark compress |dnasa7 eqgntott eppresso su2cor swm
Cache size 64KB 64KB 64KB 16KB 64KB 64KB
I. Associativity 1.8 -3.8 0.5 73.0 8.4 0.1
Il. Replacement 12.0 8.4 31.0 3.9 4.6 0.3
llla. Block size (MTC) 14.0 0.4 37.0 3.5 5.0 0.3
IV. Write-validate 1.2 1.2 31.0 1.0 1.2 1.3
Sum (I+T+IV+V) 29.0 6.2 99.5 81.4 19.2 2.0
Traffic efficiency 29.2 7.0 100.5 82.2 20.1 2.8
IlIb. Block size (cache) 25.0 2.7 47.0 68.0 14.0 0.3

Table 3-4: Efficiency gap for different optimizations
Benchmark compress dnasa7 eqntott espresso sy2cor sym
Cache size 64KB 64KB 64KB 16KB 64KB 64KB
I. Associativity 0.062 -0.543 0.005 0.888 0.418 0.036
Il. Replacement 0.411 1.200 0.308 0.047 0.229 0.107
Illa. Block size (MTC) 0.479 0.057 0.368 0.043 0.249 0.107
Write-validate 0.041 0.171 0.308 0.012 0.060 0.464
llIb. Block size (cache) 0.856 0.386 0.468 0.827 0.697 0.107

Table 3-5: Fraction of traffic efficiency per factor

each: associativity for espresso and su2cor (0.89 and 0.42), write-validate for swm (0.46), and
min replacement for dnasa7 (1.20). What is surprising about these results is the lack of one
factor (or even two) that dominates in traffic reduction. This result indicates that—to reduce
traffic substantially—caches must incorporate a range of mechanisms to be effective across
different benchmarks.

One aberration in Table 3-5 stands out: the negative value for dnasa7. The sign change is
caused by amcreasein traffic when a fully associative cache is compared to a direct-mapped
one. The increase in traffic is caused by a antagonistic interaction between the reference
stream and the LRU replacement policy; a well-known case in which LRU replacement works
poorly for sequentially accessed data [48]. In this case, less mapping flexibility (a direct-
mapped cache) prevents the replacement policy from evicting some useful blocks, causing the
direct-mapped cache to produce less traffic. (Whemntire replacement policy is added, it
eliminates that problem and reduces traffic much further, which is why the replacement policy

component of traffic reduction is larger than the final traffic efficiency for dnasa?).

77
In the last row of Table 3-5, we show the relative effect of reducing block size in a fully

associative LRU replacement cache, instead wiira replacement cache. The relative contri-
butions of reduced block size are much larger for a cache with an LRU replacement policy,
ranging from a small 0.11 (Swm), to over a third (0.39 and 0.47 for dnasa7 and egntott), to
well over half (0.86, 0.83, and 0.70, for compress, espresso, and su2cor). Since LRU replace-
ment is less efficient at packing data into the cache thiam increasing the number of blocks
under LRU produces a large reduction in traffic.

We have shown in this chapter that a large gap—as much as two orders of magnitude—
exists between the amount of traffic that a cache generates and an approximation of the opti-
mal. Furthermore, each of the design aspects (block size, associativity, direct/indirect access-
ing, etc.) in the near-optimal structure can contribute significantly to traffic reduction. In the
next three chapters, we discuss how each of these mechanisms can be implemented and/or
approximated in a cost-effective manner, reducing memory traffic and thus improving perfor-

mance for bandwidth-bound codes.

78

Chapter 4

Reducing the Impact of Memory Traffic

In Chapter 1, we discussed how and why memory traffic can cause significant degradations in
processor performance. In Chapter 3, we showed that memory traffic was significantly heavier
than a theoretical lower bound. However, the bound that we derived for minimal memory traf-

fic is not reachable in practice. In this chapter, we explore several implementable techniques

that ideally lessen both the amount and the performance impact of memory traffic.

The minimal traffic cache differs from traditional caches in four respects: block size (what
data are fetched upon a miss), associativity (how data are mapped into the cache), replacement
policy (what is thrown out of the cache), and write policy (how created values are handled). In
this chapter, we explore techniques that address the first factor: what data are fetched. In
Chapter 5, we address how data are mapped on-chip, and what data should be fetched upon a
demand miss. In Chapter 6, we propose the DataScalar architecture, which (among other ben-

efits) eliminates all inter-processor write traffic.

Because of long memory latencies and limited off-chip memory bandwidth, microprocessor
designers have been placing successively larger caches on the processor dies with each new
generation. The Dec Alpha 21364 [56], for example, will use essentially the same processor
core as the 21264 [55], but with a faster clock, and significantly more aggressive on-chip and
off-chip memory systems (including a large on-chip cache greater than one megabyte). In this
chapter, we explore three policies that we designed to improve the memory system perfor-
mance of large on-chip caches. The policies use information dynamically saved with the
cache tag to track the long-term behavior of a block, attempting to improve how the block is
managed each time it is fetched. The three policiesdarat-size fetchingin which the level-

two cache issues a large (block) or small (subblock) request as nesididdiock prefetching

79
in which the L2 cache tries to bring in only the portions of a large block that will be needed,

and bus prioritization in which data that are to be speculatively loaded are brought from
memory only when the interconnect is idle. At the end of this chapter, we evaluate the perfor-
mance of all those policies together. In the following subsection, however, we simply measure

what the parameters of large, traditionally managed L2 caches should be.

4.1 What to fetch

When designing a system, the architect must decide how much data the cache should fetch
upon each miss, in other words, how large the cache block should be. The minimal-traffic
cache used one-word blocks to prevent unnecessary data from ever being loaded. In practice,
one-word blocks would result in dreadful performance, as all applications exhibit some spatial
locality. Furthermore, increased address traffic would offset the reductions in traffic from
smaller blocks. Fetching larger blocks, conversely, reduces the number of misses, improving
performance (unless the block is so large that it pollutes the cache enough to result in a net
increase in misses). However, the larger blocks also load more unnecessary traffic. Since both
cache misses and superfluous traffic can hurt performance, there is an inherent tension

between trading reduced misses for increased traffic and vice-versa.

Small on-chip caches have typically had block sizes in the range of 16 to 64 bytes. Since
these caches were small, they had few blocks; thus blocks much larger than 64 bytes would
have caused excessive pollution and a higher miss ratio. In these caches, the small blocks
made efficient use of memory bandwidth while keeping the miss ratio low. We show in this
section that having both low traffic and ideal miss ratios is difficult for large (a megabyte or

more) caches.

To illustrate, we define two operating points for a cache’s block sizepei®rmance point
and thepollution point The performance point is the block size at which overall system per-
formance is highest. Blocks larger than the performance point will cause reduced performance
because of bus contention, whereas blocks smaller than the performance point will cause

reduced performance because of more numerous misses. The pollution point represents the

80
block size at which the miss ratio, and not absolute performance, is minimized. Blocks larger

than the pollution point will cause more misses due to cache pollution, whereas blocks smaller
than the pollution point cause more misses because they are not exploiting spatial locality as

well.

Since cache pollution becomes less of a problem for larger caches (since there are more
blocks of a given size), the pollution point will tend toward larger blocks. For multi-megabyte
caches, the pollution point may well be at block sizes significantly larger than the performance
point. For the rest of this chapter, we perform experiments assuming a large, on-processor L2
cache, with the processor technology targeted approximately five years hence (circa 2003, in
line with the Intel and SIA projections [102, 136]). We assume a target system as described in
Chapter 2, with the following parameters: the processor core we simulated was a 2GHz,
dynamically scheduled, 8-way issue superscalar core. We assumed a 256-entry RUU, with a
corresponding 128-entry load-store queue. We assumed that the core contained six integer
ALUs, three integer multipliers, six FP ALUs, two FP multiply/dividers, and six ports to
memory. The branch misprediction penalty was three cycles, and we assumed a huge (128K
entry) gshare branch predictor, in an attempt to gain the accuracy that branch predictors will
doubtless have five years hence. For the memory system, we simulated 64KB, 32-byte block,
2-way set associative split instruction and data caches (similar to the recently announced
Compagq Alpha 21364), which were virtually indexed and physically tagged, and accessible in
a single cycle. We simulated split 8KB instruction and data TLBs, each two-way set associa-
tive. We assumed a 256-bit cache bus, clocked at the core speed, with a single cycle required
for arbitration/turnaround. We simulated a 1MB physically indexed, physically tagged L2
cache, assuming a 10-cycle hit penalty and a write-allocate, write-back policy. For the physi-
cal memory, we simulated a detailed Direct Rambus channel [30] and subsystem to service L2
misses off-chip. We assumed four simply interleaved RDRAM channels, each clocked at
500MHz, with two bytes per channel transmitted on both the rising and falling edges of the
clock. We simulated all resources in the RDRAM chips, including precharge penalties and

page hits on open senseamps, bank conflicts, and access pipelining.

81
In Table 4-1, we show the pollution and performance points for a number of the SPEC95

benchmarks running on the described target system. We omitted several of the benchmarks

(m88ksim, li, ijpeg, fpppp) because their working sets fit nearly completely in the L2 cache,

making optimizations to reduce the impact of L2 misses useless. In the table, we vary the L2

cache block size across the columns, from 64 bytes to 4 Kilobytes. In each pair of rows, we
show both the IPC (performance) and the L2 miss ratios for a particular benchmark. The
shaded number in each IPC row indicates the block size with the highest performance (the
performance point), and the shaded number in each miss ratio row indicates the block size
with the lowest miss ratio (the pollution point). The results in this table have three notable
implications:

* The best mean performance (average performance point) is at 256-byte blocks, and the
lowest mean miss ratio (average pollution point) is at 4KB bytes. The performance points
are thus significantly larger than block sizes for caches to date; only three of the thirteen
benchmarks have performance points under 256-byte blocks.

» The performance points are highly application-dependent; they range from 64 bytes all the
way to 4 KB. Selecting a block size at either extreme will lead to poor performance from a
subset of the applications. Selecting a block size in the middle (e.g., 256 bytes) will also
lead to degraded performance for a number of the applications.

» For almost half of the benchmarks, there is a significant gap between the performance and
pollution points (ranging from factors of 4 to 32). This gap presents an opportunity: if the
cache could fetch only those portions of the large blocks that are needed, the miss ratio
could be reduced (since pollution is not an issue for these codes) without a corresponding
reduction in performance due to bus contention.

These implications lead us to three requirements for large on-chip caches. (1) The block size

should be larger than that of traditional caches, (2) the caches should be managed in such a

way as to provide good performance across the entire range of applications, and (3) the cache

could use intelligent fetching to improve performance beyond that of the performance point.

We measured the pollution and performance points for smaller caches (512KB) and fully

associative caches with random replacement (both 512KB and 1MB). There were some slight

82

Block size

Benchmark Metric 64 128 256 512 1024 2048 4096 8192
126.gcc IPC 1.498 1.522 1.536 1.538| 1.521| 1.468 1.328 1.010
Miss ratio 3.600 2.640 1.880 1.320| 1.020| 0.910 0.940 1.210
129.compress|iPC 1.264 1.208 1.112 0.937] 0.655] 0.389 0.206 0.101
Miss ratio 9.870 9.450 9.010 8.400| 8.810| 9.580(10.990(12.680
134.perl IPC 1.711 1.784 1.782 1.718] 1.578] 1.343 1.029 0.635
Miss ratio 5.770 3.910 2.930 2.450| 2.250(2.190 2.190 2.490
147.vortex |[IPC 2.078 2.086 2.051 1.938] 1.703| 1.185 0.631 0.238
Miss ratio 6.670 5.390 4.850 4,970 5.390(7.020 9.390| 13.010
101.tomcatv [[PC 1.492 2.048 2.451 2.694] 2.833| 2.908 2.953 2.929
Miss ratio 33.970| 17.070 8.590 4,310 2.170| 1.100 0.570 0.380
102.swim [IPC 1.172 1.734 2.221 2.518] 2.554| 2.345 2.268 1.899
Miss ratio 31.450| 16.010 8.260 4,430 2.670| 1.820 1.260 1.140
103.su2cor |[IPC 1.853 2.395 2.707 2.882] 2.979| 3.009 2.990 2.780
Miss ratio 13.860 7.030 3.720 1.940| 1.010| 0.530 0.290 0.220
104.hydro2d [IPC 0.568 0.898 1.236 1528 1.702| 1.745 1.736 1.296
Miss ratio 50.320| 33.290| 19.340| 10.030(5.110| 2.670 1.410 1.180
107.mgrid [IPC 1.673 2.313 2.728 2.570] 2.716| 2.840 2.901 2.835
Miss ratio 28.070| 17.500| 10.770 7.200| 5.060(3.720 2.570 1.480
110.applu [IPC 1.229 1.847 2.327 2.586| 2.716| 2.787 2.333 1.439
Miss ratio 43.240| 30.380| 18.190 9.570| 4.950| 2.730 1.920 1.710
125.turb3d [IPC 2.441 2.922 3.239 3.015] 2.843] 2.838 2.685 1.467
Miss ratio 40.960| 24.500| 14.640| 12.810(9.630| 7.260 5.680 7.380
1471.apsi IPC 2.244 2.590 2.645 2.786] 2.763| 2.859 2.849 0.949
Miss ratio 8.360 6.260 4,580 2.150| 1.280| 0.550 0.310 3.370
146.wave5 [IPC 1.919 2.349 2.643 2.712] 2.821| 2.671 1.236 0.455
Miss ratio 8.760 5.540 4.000 1.900| 1.240| 1.510 2.880 3.790

Table 4-1: Performance versus pollution points, 1IMB 4-way set associative L2 cache

changes in the pollution and performance points when running with the alternative parame-
ters. For the 512KB cache, the random replacement caused pollution to occur with a lower
block size than it did with the 1IMB cache, slightly decreasing the average gap between the
performance point and pollution point for six of the benchmarks. The exception to that trend
was applu, which had an identical pollution point but experienced a higher miss ratio for the
fully associative cache, thus lowering the performance point. Increasing the cache capacity
from 512KB to 1MB tended to increase both the pollution and performance points, which
caused the gap to shrink slightly in four cases (gcc, vortex, applu, and wave5) and grow in two
others (compress, turb3d). All in all, high associativity and halving the cache size did not

gualitatively change the relationship between the performance and pollution points. The rela-

83
tive stability in the average size of the performance/pollution point gap indicates that the

cache requirements listed above are applicable to a range of large on-chip caches.

4.2 Dual-size fetching

The first policy we propose idual-size fetchedn which the cache dynamically decides
whether to fetch a large block (spatial locality is high, so the consumed bus traffic will not be
wasted) or a smaller block (spatial locality is low). Supporting multiple block sizes can make
for complex and difficult hardware design (particularly when addressing fragmentation and
packing issues). Here we describe two hardware-elegant methods of implementing this policy.
The first is to map small blocks into the cache, and fetch a number of blocks when spatial
locality was high (as proposed by Johnson and Hwu [69]). We evaluate the second, which is to
implement a subblocked cache in which either a subblock or a block may be fetched upon a
miss. We set the block to the block size of the pollution point (the data is mapped into the
cache at a granularity that minimizes the miss ratio, on average 4KB) and we set the subblock
size to the block size of the performance point (data is transferred at a granularity that maxi-

mizes performance, on average 256B).

The dual-size fetch policy (DSF) maintains state describing the characteristics of a block
after the block has been evicted from the cache. Since we are using blocks equivalent to the
page size in our target system, this state can be stored for fast access, and maintained as an
extension to the TLB entries until the TLB entry is evicted. When an entry is evicted from the
TLB, the system may store the per-block information in a special region of physical memory
or, in theory, as a part of the page table itself. The former solution limits overhead to be pro-
portional to the size of physical memory, whereas the latter would be proportional to the size
of touched virtual memory (but is conceptually a cleaner solution). In our simulations, we

assume that the extra state is stored per physical page.

DSF stores one bit of state (callededch bi) and a counter (three bits) per block to deter-
mine whether, on a block miss, only the requested subblock should be loaded, or whether the

entire block should be loaded all at once. Upon a miss, the fetch bit is examined to decide

84

Used bit vector | |Thresho|d |

SUM >=) t——
0 = fetch subblock Saturating inc/dec
1 = fetch block %unter (0-bound) @
clear
J Fetch
K bit

Figure 4-1: Logic for dual-size fetch policy

what to fetch (a zero results in a subblock fetch, whereas a one results in a block fetch). Upon
a replacement of a block, DSF updates the state for the victim, which may or may not result in

the fetch bit being toggled. This processing occurs off-line and not on any access critical path.

In Figure 4-1, we depict the logic that updates the fetch bit. WXeag evicted from the
cache, the hardware counts the numbers#dsubblocks (shown by thBUM function). Note
that the used bit vector, maintained as a part of the cache state, is distinct from the subblock
valid bit vector (.e., a subblock may be valid but never used). If that number is greater than or
equal to a predetermined threshold, the three-bit saturating counter associat&dswiticre-
mented (if the valid subblocks are less than the threshold, the counter is decremented). If the
counter reaches a hardware-specified bound, the fetch bit is toggled and the counter is cleared.
The XOR gate is used to allow the policy to work in the reverse direction; the same logic thus

handles promotion and demotion.

The cache can thus dynamically determine blocks for which spatial locality is high (because
numerous subblocks are valid when the block is evicted), and will eventually fetch the entire
block upon a miss. If DSF dictates that a block should be fetched in its entirety, and then few
of the fetched subblocks actually get used before replacement, DSF will adapt in the other

direction, eventually fetching only a subblock at a time for the block in question.

In Table 4-2, Table 4-3, and Table 4-4, we show the effects that DSF has upon L2 misses and

traffic. In each table, we list nine cache organizations along the columns of the table. They are:

85

threshold-bound

Benchmark |L2 cache |Unit 256B 4KB 9UB 2-2 D-4 4-2 1-4 B-2 B-4
1276.gcc [bIZK, 4sa | Miss [0.064 | 0.46 |[1.91| 1.40| 1.45| I.53 | L.5b9| 1.66 | 1.69
Traff. 7471189 3.01| 276 252 2.33| 2.19| 2.09
512K, fa| Miss [0.064| 0.47[206] 1.47| 153 1.60[1.68] 1.75 1.83
Traff. 7441199 3.17| 294 266 | 247 2.29| 2.19
1M, 4sa | Miss [0.023 | 0.38(2.24| 1.48| 1.54| 159 | 165 1.74| 1.80
Traff. 562[2.09] 295| 281 2.70| 2.60| 2.47 | 2.39
IM, fa| Miss[0.024 0.39(2.62| 1.69| 1.76| 1.81| 1.90| 2.00| 2.11
Traff. 5.7812.39]| 3.37| 3.26| 3.09| 296 | 2.78 | 2.67
T129.compress [b1ZK, 4sa | Miss [0.007 | 0.69 [3.73 | 256 | 269 | 274 | 290 297 3.13
Traff. 1062 (333 481 446 427] 3.97| 3.81| 3.63
512K, fa| Miss [0.017| 0.12|1.66| 0.92 0.93[0.94| 0.95| 0.97] 0.99
Traff. 209(165| 1.82| 1.82| 1.81| 1.80| 1.78 | 1.77
IM, 4sa| Miss [0.003| 0.07[1.08] 0.62]| 0.61]| 0.62| 0.61| 0.68] 0.61
Traff. 1.16|1109(111 111] 1.11| 1.11] 1.10] 1.11
IM, fa| Miss[0.004 | 0.07[1.11| 0.62| 0.64| 0.62| 0.64] 0.63 | 0.65
Traff. 1211111 114 1.14| 1.13| 1.13| 1.13| 1.13
134 perl 512K, 4sa | Miss [0.139 | 0.67 [L.b50 | 1.27 | 1.29 | 1.30| 1.33| 1.33| 1.35
Traff. 987149 193] 1.73]| 1.68| 1.59[1.58 | 1.54
512K, fa| Miss [0.154] 0.67 155 1.31| 1.37] 1.37| 142 1411 1.45
Traff. 996153 211 192 1.79| 1.69| 1.63 | 1.60
1M, 4sa| Miss [0.109 | 058 [1.44 | 1.19| 1.21 | 1.23| 1.25| 1.27 | 1.27
Traff. 8.39(1.39| 1.85| 1.67| 1.60| 1.50| 1.49| 1.46
IM,fa| Miss[0.122| 059157 1.29[1.37| 1.35[1.43] 1.40| 1.47
Traff. 862[152] 216 198 1.83| 1.75]| 1.67 | 1.62
T47.vortex [51ZK, 4sa| MiSS [0.140 | 1./6 [2.72| 264 269 270 2.71| 2.71| 271
Traff. 26.56[2.44] 3.14| 263 | 257 | 2.46| 2.46 | 2.46
512K, fa| Miss [0.113 | 2.32[353| 3.34| 3.39| 3.45]| 3.48| 351 | 3.52
Traff. 3463 (3.15| 423 3.70[3.37| 3.24] 3.17| 3.15
IM, 4sa| Miss [0.076| 1.99[3.32| 3.15| 3.23| 3.27| 3.31| 3.31| 3.32
Traff. 29.29(2.89] 404 | 3.32| 3.13| 293 294 | 2.90
IM,fa| Miss [0.077] 2.08[3.63| 3.30| 3.37| 3.48| 3.53| 3.60| 3.61
Traff. 30.85(3.18| 4.75] 416 358 3.37| 3.24| 3.19

Table 4-2: Dual-size fetch functional results, part 1

a cache with 256B blocks, a cache with 4KB blocks, a subblocked cache (4KB blocks, 256B
subblocks), and a similar subblocked cache that implements DSF. For the dual-size fetch
cache, we present results for six combinations of different values for the threshold and bound
depicted in Figure 4-1 (2-2, 2-4, 4-2, 4-4, 8-2, 8-4). For example, the 4-2 experiment would
increment the counter when four or more subblocks had been used when a block was evicted,
and would promote the block to fetching the whole block when the counter reached the bound
of two. Higher values of either will be less likely to promote blocks. The default policy is for

all blocks to load only a subblock at a time.

86

threshold-bound

Benchmark |L2 cache |Unit 256B 4KB 9UB 2-2 D-4 4-2 1-4 B-2 B-4
101.iomcatv [512Z2K,4sa | MiISS [0.0/74 1 0.06 [1.03] 055] 055 0.55] 055 0.551-0.00
Traff. 1.05[1.03] 1.05] 1.05[1.05| 1.05| 1.05[-0.00
512K, fa| Miss [0.078 | 0.07|1.03| 0.56 | 0.56 | 0.56 | 0.57 | 0.56 | 0.57
Traff. 1.10[1.03| 1.06| 1.06| 1.06| 1.06 | 1.06 | 1.06
IM, 4sa| Miss |[0.073| 0.06[1.03| 0.56| 0.56| 0.56 | 0.56 | 0.56 | 0.56
Traff. 1.05[1.03| 1.05] 1.05] 1.05] 1.05| 1.05| 1.05
IM,fa| Miss [0.075] 0.06 [1.03| 0.55| 0.56| 0.55| 0.56 | 0.55 0.56
Traff. 1.07[1.03| 1.05] 1.05] 1.05] 1.05| 1.05| 1.05
T0Z.swim |[51ZK, 4sa | MisS [0.09Z2 [0.14[1.0Z[0.58| 057 | 058 | 0.57 | 0.58 [0.57
Traff. 24411.03] 1.09| 1.09| 1.08| 1.09| 1.09| 1.09
512K, fa| Miss [0.096 | 0.14[1.03| 0.88 0.92 [0.89 | 0.93| 0.90 [-0.00
Traff. 2471104 157| 1.14| 156 | 1.12 | 1.55|-0.00
IM, 4sa| Miss |[0.090| 0.14[1.04| 0.68] 0.59| 0.68 | 0.59| 0.68| 0.58
Traff. 23711.05] 1.16| 1.12| 1.16| 1.12| 1.16| 1.11
IM,fa| Miss [0.092 | 0.13[1.03| 0.89| 0.92| 0.89| 0.93| 0.90 [-0.00
Traff. 230[1.05] 1.58| 1.15| 1.58 | 1.13| 1.57 |-0.00
103.suZcor [91Z2K,4sa | MiIss[0.055 | 0.1111.147 066 | 0.6/ 0.6/ 0.c8[-0.00] 0./0
Traff. 180114 1.28] 1.28] 1.27| 1.27|-0.00 | 1.26
512K, fa| Miss [0.058 | 0.09|1.11| 0.64| 0.65[0.65| 0.66 | 0.67 | 0.69
Traff. 153|111 1.24| 1.23| 1.22| 1.21| 1.20| 1.19
IM, 4sa| Miss |[0.036| 0.08[1.07| 0.60| 0.60] 0.60 | 0.60| 0.62| 0.62
Traff. 128|106 | 1.15| 1.15| 1.15| 1.15| 1.15]| 1.14
IM,fa| Miss|[0.041 | 0.08[1.09| 0.61[-0.00| 0.62| 0.63| 0.63| 0.64
Traff. 1.3711.09| 1.18 |-0.00| 1.16| 1.16| 1.15]| 1.14
104.hydroZd [912K,4sa| Miss [0.095] 0.08[1.01] 058 058 0.8 0.5/ 0.58 | 0.58
Traff. 1.30(1.01| 1.09| 1.09| 1.08] 1.09| 1.08| 1.09
512K, fa| Miss [0.098 | 0.08|1.02| 0.61| 0.64| 0.62| 0.65| 0.63| 0.66
Traff. 1.3211.02| 1.14| 1.15| 1.13| 1.15]| 1.13| 1.15
IM, 4sa| Miss |[0.090| 0.08[1.02| 0.58] 0.58| 0.58 | 0.57| 0.58 | 0.58
Traff. 1.26[1.02| 1.09| 1.09| 1.09] 1.09| 1.09| 1.09
IM,fa| Miss |[0.086| 0.08[1.04| 0.61| 0.63| 0.61| 0.63| 0.62| 0.64
Traff. 1271104 1.13| 1.14| 1.13| 1.14| 1.12| 1.13

Table 4-3: Dual-size fetch functional results, part 2

For each benchmark in the tables, we list four caches in separate rows: varying the size
between 512KB and 1MB, and varying the associativity between 4-way (with an LRU
replacement policy) and full (with a random replacement policy, since LRU is not practical to
implement in fully associative caches, particularly lower-level caches). For each cache, there
are two rows, in which we show how the misses (higher row) and the traffic (lower row) vary
across the different cache organizations. The misses and traffic are normalized to that of the

256B block cache for each pair of rows. The column containing the misses for the 256B block

87

threshold-bound

Benchmark |L2 cache |Unit 256B 44KB 9SUB 2-2 D-4 1-2 1-4 B-2 B-4
10/7.mgrid [912K,4sa | Miss [0.0/9] 0.IZ2[1.10] 0.6Z2] 0.bs| 0.63|] UO.bb | U./5] 0./6
Traff. 2.02(1.10]| 1.40| 1.36| 1.34| 1.33| 1.16| 1.15
512K, fa| Miss [0.089 | 0.10[1.08 0.63| 0.65| 0.70| 0.72] 0.77] 0.92
Traff. 1.7311.07| 1.38| 1.36| 1.34| 1.35| 1.27 | 1.17
IM, 4sa| Miss [0.069| 0.10(1.16| 0.66| 0.64] 0.67| 0.65| 0.77] 0.78
Traff. 1.7211.14] 1.40| 1.40| 1.38| 1.40| 1.21| 1.21
IM, fa| Miss[0.075] 0.09[1.11| 0.64| 066 0.70| 0.71] 0.78 | 0.90
Traff. 160110 1.35[1.32| 1.36| 1.30| 1.32| 1.19
TT0.applu |[5IZK, 4sa | MisS [0.091 | 0.2Z[L.14 | 0.72 [0.72| 0.73| 0.72 | 0.74| 0.72
Traff. 3.72 115 1.22| 1.22| 1.22| 1.21 | 1.21 | 1.21
512K, fa| Miss [0.097 | 0.08|1.01| 0.61| 0.63[0.63| 0.66| 0.66 | 0.70
Traff. 1421101 118 1.15| 1.17| 1.12| 1.15]| 1.10
IM, 4sa| Miss [0.087| 0.13[1.08| 0.64| 0.64]| 0.65| 0.65| 0.66 | 0.66
Traff. 2.2811.08| 1.17| 1.15| 1.15| 1.15| 1.15| 1.15
IM,fa| Miss |[0.090| 0.08[1.00| 0.60| 0.62| 0.62| 0.65| 0.64 | 0.68
Traff. 1291100 1.14| 1.10| 1.14| 1.08 | 1.13| 1.07
TZ25.1urb3d (512K, 4sa | MiSS |0.110| 083 [1.82 | 1.4Z| 1.44| 1.61| 1.6Z| 1.63 | 1.64
Traff. 13.63[1.83| 3.01| 3.01| 2.00| 201 | 1.86| 1.86
512K, fa| Miss [0.092 | 0.77 159 141 152 144 155]| 1.47| 1.57
Traff. 12.24 (157 198 1.78| 1.71| 1.65[1.67 | 1.61
IM, 4sa| Miss [0.098 | 0.38[1.52| 1.03| 1.02| 1.23]| 1.23]| 1.30| 1.31
Traff. 6.24 152 | 267| 269 | 1.74| 1.75| 1.57 | 1.55
IM, fa| Miss [0.083 [0.22[1.17| 0.86| 094 0.97| 1.10| 1.03| 1.14
Traff. 3.72 (117 191 1.78| 1.52| 1.35[1.30 | 1.22
T4T.apsi [bIZK, 4sa | Miss [0.1I07 | 053 [I.73| 1.63 | 1.64 | 1.63 | 1.64 | 1.64 | 1.64
Traff. 811|166 1.76| 1.71| 1.70| 1.70| 1.70| 1.70
512K, fa| Miss [0.033| 047192 153 162[157 166] 1.61| 1.70
Traff. 6.78[1.78] 205| 201| 2.00| 1.96| 1.96 | 1.92
IM, 4sa| Miss [0.015| 0.09[1.80| 1.32| 1.38| 1.33| 1.38| 1.32| 1.40
Traff. 1411164 | 1.74| 1.72| 1.70| 1.71]| 1.69| 1.69
IM, fa| Miss [0.018 0.09|1.16| 0.69| 0.73| 0.70| 0.73] 0.71| 0.75
Traff. 1.37 1115 1.22 | 1.22| 1.22| 1.21| 1.21| 1.20

Table 4-4. Dual-size fetch functional results, part 3

cache contains the absolute (unnormalized) miss ratio for that experiment, to which the other
columns are normalized.

Several trends are visible in this data. First, as expected, the miss rate generally goes up as
DSF becomes more restrictive (harder to promote or demote pages, moving toward the rightin
the tables). The traffic, which generally increases as the miss rates are lowered, decreases as
the policies become more restrictive. The fully associative runs with random replacement gen-
erally incur more misses than the 4-way set associative runs. DSF tends to eliminate fewer

misses with the fully associative experiments, as the random replacement can evict blocks too

88
early (while they are still in the working set), introducing less accurate state into the block

counters. There is little correlation when comparing the effect of cache size against the effi-
cacy of the policy; for many of the benchmarks, the policy is more effective at reducing misses

for the larger 1MB cache; for others, DSF works better for the 512KB cache.

In terms of overall performance, DSF performs well in some cases and poorly in others. In
every case, DSF reduces the miss ratio over a traditional subblocked cache, frequently with
only a minor increase in traffic. However, the subblocked cache itself incurs a large perfor-
mance penalty for some of the benchmarks when compared to a 256B block cache, which
loads the same amount of data but has many more sets (multiplied by the subblocking factor)
in which to store data. The performance penalty is particularly acute for the integer codes we
measured, which tend to have finer-grain accesses and thus could benefit from having more
sets. For gcc, the subblocked cache incurred twice as many misses, for perl, 50% more misses,
and for vortex, three times as many misses. Turb3d and Apsi see 80% and 60% increases in
misses, respectively. The other floating point codes we measured (tomcatv, swim, su2cor,
hydro2d, mgrid, and applu) typically incur miss increases of more than 10% for a subblocked
cache, primarily because there is a closer correlation between their pollution point and the

block size.

In most cases, the penalty incurred by using a subblocked cache outweighs the gains from
DSF, which incurs more misses than a 256B block cache for turn3d, gcc, perl, and vortex. For
tomcatv, su2cor, hydro2d, and mgrid, DSF has lower miss ratios than a 256B block cache, but
not nearly as low as those of a 4KB block cache (which shows little additional traffic because
spatial locality is so high for these benchmarks). For swim and applu, DSF shows fewer
misses than any of the alternatives, with minor additional traffic (roughly 30% fewer misses

with 15% extra traffic for both benchmarks).

4.3 Subblock prefetching

DSF may be effective if most of a large block is used, but if discontiguous subblocks within

a block are rarely accessed, the system could benefit from identifying those subblocks and not

89
loading them upon a block miss. Ideally, the cache would fetch only those subblocks that will

be accessed.

Hill [58] describes several prefetching policies for subblocked instruction cack®stin-
der, wrap-around andalways which prefetch the next subblock (if the subblock referenced
was not the last in the block), the next subblock (wrapping around if the referenced subblock
is the last one), and fetching the next subblock (even if it resides in the next block) respec-
tively. All of these policies initiate the prefetches on a reference. Hill also proposed [58] the
SPUR prefetch algorithm, which waits for an idle bus cycle (similar to bus prioritization
described in Section 4.5) to initiate a prefetch of the subblock adjacent to that which caused
the last demand miss. In this section, we describe a scheme that differs from these prefetching
schemes by fetching discontiguous sets of subblocks at once.

Kumar and Wilkerson proposed a policy callggatial footprinting in which a (possibly
discontiguous) set of subblocks are loaded upon a block miss [81]. We independently pro-
posed a nearly identical policy that we calleabblock prefetchingor SBP [16]. SBP saves
not just a bit and counter when some blo€ks evicted, as in DSF, but also the used bit vector
representing the subblocks that were accessed whilas in the cache. K shows enough
consistency for the set of subblocks that are used among block mis¥geshe SBP policy
will begin fetching only those subblocks that were touched whilgas last in the cache (plus
the requested subblock, if it was not marked in the vector).

Since not every block is likely to show consistent usage patterns, we use a dynamic scheme
(similar to DSF) to identify those blocks that do show consistent usage of subblocks. Upon a
block miss, the SBP bit is examined to determined whether subblocks other than that
requested should be fetched. When a block is replaced, the block’s state is examined and
saved, and the SBP bit is updated. We show the logic that performs this replacement analysis
in Figure 4-2.

While a blockX is in the cache, three bit vectors are maintained. vidiel bit vectoridenti-
fies those subblocks X that are valid. Theised bit vectordentifies those subblocks that the
processor has actually accessed. phevious use vectocontains the subblocks that were

used the last time that was resident in the cache. Whnis replaced, the hardware com-

90

| Previous use vector

Threshold

| Used bit vector

0 = fetch subblock < o nord
1 = fetch used bit vector + subblock aturating inc/dec
%unter (O—boundD @

clear

J sBp
K bit

Figure 4-2: Logic for subblock prefetching policy

putes the hamming distance between the used bit vector and the previous use vector. If the
Hamming distance is below some threshold, a saturating counter (similar to the dual-size pol-
icy) is incremented, otherwise the counter is decremented. If the counter reaches a certain
value,X is marked as a candidate for subblock prefetching, and upon the next block mdiss to

the subblocks that are marked in the previous use vector are loaded from memory.

WhenX is evicted, the used bit vector becomes the previous bit vector, and is then stored
along with the counter in the TLB or separate table). Like DSF, SBP supports demotion of
blocks from performing the used bit vector prefetching. Ideally, this policy will identify
blocks that have consistent usage patterns, and subsequently refrain from fetching subblocks
that are rarely used, thus reducing bus contention without significantly increasing misses. As
an optimization (not shown in Figure 4-2), we require that more than one subblock be valid
for the promotion counter to be incremented (in addition to requiring that the Hamming dis-

tance be sufficiently low).

In Table 4-5, Table 4-6, and Table 4-7, we show the misses versus traffic behavior for the
SBP policy, which are formatted identically to the results shown for DSF in Section 4.2. Like
DSF, SBP is unable, except in a few cases, to reduce the miss rate more than the increase
caused by incorporating the subblocked cache. This phenomenon is particularly true for the
integer benchmarks (gcc, perl, vortex), which lose considerable performance when the cache
is subblocked. SBP does, however, demonstrate consistent improvement over the subblocked

cache. SBP is also less effective than DSF at reducing the miss rate for most of the bench-

91

threshold-bound

Benchmark |L2 cache |Unit 256B 4KB 9UB 2-2 D-4 4-2 1-4 B-2 B-4
1276.gcc [bIZK, 4sa | Miss [0.064 | 0.46 |[1.91| 1.80| I.8BI | I.75| L.76 | 1.59 | 1.55
Traff. 7471189 1.95]| 1.94| 205 2.01| 2.35| 2.41
512K, fa| Miss [0.064| 047|206 1.91[195 1.83[1.87] 1.71| 1.73
Traff. 7441199 2.09| 207 2.17| 2.16| 230 | 2.31
IM, 4sa| Miss [0.023 | 0.38[2.24| 2.04| 2.07| 1.98| 2.02| 1.80| 1.76
Traff. 562[2.09] 2.15| 2.13| 2.20| 2.17]| 2.39| 2.44
IM, fa| Miss[0.024 | 0.39(2.62| 2.36| 242 2.27| 2.33| 2.12| 2.16
Traff. 5.782.39| 246 | 245 251| 250| 259 | 2.58
12729.compress [D12K,4sa | Miss[0.00/] 0.69[3./3] 3.42[3.4/ 3.33 [3.39 | 3.05[2.95
Traff. 1062333 341 3.39| 3.49] 3.47| 3.80| 3.91
512K, fa| Miss [0.017] 0.12|166| 1.36[1.39| 1.34] 1.36| 1.30| 1.31
Traff. 209(165| 1.67| 1.66| 1.67| 1.67| 1.68| 1.67
IM, 4sa| Miss [0.003| 0.07[1.08| 0.56| 0.53] 0.56 | 0.53| 0.54| 0.53
Traff. 1.16[1.09| 1.09| 1.09| 1.09| 1.09| 1.09| 1.09
IM,fa| Miss |[0.004 | 0.07[1.11] 0.87| 0.88| 0.87| 0.88| 0.86 | 0.87
Traff. 1211111111111 111 111] 111 1.11
134 perl 512K, 4sa | Miss [0.139 | 0.67 [L1.50| 1.38| 1.38| 1.36 | 1.36 | 1.32 | 1.31
Traff. 987149 155| 1.52] 1.82| 1.67 | 2.00| 1.90
512K, fa| Miss [0.154| 0.67[155] 1.49| 151 1.47| 150 1.43| 1.47
Traff. 996|153 1.59| 1.55]| 1.78| 1.62| 1.96 | 1.83
1M, 4sa| Miss [0.109| 058 (144 1.32| 1.32| 1.30| 1.31 | 1.25| 1.25
Traff. 8.39(1.39| 144 | 141 | 164 | 157 1.84| 1.79
IM,fa| Miss [0.122 | 059157 151 154 1.49] 153 1441 1.48
Traff. 862|152 156| 154 1.72| 1.59[1.91| 1.80
T47.vortex [51ZK, 4sa| MiSS [0.140 | 1./6[2.72| 2.6/ | 2.67| 263 | 2.63 | 2.57| 2.56
Traff. 26.56[2.44] 282 | 283 3.22| 3.26| 3.64 | 3.69
512K, fa| Miss [0.113 | 2.32 353 3.33[3.34| 3.25] 3.24| 3.19| 3.18
Traff. 3463[3.15] 356 3.56| 3.90| 3.92| 4.08| 4.08
IM, 4sa| Miss [0.076 | 1.99[3.32| 3.27| 3.28| 3.21| 3.22| 3.10| 3.09
Traff. 29.29[2.89| 3.25| 3.22| 3.73| 3.80| 4.23| 4.30
IM, fa| Miss [0.077 | 2.08[3.63| 3.40| 3.41] 3.29| 3.29] 3.19| 3.18
Traff. 30.85[3.18] 3.50[3.48| 3.82| 3.80| 4.08| 4.09

Table 4-5: Subblock prefetch functional results, part 1

marks, since it loads less data into the cache speculatively. However, SBP is considerably
more efficient at reducing misses without increasing traffic. We can quantifyy efficiency

by calculating the ratio of the percent of misses reduced to the percent traffic increase:

(Msb_MSBP)/Msb
(TSBP_ Msb)/st

(4-1)

where M, represents the L2 misses for the subblocked cacheylapd represents the L2

misses for a subblocked cache with SBE, dirdp represent the total traffic for those two

92

threshold-bound

Benchmark |L2 cache |Unit 256B 4KB 9UB 2-2 D-4 4-2 1-4 B-2 B-4
101.iomcatv [512Z2K,4sa | MISS [0.074] 0.06 [1.03] 0541 054 054 0541 0.54] 0.54
Traff. 1.05[1.03| 1.03| 1.03| 1.03| 1.03| 1.03| 1.03
512K, fa| Miss [0.078 | 0.07[1.03| 0.79 0.80[0.79] 0.80| 0.79] 0.80
Traff. 1.10[1.03| 1.03| 1.03| 1.03| 1.03| 1.04| 1.03
IM, 4sa| Miss |[0.073| 0.06[1.03| 0.55| 0.56| 0.55| 0.56 | 0.55| 0.56
Traff. 1.05[1.03| 1.03| 1.03| 1.03| 1.03| 1.03| 1.03
IM,fa| Miss |[0.075] 0.06 [1.03] 0.79| 0.79| 0.79| 0.79| 0.79 | 0.79
Traff. 1.07[1.03| 1.03| 1.03| 1.03| 1.03| 1.03| 1.03
T0Z.swim [51ZK, 4sa | MisS [0.09Z [0.14[1.0Z[0./5| 0.7/0| 0.7/5| 0.70[0./5[0.70
Traff. 244 11.03]| 1.16| 1.20| 1.16| 1.20| 1.17 | 1.20
512K, fa| Miss [0.096 | 0.14[1.03| 0.93] 0.99| 0.93] 0.97] 0.91] 0.95
Traff. 2471104 | 1.07| 1.06| 1.07| 1.06 | 1.08 | 1.07
IM, 4sa| Miss [0.090| 0.14[1.04| 0.78] 0.76 | 0.77| 0.76 | 0.76 | 0.75
Traff. 237 11.05] 1.19| 1.23| 1.19| 1.23| 1.19| 1.22
IM,fa| Miss[0.092 | 0.13[1.03] 0.94| 0.98| 0.94| 0.96| 0.92 0.94
Traff. 230[1.05| 1.06| 1.06| 1.06 | 1.06| 1.07 | 1.07
T03.suZcor [b1ZK,4sa| MiSS [0.055 | O.IL [1.14[O8I | 0.80| 0.80| UO.78 | 0.7/ | 0.74
Traff. 180|114 1.18| 1.18| 1.18| 1.19| 1.19| 1.20
512K, fa| Miss [0.058 | 0.09|1.11| 091 0.93[0.91] 0.92] 0.89] 0.90
Traff. 153|111 1.13| 1.13| 1.13| 1.13| 1.14| 1.14
IM, 4sa| Miss [0.036| 0.08[1.07| 0.73] 0.72] 0.72] 0.70| 0.70 | 0.67
Traff. 1.28[1.06| 1.09| 1.09| 1.09] 1.09| 1.09| 1.10
IM,fa| Miss|[0.041| 0.08[1.09| 0.87| 0.88| 0.86| 0.88| 0.85| 0.86
Traff. 1.3711.09| 1.10| 1.10| 1.10| 1.10| 1.10| 1.10
104.hydroZd [912K,4sa| Miss [0.095] 0.08[1.01] 0.6Z2] U0.61] U.62] 0.60[0.61| U.60
Traff. 1.30({101| 1.0/ 1.07| 1.08| 1.07| 1.08 | 1.07
512K, fa| Miss [0.098 | 0.08|1.02| 0.84| 0.87| 0.84| 0.86| 0.83] 0.85
Traff. 1.32[1.02| 1.06| 1.05] 1.06| 1.05| 1.06 | 1.06
IM, 4sa| Miss |[0.090| 0.08[1.02| 0.64] 0.62] 0.63| 0.61| 0.63| 0.61
Traff. 1.26[1.02| 1.07| 1.08] 1.08| 1.08| 1.08| 1.08
IM,fa| Miss |[0.086 | 0.08[1.04| 0.84| 0.86| 0.84| 0.86| 0.83| 0.85
Traff. 127104 106| 1.06| 1.06| 1.06 | 1.07| 1.06

Table 4-6: Subblock prefetch functional results, part 2

caches, respectively. Informally, this metric measures how successful a policy is at reducing
misses while increasing traffic as little as possible (or vice-versa, decreasing traffic while min-

imally increasing misses). In Table 4-9, we show the policy efficiencies for DSF and SBP. The

efficiencies shown were calculated for 1MB, 4-way set associative caches, with threshold and
bound values of 2 for both DSF and SBP. The table shows that the policy efficiencies are
indeed significantly higher for SBP in all cases but two; swim and vortex (and with vortex,

they are nearly identical, and uniformly poor). Note that this metric does not quantify the

93

threshold-bound

Benchmark |L2 cache |Unit 256B 44KB 9SUB 2-2 D-4 1-2 1-4 B-2 B-4
T07.mgrid (512K, 4sa | Miss [0.079| 0.1Z[I.10[| 0.79 [0.78 | 0.77 | O.77 | 0.73 | 0.70
Traff. 2.02(1.10| 1.15| 1.14| 1.17| 1.16| 1.21| 1.23
512K, fa| Miss [0.089| 0.10[1.08| 1.00| 1.04| 0.96 | 1.02| 0.82] 0.83
Traff. 1.7311.07| 1.10| 1.08| 1.10| 1.08 | 1.12| 1.12
IM, 4sa| Miss [0.069| 0.10[1.16| 0.82| 0.79| 0.79| 0.78] 0.74 | 0.73
Traff. 1.72 1114 119 1.19| 1.19| 1.20| 1.23| 1.23
IM,fa| Miss[0.075| 0.09[1.11] 1.04| 1.07] 1.01| 1.06] 0.84| 0.85
Traff. 1.60(1.10| 1.12| 1.10| 1.12| 1.10| 1.13| 1.13
110.applu [512K, 4sa | Miss[0.091 | 0.22]1.14]1 0.8/ 0.83] 0.86[0.80 | 0.82] 0./8
Traff. 3.72(1.15| 1.18 | 1.19| 1.19| 1.28 | 1.27 | 1.29
512K, fa| Miss [0.097 | 0.08|1.01| 0.88 0.91| 0.87| 0.90| 0.84| 0.87
Traff. 142 [101| 1.03[1.02| 1.03| 1.02| 1.04| 1.03
IM, 4sa| Miss [0.087| 0.13[1.08| 0.71| 0.71] 0.70| 0.68| 0.67 | 0.66
Traff. 2.28(11.08| 1.13| 1.13| 1.13| 1.14| 1.15| 1.18
IM,fa| Miss |[0.090| 0.08[1.00| 0.85| 0.87| 0.84| 0.87| 0.83 0.85
Traff. 1.29(100| 1.02| 1.01| 1.02| 1.01| 1.02| 1.02
T25.1urb3d [512K, 4sa | MiSS |0.110| 083 [1.82| 166| LI.6b| 1.65| 1.64 | 1.63 | 1.62
Traff. 13.63[1.83| 2.03| 2.04| 2.08| 2.08| 2.34| 2.34
512K, fa| Miss [0.092] 0.77 159 149 147 1.47| 145 146 1.44
Traff. 12.24 (157 1.70| 1.71| 1.73| 1.74| 1.78 | 1.76
IM, 4sa| Miss [0.098 | 0.38[1.52| 1.33| 1.33| 1.31| 1.31| 1.27 | 1.27
Traff. 624152 161| 1.61] 1.67| 1.65[1.93| 1.95
IM,fa| Miss [0.083 | 0.22[1.17] 1.12| 1.15| 1.08 | 1.09] 0.99 | 0.99
Traff. 3.72 (117 1.21| 1.19| 1.26| 1.24| 1.36 | 1.34
T4T.apsi [bIZK, 4sa | Miss [0.1I07 | 053 [I.73| L.3T| I.3T| I.31| L.30| 1.30| 1.29
Traff. 811166 1.73| 1.73| 1.73| 1.73| 1.74 | 1.74
512K, fa| Miss [0.033 | 0.47[192| 160| 1.60| 1.58| 1.58| 1.55[1.55
Traff. 6.78[1.78 1.87| 1.87| 1.88] 1.88| 1.90 | 1.90
IM, 4sa| Miss [0.015| 0.09[1.80| 1.32| 1.29| 1.33| 1.28| 1.32| 1.26
Traff. 141(164] 168| 1.69| 1.69| 1.69| 1.69| 1.70
IM,fa| Miss [0.018 | 0.09[1.16| 0.96| 0.98| 0.95| 0.98| 0.94 | 0.96
Traff. 1.3711.15] 1.16 | 1.15| 1.16| 1.16| 1.16| 1.16

Table 4-7:. Subblock prefetch functional results, part 3

absolute performance of a policy in terms of miss reduction, simply how efficient the policy is

at balancing misses and traffic.

4.4 Unifying DSF and SBP

Since the SBP policy is generally more efficient at balancing traffic and misses than the DSF
policy, but the DSF policy shows a much larger absolute reduction in the number of misses,

we implemented a policy that incorporates both DSF and SBP. The policy works as follows:

94
both sets of state are maintained and updated upon each block eviction as shown in Figure 4-1

and Figure 4-2. (The total new state required equals 34 bits per block, about 0.1%.) In the uni-
fied policy, we append the fetch bit to the subblock prefetch bit, and use those two bits to
decide what to fetch upon a block miss. If the state contains 11 or 10, we use the SBP policy
(the SBP bit overrides the fetch bit). On a 01, we fetch the block, and on a 00, we fetch only

the requested subblock.

In Table 4-8, we show the results of functional simulations comparing misses and traffic for
DSF, SBP, and the two together. As in the previous tables, we show the absolute miss rate for
256B block caches, and then relative misses and traffic for all other runs, normalized to those
of the 256B block cache runs. For two of the benchmarks (apsi and compress), the unified pol-
icy shows a significant reduction in misses (9% and 22%, respectively) above and beyond that
offered by the best of either DSF or SBP. For several of the other benchmarks, we see small
reductions in misses with unified (1% for turb3d, su2cor, and gcc) coupled with slight reduc-
tions in traffic as well (1%, 2%, 2%, and 3% for gcc, tomcatv, mgrid, and applu, respectively).
Only for one case (swim) is the miss ratio larger for the unified policy than for the minimum
of DSF and SBP (in this case, it is higher than DSF by 7%).

In the third column of Table 4-9 we list the policy efficiencies of the unified DSF/SBP pol-
icy. We see that the policy efficiencies (except for swim) all fall in between those of DSF and
SBP. The efficiencies tend to be much closer to those of DSF, except for the two cases in
which the unified misses are lower than either of the two policies alone (compress and apsi).
In these cases, the policies are working synergistically. In many of the others, highly popu-
lated blocks that do not show tightly consistent subblock usage patterns dominate the policy,
which causes the unified policy to fetch full blocks rather than discontiguous sets of sub-

blocks.

Most of the reduction in misses comes from the DSF policy, although the unified policy
occasionally provides an additional reduction in misses and slight reductions in total traffic.
These miss reductions come at the expense of added traffic. In the next subsection, we

describe a mechanism for mitigating the performance impact of this additional traffic.

95

Benchmark |Metric |256B 4096B S$ubblocked DSF SBP Unified
1726.g9cc Misses | 0.0Z23 0.38 2.24 1.48 2.04 1.47
Traffic 5.62 2.09 2.95 2.15 2.93
129.compress | Misses | 0.003 0.07 1.08 0.62 0.56 0.406
Traffic 1.16 1.09 1.11 1.09 1.10
134.perl Misses| 0.109 0.58 1.44 1.19 1.32 1.19
Traffic 8.39 1.39 1.85 1.44 1.86
14 7.voriex Misses| 0.0/6 1.99 3.32 3.15 3.27 ====
Traffic 29.29 2.89 4.04 3.25
101.tomcatv Misses | 0.0/3 0.06 1.03 0.56 0.55 0.56
Traffic 1.05 1.03 1.05 1.03 1.03
102Z.swim Misses | 0.090 0.14 1.04 0.68 0.78 0.73
Traffic 2.37 1.05 1.16 1.19 1.25
103.suZcor Misses | 0.036 0.08 1.07 0.60 0.73 0.59
Traffic 1.28 1.06 1.15 1.09 1.14
104.hydroZd Misses | 0.090 0.08 1.02 0.58 0.64 0.59
Traffic 1.26 1.02 1.09 1.07 1.08
10/7.mgrid Misses | 0.069 0.10 1.16 0.66 0.82 0.66
Traffic 1.72 1.14 1.40 1.19 1.37
110.applu Misses| 0.087 0.13 1.08 0.64 0.71 0.64
Traffic 2.28 1.08 1.17 1.13 1.17
125.turb3d Misses | 0.098 0.38 1.52 1.03 1.33 1.02
Traffic 6.24 1.52 2.67 1.61 2.58
1471.apsli Misses| 0.015 0.09 1.80 1.32 1.32 1.20
Traffic 1.41 1.64 1.74 1.68 1.72

Table 4-8: Trading off misses and traffic for a 1MB, 4-way set associative L2

Policy efficiency

Benchmark DSF SBP Unified
1726.gcc 0.821 Z2.906 0.847
129.compress 24.633 119.008 50.446
134.perl 0.527 2.660 0.529
147 vortex 0.129 0121 | = -
101.tomcatv 25.591 451.727 440.828
102.swim 3.206 1.938 1.556
103.su2cor 5.055 12.780 5.910
104.hydro2d 5.799 6.970 6.605
107.mgrid 1.898 7.037 2.150
110.applu 4.540 7.678 4.686
125.turb3d 0.431 2.234 0.468
141.apsi 4243 9.883 6.397

Table 4-9: Policy efficiencies; 1MB 4-way set associative L2, threshold and bound =2

While these schemes can improve the performance of the subblocked cache, the subblocked
cache itself takes enough of a performance hit, due to cache pollution (particularly for the

finer grained codes) that even with the optimizing policies, it often does not outperform a reg-

96
ular cache. The performance penalty of the subblocked cache may be reduced by mechanisms

that allow data to be mapped into the cache at a finer granularity. One possible solution is the
decoupled sector cache [103], which associates multiple tags with each block. In Chapter 5,
we propose a different solution, which maps data into the cache at a subblock granularity, but

uses block-sized tags to keep track of the data.

4.5 Bus prioritization

Speculative loading of subblocks (as determined by DSF and SBP) can worsen performance
when higher-priority requests experience longer queueing delays as a result of the speculative
loading. Conversely, if no demand fetches are pending, and the bus is otherwise idle, there is

no penalty (other than consumed power) for loading subblocks that may soon be needed.

We have implemented a policy calldalis prioritization that harvests otherwise wasted
cycles on the Rambus channel. When DSF or SBP identify subblocks that might be good can-
didates for prefetches (during a block miss) only the processor-requested subblock is actually
requested from main memory. The non-critical subblocks are buffered for loading when the
Rambus channel is idle. They are loaded into a circular queue structure that wesoéll a
prefetchqueue, depicted in Figure 4-3. An address tag and subblock bit vector are stored in
each soft queue entry. We call the quesgdt because its contents represent prefetch hints
only; the tail pointer can overwrite the head pointer at any time if the queue is full. The queue
thus simply buffers addresses that might be good candidates for prefetching. This queue bears
some resemblance to how a non-blocking cache buffer should be implemented for fetching
large blocks. The difference between the two are twofoldwliatdata are chosen for fetch-
ing (bus prioritization uses the SBP and DSF policies, as opposed to fetching large, albeit pri-
oritized, blocks on every transfer), and (2) that the quesefisdata may not be fetched if the

bus is highly utilized and fetches are overwritten in the soft queue.

In addition to the soft prefetch queue, there are als@@ prefetchMSHRs, which hold
actual prefetch requests issued to the Rambus channel. When one of the prefetch MSHRs is

freed, the soft prefetch queue is accessed and, if non-empty, a subblock request is moved to

97

L2 cache
Rambus Rambus channels
controller
MSHRs
Hard prefetch queue t
Prefetch | |Prefetch || > Prefetch
MSHR #1| [MSHR #2 buffers
Soft prefetch queue
d \ 4
SN o e =
y A
Block tag

Subblock fetch vector

Figure 4-3: Datapath for bus prioritization

the MSHR, and the prefetch request is sent to the Rambus controller. The Rambus controller
buffers up to two prefetch requests, only initiating one when the channel is idle. The
prefetches can wait indefinitely if demand fetches keep arriving at the Rambus controller.
Once the prefetch initiates, however, it is not superseded by arriving requests. Two prefetch
MSHRs are sufficient to ensure that a prefetch is always in progress when the bus is otherwise
idle, so long as there are subblocks to prefetch. When the processor requests a subblock that is
held in the soft prefetch queue, it is removed from the queue (the valid bit associated with the
requested block is cleared). When the processor requests a subblock that is in a prefetch
MSHR, an upgrade signal is sent to the Rambus controller. The upgraded request then ceases

to be superseded by other demand fetches.

This policy attempts to find a balance between two extreme endpoints. At one extreme, all
data are fetched with equal priority, lowering the L2 miss ratio but possibly causing long
gueueing delays for demand fetches, which get queued behind speculative subblock fetches.
At the other extreme, no subblocks are fetched speculatively, guaranteeing less queueing
delay for demand fetches, but resulting in more L2 misses. With bus prioritization, the longest
delay that any demand fetch will see as a result of a speculative subblock fetch is sixteen pro-

cessor cycles (in our simulated implementation), which occurs when no demand fetches are

08
gueued, so the Rambus controller initiates a speculative subblock fetch, and right after that

initiation, a demand fetch request arrives.

We measured the execution performance of our traffic policies with and without bus prioriti-
zation. The system parameters were identical to those described in Section 4.1 (Direct Ram-
bus, 8-way issue, dynamically scheduled core, etc.) We ran timing simulations for all these
policies, and graph the performance results in Figure 4-4. On the y-axis we show performance
(measured in IPC), and on the x-axis we display one cluster of seven bars for each benchmark.
The left-most bar in each cluster represents an ideal L2 that never misses (but still incurs a 10-
cycle hit penalty). The next three bars represent the performance of a 256-byte block cache, a
cache with the block size set at the performance point for that benchmark, and a 4KB block
cache, respectively. The fifth bar represents the performance of the base subblocked cache
(4KB blocks, 256-byte subblocks). The sixth bar shows the performance of our unified policy
on the subblocked cache, and the right-most bar shows the performance resultant from adding

bus prioritization to the unified policy.

As expected from our functional results, the unified policy breaks even with or outperforms
the subblocked cache in most cases (particularly swim, mgrid, su2cor, and compress). Bus pri-
oritization improves performance further in every case except for compress. In two cases
(swim and mgrid), the bus prefetching improves performance over that of the “performance
point” blocksize by a significant margin (10%). For many of the other benchmarks, however,
the subblocked cache degrades performance enough that even with bus prioritization, perfor-
mance is still lower than a “vanilla” 4-way set associative cache with 256 byte blocks (com-
press, gcc, vortex, apsi, and turb3d). In vortex, the unified policy itself reduces performance
below that of even the subblocked cache, as there is little consistent spatial locality for the
DSF and SBP policies to exploit. The bus prioritization regains some of this performance loss,
finding idle cycles with which to bring unneeded (in vortex) data across the Rambus channels.
Another interesting result can be seen in this graph: in two cases (su2cor and apsi), the “per-
fect” L2 actually hadower performance than some of the other experiments. This aberration

occurs because the perfect L2 returns certain blocks too quickly (blocks that would otherwise

99

Missless L2
35 : B 2568 blocks
3.0 Best blocksize
2.5 . 4096B blocks

/2~ 4096B/25B6 subblk
1.5
1.04 . Dual + Footprint
0.54 Bus prefetching
0.0

compress perl vortex tomcatv swim

4.0+
3.5 .
3.0 . i
2.5- I - LN
Q 2.0
1.5-
1.0
0.5

0.0 il il I i il 18
su2cor hydro2d mgrid applu turb3d apsi

Figure 4-4: Performance of traffic optimization schemes

have missed in the L2); those blocks evict data in the L1 data cache that the processor still
needs for a short time, causing a conflict miss. Thus, the L1 miss rates are higher for the “per-
fect” L2 runs; those extra misses are the source of the performance loss.

Overall, these policies show potential to improve performance. However, the limitations of
the implementation (mapping inflexibility) forces the data to be mapped into the cache at a
coarse granularity, which results in non-competitive performance (except in two cases). One
alternative is to map small blocks into the cache and manage the behavioral state coupled to
larger logical regions, as proposed by Johnson and Hwu [69]. While this scheme would
require extra buffering near the cache to hold active state (since the state couldn’t be stored in
the tag array), that extra buffering would be proportional to the cache size and is a possibility.
This implementation would increase the number of conflicts generated from the extra blocks

being loaded into the cache.

100
Another alternative to mitigating the mapping granularity problem would be to implement a

decoupled sector cache [103], associating multiple tags with each block. The decoupled sub-
blocked cache has the potential to work synergistically with the proposed policies, improving
performance above and beyond that attainable with a fixed block size. In the next section,
however, we propose a different solution to supporting these policies with a finer-grain cache
mapping. Our solution uses indirect indexing to provide flexibility in the cache mapping:
mapping data into the cache at a subblock granularity and reducing conflicts, but using tags at
the granularity of a block to keep the policy state associated with the blocks. We show that the
combination of the traffic policies and the indirect cache provides outstanding performance,

which is true for neither of the two individually.

101

Chapter 5

Merging Caches and Physical Memory

In Chapter 4, we evaluated a number of policies for improving the performance of 1MB
caches. Caches of this size will soon appear; the Compaqg Alpha 21364 will have 1.5 MB of
on-chip cache [56], as will the HP PA-8500. On-processor memory capacities will grow sub-
stantially larger than one or two megabytes, however. Intel estimates that microprocessors will
contain 350 million transistors by 2006, and well over a billion by 2010 [136]. Most of these
transistors will be devoted to memory cells in one form or another—a recent collection of arti-
cles on possible directions for microprocessors were unanimous in predicting that the bulk of
on-chip transistors will be organized as memory storage [11]. Large on-chip memories (that
we will henceforth calMOPs,for “memory on processor”) are desirable because they reduce
both the number of times long memory latencies are incurred and off-chip traffic. What is
unclear is how these large MOPs—from megabytes to tens and hundreds of megabytes—will

be organized.

Caches and physical memory are managed quite differently, even though they perform simi-
lar functions: buffering subsets of frequently used regions of data from a lower level of the
memory hierarchy (whether from main memory or disks). As we shall describe below, these
future MOPs will come to resemble past physical memories more than caches, both in terms
of access times and capacities. As they grow more similar—in terms of critical parameters and
ratios—to the physical memories of yore, and less similar to the original caches, using some
of the management mechanisms from physical memory may enhance overall performance. In
this section, we evaluate a few possible paths by which MOPs may evolve into hybrids of tra-

ditional caches and main memories.

102

Physical

Fut. (2008) L1 MOPs memory Disk
Now (1998) | L1 L2 ;heyrﬁgsy' Disk
Past (1978) | Caches Eféyns]lggll Disk

0 1 2 3 Z 5 6 7 g >

Log4g IIOs (Instruction Issue Opportunities)

Figure 5-1. Access penalties for levels in the memory hierarchy

The access penalties of MOPs, measurdadstruction issue opportunitiegare beginning to
resemble those of physical memories from two decades ago. We consider instruction issue
opportunities to be the number of instructions that could be issued by the processor while an
access to that level is being serviced.

Cache memories were originally designed to provide low latency access to a small number
of operands, which is a role quite different from that which MOPs will play. To illustrate the
difference, in Figure 5-1 we show access penalties for various levels in the memory hierarchy
in 1978, today, and estimated for a decade hence. In this figure, we calculate instruction issue
opportunities as the product of the access time of that memory level, the processor clock rate,
and the sustained instructions per cycle. For 1977, we assumed a CPI of ~10, 5 MHz clocks,
and disk latencies of 50 ms. For 2007, we estimate disk latencies at 5 ms, large on-chip access
penalties at 5 ns, 4GHz clocks, and a sustained IPC of 10 (about what is needed to stay on cur-
rent performance curves).

By these estimates, the expense of accessing a MOP in 2008 will approach that of accessing
main memory today, and accessing physical memory in 2008 is growing close to that of a disk
access in 1978. Furthermore, a 2008 MOP will be considerably more expensive to access than
physical memory was in 1978.

In addition to access penalties, the capacities of future MOPs (with respect to the rest of the
memory hierarchy) will fall somewhere between the traditional sizes of caches and physical
memory. Unlike today, on-chip memories may eventually contain a substantial fraction of the
physical memory capacity. In Figure 1-5 we show the percentage of processor transistors that

are allocated to cache memories, for numerous recent processors. This percentage, already

103

(b) Density increases

8Gb -

4Gb 4 & Processor transistors
2Gb4 ¢ Main memory sizes ($2000 PC)
16b] B Single-chip DRAM capacities
512 Mb H
256 Mb -
128 Mb
64 Mb
32 Mb +
16 Mb
8 Mb
4 Mb -
2Mb H
1Mb
512 Kb
256 Kb
128 Kb
64 Kb
32 Kb o
16 Kb 4
8 Kb o
4 Kb o

2Kb T T T T T T T T T T T T 1
1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010
Year

Processor trend (LMS)
Main memory trend (LMS)

Number of bits (memory), transistors (processors)

Figure 5-2: Trends in microprocessor memory hierarchies

high, continues to grow. As this trend continues, future processors will have the bulk of their
transistors devoted to memory. There will always be fast level-one caches, with a large bank

(or banks) residing under the level-one caches.

Given that future processors will be mostly memory, the capacity of the on-processor mem-
ories will track processor capacities. In Figure 5-2, we show how processor capacities will
scale compared to single DRAM chip capacities and main memory capacities (for medium-
cost PCs). Main memory sizes are growing more slowly than both on-processor densities and
DRAM densities. Main memory size is primarily driven by operating system and application
working set sizes, rather than semiconductor processing technology. It is possible, assuming
logic and DRAM processes remain distinct, that we will see systems with one processor and
one DRAM chip (for medium-range systems, but not servers or high-end workstations) [97].
The difference in capacity between the two chips will thus be approximately the ratio of their
respective sizes times the difference in the density of dense memory structures on the two
chips. For example, according to Figure 5-2, a future processor in 2010, which is mostly
memory, will have an eighth of the capacity of main memory, assuming that the chip areas are
similar (the actual difference is likely to be more, since SIA projects that DRAM dies will be

twice the size of processor dies by 2010, whereas now the processor, on average, is about 10%

104
larger [102]). New processes may affect the slopes of these lines considerably; we discuss the

process issue in more depth in Section 5.4.

Regardless of whether support for dense on-processor memory cells arises, it is quite possi-
ble that future MOPs will contain a substantial fraction of the system memory. Conventional
wisdom states that the MOP will be organized simply as a giant level-two cache [56]. In this
section, we question that assumption, and discuss three types of hybrid memory systems:

» Logical hybrids which combine various mechanisms from both caches and physical
memories, to realize higher overall performance. We propose and evaluate one logical
hybrid in Section 5.2.

» Physical hybridswhich use physically distinct a part of the on-chip memory as a level-
two cache and a part as a fraction of main memory. We discuss physical hybrids in
Section 5.3.

» Unified hybrids which can treat portions of on-chip storage as either physical memory or
as a cache (or both simultaneously). We discuss this type of hybrid briefly and do not eval-
uate it experimentally as we do the previous two.

In the next subsection, we describe a taxonomy that captures the differences between typical

caches and physical memory, treating them as endpoints on a spectrum. In the rest of this

chapter, we discuss logical hybrids, physical hybrids, unified hybrids, and complete processor/

memory integration.

5.1 A taxonomy for memory hierarchies

Memory hierarchies exist to provide the illusion of memory that is both fast and large. While
caches and physical memories perform the same function in a memory hierarchy, the two
structures are optimized quite differently due to the constants involved. Physical memory has
traditionally been organized to minimize disk accesses [27], since going to disk is so expen-
sive. Physical memory is thus fully associative, replacements are handled using sophisticated
software schemes, and the blocks (pages) are large to amortize the overhead of the mechanical
latencies incurred upon misses. Furthermore, inclusion is often relaxed, as a page may some-

times exist in main memory but not on the disk (swap in Solaris is one example).

105

Caches, conversely, have traditionally been organized to provide fast access to a small set of

operands. Cache lines are typically small (since early caches had few lines and cache miss

penalties were small), they use bits of the address to index into the cache (for faster access),

and they generally hold copies of blocks that exist at lower levels of the hierarchy (since

caches have traditionally been much smaller than physical memories, the cost of the dupli-

cated bits was small) [106].

As both the MOP capacity (absolute and relative to physical memory), and hit/miss times

change qualitatively, the best design may lie in between the traditional definitions of cache

and physical memory. To examine this space, we categorize a generalized level of the memory

hierarchy by the following five components, and discuss the components in the context of
MOPs.

Block size(large or small): as MOPs grow to a larger fraction of the system memory, pol-
lution will decrease (since there is a larger total number of blocks). In theory, coarser-grain
blocks could be mapped into the MOP without hurting performance. However, as we have
seen in Chapter 4, coarser-grained mappings can hurt performance for fine-grained appli-
cations. Ideally, data could be transfermattl storedat a coarse or fine-grain, depending

on the application, but mapped at a coarse grain.

Associativity (low or high): long off-chip delays will make high associativities desirable,

to reduce (or eliminate) the chance of mapping conflicts. Already long hit latencies may
make a slight additional penalty for reduced misses palatable. Furthermore, sophisticated
replacement policies could exploit the added flexibility that full associativity provides.
Indexing (direct or indirect): a block may be found either by indexing into a set and doing

a direct compare of the tag with one or more stored tags, or by performing a table lookup
to obtain the pointer to the operand’s exact location. Indirect access memories have more
flexibility with respect to allocation and mapping, but at the cost of serializing the

accesses. Conversely, direct access memories have limited associativity, but generally

106

Cache HW page cache SW page cache

Direct access Direct access Indirect access.

Low associativity Low associativity High associativity

Small blocks Large blocks Large blocks

Uncached trans. Uncached trans. Cached trans.

Inclusion Inclusion Inclusion

- T

CAMs Indirect cache Physical memory
Direct access Indirect access. Indirect access.
High associativity High associativity High associativity
Small blocks Small blocks Large blocks
Uncached trans (?) Cached trans. Cached trans.
Inclusion Inclusion No inclusion

Figure 5-3: A sample of points in the taxonomy space

allow parallel accesses to tags and data. Traditional caches use direct access, but the flexi-

bility of indirection may be superior for MOPs with long miss penalties.

Cached translations(cached or uncached): caching commonly used translations (as in a

TLB) could reduces the overhead of lookups for data. Cached translations are not limited
to indirect access memories; designers could conceivably cache translations for a CAM
(they have also proposed caching translations to speculate on which block within a set

should be driven before performing the tag compare) [20].

Inclusion (enforced or not): enforcing the principle of inclusion means that a given level
of the hierarchy contains no data not also contained in the level below. For memories that
are not substantially smaller than the level below, enforcing inclusion would prove waste-
ful. Enforced inclusion simplifies the control necessary to handle inter-cache communica-
tion (L1 to L2, for example) and is thus worthwhile when a large size disparity exists

between two levels in the hierarchy.

In Figure 5-3, we list some logical hybrids in the space in between the extremes of traditional

caches and traditional physical memories. Content-addressable memories (CAMSs) implement

high associativities while retaining direct access. Hardware page caches are organized much

the same as traditional caches, except that they map full pages instead of smaller lines. In the

107
indirect cache scheme (evaluated in the next subsection), small cache lines are accessed using

a table lookup and TLB-like structure to provide full associativity. Finally, software page
caches behave much like physical memory, except that they duplicate the pages in the cache

and in physical memory [85]. This list is intended to be illustrative, not exhaustive.

5.2 A logical hybrid - the Indirect Cache

While there are many points in the taxonomy space, many of them are not good fits for tech-
nological trends. Both CAMs and traditional, direct-indexed fully associative caches are not
well-suited for large on-chip structures. They either consume significant power (CAMSs) or
exhibit high latency if the large number of tag compares is serialized (trading off latency for
power consumed and design complexity). A hardware page cache (in which the pages were
accessed by indexing the tags, like conventional cache lines) would incur extra conflicts due to
the restricted mapping, which would generate extra loading of the large pages and exacerbate
bandwidth limitations (as evidence, the performance of a hardware page cache with 4KB
blocks can be seen for ten benchmarks at the end of this section, in Figure 5-6). A software
page cache may perform better than the hardware page cache if the fully associative organiza-
tion resulted in fewer misses, but would still likely incur performance losses due to high traffic

volumes.

We have identified one candidate for a competitive logical hybrid, which we céfichrect

Cache Extendedr ICE. The ICE manages an on-chip cache similar to how physical memo-
ries are managed: a hash table holds the mappings of where blocks reside in the ICE, and a tag
cache holds a subset of recently referenced cache mappings (like a TLB) for fast access in the
common case. The translations used to map data into the ICE are not identical to those used to
map physical pages into memory; the location of blocks in the ICE are determined by the con-
troller that manages the ICE, not the virtual or physical addresses of the block in question. To
our knowledge, the first computer to re-map memory from physical store was the Atlas [74,

105], which allocated 32 pages in core memory, and took a fault when a requested datum was

108
out of core, at which point it would load the page from drum memory, choose a victim from

core with a software scheme, and perform the replacement.

The design goals of the ICE were twofold: (1) to provide full associativity, allowing policies
to creatively exploit the mapping flexibility, while at the same time compensating for the extra
overheads of providing high associativity (and incurring lower penalties than a CAM or
direct-indexed fully associative cache), and (2) to pack data efficiently into the cache, not
incurring the pollution penalty of a subblocked cache, while still being able to exploit the traf-
fic policies we presented in Chapter 4. Efficient handling of different-sized fetches is impor-

tant.

In Figure 5-3, we display the organization of the base ICE. As with physical memory, the
indices into the data array are held in a table (analogous to a page table) that we tail the
store For fast access, a subset of the indices are heldag aache which is analogous to a
TLB in a virtual memory system. On a tag cache hit, if the valid bit is set, the data index is
used to access the data array. On a tag cache miss, the tag store, which is kept in pinned blocks
in the data array, is accessed to find the requested block. If found, the entry is loaded from the
tag store into the tag cache. If the tag is not found in the tag store, the system requests the
block from main memory. We note that we are not performing virtual memory address transla-
tion here; the ICE uses physical tags, and the data indices are restricted to the ICE (they are

not part of the virtual memory system).

The main source of overhead incurred by an ICE, which is not intrinsic to an ordinary cache,
is the extra latency needed to access and manage the indexing table (the tag store). Rather than
cycle through the inverted tag table (which is effectively a chained hash table) on each data
array lookup, the tag cache provides a lower-latency access path for the majority of accesses.
Even with the tag cache, there are still three sources of overhead. The first is the serialization
of the tag cache access and the data lookup. The second is the time required to process tag
cache misses;e., to access the tag store to find the mapping (or determine that the block is
not in the store). The third source of overhead is that associated with performing more com-

plex replacement. All three result from the added flexibility provided by the ICE mechanism;

109

Tag Tag index Offset (8) |

Tag cache

= ~
— ~
— ~
- ~
— ~
-

| Stored tag | Valid Data index

Data array ﬁ v

N v
* 1 = hit, access data array with data index
Tag store 0 = tag cache miss, search tag store with miss handler

Figure 5-3: Organization of the base ICE

the challenge is to reduce these overheads sufficiently that they are overcome by the benefits

of the mapping flexibility. We address each in subsections below.

5.2.1 Additional hit latency

The ICE reduces average tag store latency by keeping frequently used mappings in the tag
cache. Conventional set-associative caches can generally perform the tag lookup and data
lookup in parallel. However, some modern set-associative caches do the tag and data accesses
serially: the Alpha 21364 contains a 1.5MB, 6-way set associative L2 cache [56], for which
the tag and data accesses are processed serially, due to power and timing constraints. Such a
cache would have no intrinsic access time advantage over the ICE. To compare against a cache
that does do the accesses in parallel, we ran some simulations in which we increased the ICE
access time by one cycle, and found that the performance impact was negligible. Finally, if
there were cases where an extra cycle or two on the hit path did impact performance, it would
be possible to speculate by accessing the data array in advance of obtaining the data index
(based on the previous access). This is less likely to be useful for large caches, but is a possi-

ble avenue to explore.

110
5.2.1.1 Tag cache misses

A potentially worse source of overhead is the latency required to fill the tag cache upon a tag
cache miss. In joint work, Reinhardt came up with an efficient organization to handle tag
cache misses quickly. In the organization that he proposed, the tag store is organized as a hash
table (similar to an inverted page table in conventional microprocessors, such as in the
POWER and PowerPC architectures [65, 129]). As in the PowerPC architectures, the size of
the hash table was set to be twice as large as the power of two greater than or equal to the
number of physical mapped regions (physical pages in PowerPC and cache blocks in ICE). In
the PowerPC architecture, each hash table entry maps tpageetable entry groufPTEG),
which holds 8 mappings that are searched linearly for a match. If the match fails, a secondary
hash function generates a different address, which searches a second PTEG. If a match is not
found in the second PTEG, the page is not in physical memory and a page fault occurs.

The ICE implementation assumed a similar model, but searched adjacent entries in the hash
table instead of grouping multiple entries into a single PTEG. ICE also used hardware to
accelerate the hash table search. To reduce the latency for resolution of misses, the ICE imple-
mentation had multiple comparators placed by the read-out rows of the memory banks hold-
ing the tag store. Upon a tag cache miss, the appropriate hash table entry for the given tag is
read out, with the rest of its row in the memory bank. The comparators search for the tag in
both the indicated hash table entry plus the adjacent entries in the row, thus scanning several
possible locations of the tag simultaneously (in addition to the PowerPC, this solution bears
some resemblance to clustered hash tables [121]). We depict a diagram of Reinhardt's scheme
in Figure 5-4, showing how the tag is hashed to get the hash table index, which is then
accessed and read out (the whole row) to multiple comparators, looking for tag matches.

We implemented the proposed organization, and ran simulations to compare the perfor-
mance impact of a perfect tag cache (which never misses) to a finite tag cache. We set the
capacity of the finite tag cache to be smaller than the size of the tag array needed for a compa-
rable, traditional cache (4-way set associative, 1MB L2 with 256B blocks). The tag cache we
used was a 4-way associative tag cache with 2K entries (each of which maps a 256B block in

the data array). The hash table held twice as many entries as needed to map the blocks into the

111

Tag Tag index | Offset (8) |

First hash missed?

'

data array
Hash2
- tag hash table

YY VY YV VY

@ @ @ Comparators

Cache hit on tag miss

Figure 5-4: Accelerating tag cache misses

cache. Since the tag cache is smaller than the conventional tag array, and the hash table takes
up what would otherwise be data blocks in the data arraygihes cache sizg1] of the ICE,

is less than the gross cache size of the conventional cache.

We show the results of this comparison in Table 5-1, in which we list the IPCs of ICEs with
perfect and imperfect tag caches. In this table, we normalized the performance numbers to the
performance of a comparable cache (1MB, 4-way set associative L2 cache with 256B blocks).
The worst performance losses are 3.3% and 3.1% degradations (compress and applu), but the
others are much smaller. Two of the benchmarks (apsi and wave5) even show improved per-
formance with the imperfect tag cache, because of reduced cache thrashing in the level one
data cache. In all simulation results that we present in this section, we assume that 256 blocks
(64KB) of the data array were allocated to hold the tag store. Those blocks were not used to

hold data, and were thus factored into ICE performance.

5.2.1.2 Complex replacement

The third source of overhead is handling more complex replacement when the cache is

highly associative and managed by software. In our experiments, we assumed a hardware con-

112

Benchmark gce compress perl bortex tomcatv ~ swim supcor
IPC (perf. tag cache) 1.007 0.892 1.007 1.032 0.962 1.003 1.008
IPC (real) 0.999 0.862 1.001 1.022 0.954 0.992 0.998
Benchmark hydro2d mgrid applu turb3d apsi waveb
IPC (perf. tag cache) 0.993 0.995 1.020 1.015 1.026 0.996
IPC (real) 0.973 0.977 0.988 1.015 1.033 1.000

Table 5-1: Performance impact of an imperfect tag cache (1MB ICE)

troller that was tightly coupled to the cache, which was designed and implemented by Rein-
hardt [16]. He also proposed the replacement policy that we used to evaluate the ICE, a low-
overhead policy calledjenerational replacementivhich is a frequency-based policy that
groups blocks into one of several prioritized “bins”. This policy—which was designed to
counter the effect of “filtering” that the L1 caches do on the reference stream reaching the
L2—is described in considerable more detail elsewhere [16]. In Table 5-2, we show the rela-
tive number of misses that the ICE incurs with generational replacement, as opposed to a 4-
way set associative cache (with LRU replacement) of the same size. The number of misses is
only slightly lower on average than the baseline, so while the generational replacement algo-
rithm is competitive, it is not a source of high performance gains in the results we show later
in this section. (For our simulations, we assume that the policy code and data structures are
pinned in the data array, and that the replacement handlers run while a miss is being serviced
[82]). We also assume the replacement handler has enough bandwidth to handle multiple

simultaneous outstanding misses before they return.

To increase the coverage of the space we can map in the tag store, we evaluated the use of
subblocked tags, analogous to the complete subblocking of the TLB proposed by Talluri and
Hill [120]. In our complete design, each tag maps 4KB instead of the 256B as described
above, with 16-way complete subblocking within the tag. Thus each subtag has its own data
index and valid bit, and each tag maps sixteen 256B blocks in the data array. We limited the
tag cache size to be smaller than the equivalent tag store size for our baseline (1MB, 4-way
256B block) cache. This bound resulted in a 4-way associative tag cache with 512 entries. We
can thus cover 2MB with the tag cache, but since the number of tags is reduced to only 512

entries, there is a resultant increase in tag cache misses. In Table 5-3, we display the effects

113

Benchmark gce compress perl bortex tomcatv ~ swim supcor
Normalized misses 0.917 1.364 0.983 0.778 1.075 1.007 0.963

Benchmark hydro2d mgrid applu turb3d apsi waveb
Normalized misses 1.023 1.010 0.990 0.875 0.728 0.978

Table 5-2: Relative misses for the ICE (compared to 1MB, 4-way set associative LRU)

Benchmark gce compress perl bortex tomcatv ~ swim supcor
Normalized misses 1.024 1.185 1.038 0.964 1.073 1.012 1.070
Normalized IPC 0.997 0.966 1.012 1.007 0.970 1.027 0.972

Benchmark hydro2d mgrid applu turb3d apsi waveb
Normalized misses 1.064 1.043 0.999 0.869 0.779 0.971
Normalized IPC 0.984 0.973 0.953 1.020 1.033 1.044

Table 5-3: Performance impact of 16-way subblocked tags)

that the subblocked tag cache has on (a) the number of misses, and (b) performance measured
in IPC. Both metrics are normalized to those of the base ICE with non-subblocked tags. The
results show small increases and decreases in both performance and misses: at worst an 18%
increase in tag cache misses (compress), and at best, a 22% reduction in tag cache misses
(apsi). While the subblocked tags do not provide across the board performance increases, they
do permit us to combine the ICE with the traffic policies from Chapter 4, as we describe in the

next subsection.

5.2.2 Coherence issues

The ICE uses physical addresses to index into the tag cache and hash table, since in our simu-
lations the primary caches are virtually indexed and physically tagged. Thus, the ICE is still
capable of snooping on a bus, and transactions that are snooped from a bus may still be exam-
ined in the tag cache, as quickly as a conventional cache would examine them in the tag array.
The tag cache may also be duplicated to provide extra bandwidth for snooping. The ICE will
incur extra overhead when snooped transactions cause tag cache misses, which are likely to be
more frequent than those caused by the reference stream from the local processor. It is
unlikely that tag cache misses caused by snooping should cause a tag cache fill, although a
small, separate buffer to cache snooped translations may reduce the overhead of tag cache

misses for blocks with certain types of access patterns (such as migratory sharing).

114
5.2.3 Performance analysis

In this section we evaluate both the ICE and the ICE combined with the optimizing traffic
policies. We show that DSF and SFP are compatible with the ICE, since they will not suffer
from the performance penalty of having a subblocked data cache. Since the ICE tags can be
subblocked, the traffic optimization policies may still operate on transfer blocks, but the trans-
fer blocks are now packed more efficiently into the cache. Also, since the ICE demonstrates a
lower miss ratio due to full associativity and generational replacement, the Rambus channels
are more often free, and the bus prioritization has more opportunity to bring data across the

channel speculatively, while keeping latency for critical requests low.

In Figure 5-5, we plot the performance (in instructions per cycle) of a 1IMB ICE for ten
SPEC95 benchmarks. Our simulation parameters (processor core, L1 caches, physical mem-
ory, buses) are identical to those described in Section 4.1. For each benchmark, we compare
four experiments, shown by the four-bar clusters in Figure 5-5. From left to right, the first
three bars in each cluster represent the base ICE, the subblocked tag ICE, subblocked tag ICE
with DSF, SFP, and bus prioritization (which we will call ICE++). The fourth bar represents
the performance of our baseline system with a traditional, 1MB, 4-way set-associative L2
cache for which the block size is set at the performance point on a per-application benchmark

(i.e. the best block size is chosen for each benchmark).

The figure shows that, as also shown in Section 5.2.1.2, the subblocked tags have little effect
on ICE performance, causing two slight improvements (compress, swim, and wave5) and two
minor degradations in performance (vortex and applu). The addition of the traffic optimization
policies, however, makes a large difference for several benchmarks (mgrid, hydro2d, and
applu), slight improvements for several others, and two minor performance drops for perl and
vortex (we hypothesize that the additional latency required to complete prefetch transactions

when a demand fetch arrives is responsible for this drop).

The most significant result in this figure is the fact that ICE++ nearly equals or exceeds the

performance of the performance-point cache in every case but one (compress). The ICE++

115

lIc
35 B iC with subblocked tags
3.0 [IC++
2.5 . Cache/optimal blocksize]
8 2.0 T —
= 1.5
1.04
0.0 , , [| [|
126.gcc 129.compress 134.perl 147 .vortex 102.swim
3.5
3.0 -] B
2.5 B B
o 207]
= 1.54
1.04
0.5
0.0

104.hydro2d 107.mgrid 110.applu 125.turb3d 141.apsi

Figure 5-5: Performance of an ICE with traffic optimization schemes

performance of seven of the other benchmarks is extremely close to the performance-point
cache (apsi, swim, turb3d, hydro2d, vortex, gcc, apsi) or significantly better (mgrid, applu).

We computed the speedup of the ICE++ over the cache at the performance point for each
benchmark, and found that the mean speedup of ICE+ over traditional caches with bench-
mark-specific block sizes is under 1.6%. This result is significant because it indicates that, on
average, ICE++ performs better than any cache, no matter the block size (for the benchmarks

we studied).

That result does not show how ICE++ would fare against traditional caches when their block
size was fixed across all applications. In Table 5-4, we list the mean speedup (a ratio of IPC
measurements) that ICE++ obtained across all benchmarks (those listed in Figure 5-5) over

cache with a fixed block size. For example, in the first column of Table 5-4, the number repre-

116

Block size 64 128 256 512 1024 2048 4096
Mean speedup 0.27 0.16 0.09 0.08 0.12 0.18 0.28

Table 5-4: Mean speedup (across SPEC95) of ICE++ over 1MB, 4-way set assoc. caches

sents the mean speedup that ICE++ showed over all our SPEC95 benchmarks running on 4-
way set associative, 1IMB L2 caches with 64-byte blocks. The mean speedups range from a
low of 0.08 (512-byte blocks) to a high of 0.28 (4KB blocks). In Figure 5-6, we plot the per-
formance of traditional caches in IPC—assuming the same simulation parameters as used
elsewhere in this chapter—as a function of block size on the x-axis. We assume that the tradi-
tional caches are 1MB and 4-way set associative. Each line represents the IPC for one bench-
mark as the L2 block size is increased. The individual points represent the IPC for the ICE++.
We placed each ICE point on the x-axis at the performance point for that benchmark; each
point will appear at the same position on the x-axis where the blocksize curve for that bench-
mark peaks. Note that the ICE uses a constant block size, and is thus invariant on the x-axis;

they are placed at different x -coordinates for illustrative purposes.

Each ICE++ point is simply a heavier or dark-filled version of the mark used in the line for a
given application. This graph illustrates our earlier claim: the ICE++ performance for each
benchmark is close to (or above) the peak of the traditional cache curve for each benchmark.
At the 64-byte point on the x-axis, the only ICE point is the inverted triangle, at just over 1.05
IPC (and somewhat under the corresponding point for compress, at 1.2 IPC). The ICE points
for perl and vortex are superimposed at 128-byte blocks (at about 2.0 IPC). At 256-byte
blocks is the turb3d point. The gcc point is at 512 bytes, the swim point is at 1KB, the applu,
hydro2d, and applu points are at 2KB, and finally the mgrid point is at 4KB. Most are above
the peaks of their corresponding curves; the exceptions are compress, vortex, and hydro2d,

which are all reasonably close to the peaks of their application performance curves.

These results show that the performance of ICE+stable it shows significant improve-
ments in actual performance when compared against any specific block size. When this result
is coupled with the previous result—that ICE++ significantly outperforms the best conven-

tional cache for several of our benchmarks—it shows that ICE++ offers both high perfor-

117

404 —— 126.gcc —G&—-—06— 104.hydro2d
B R <-- 129.compress —+-—->~— 107.mgrid
—e———— 134.perl ———— 110.applu "

3.5 —e——&— 147.vortex R +-- 125.turb3d
—0--—--o-- 102swim 4 —x»———x— l4lapsi

3.04

2.54

O
a 2.04

1.5

1.04

0.54

0.0

64 128 256 512 1K 2K 4K
Block size

Figure 5-6: Comparing ICE++ to traditional caches

mance and high stability across varied workloads. This performance stability and
improvement comes from the synergy of the traffic policies and the base ICE; neither of which

does nearly as well individually.

5.3 Physical hybrids

At the beginning of this chapter, we described how MOPs may grow to encompass a sub-
stantial fraction of main memory, particularly if support for denser memory cells becomes
incorporated into logic manufacturing processes. Should this scenario arise, with MOPs hold-
ing a significant fraction of the total system memory, there will be three desirable characteris-

tics for the MOPs:

1. MOPs should not enforce inclusion, since the total system memory could be increased sig-

nificantly if inclusion were not enforced (inclusion simplifies caching policies for a strict

118
hierarchy, which would no longer be as applicable if a logical level of the hierarchy was
divided into on- and off-chip banks).

2. MOPs should still minimize the off-chip accesses, which will be considerably more
expensive than accesses to the memory on-chip.

3. MOPs should allow for fine-grain off-chip accesses; loading a page at a time, for example,
will cause poor performance for applications that show little spatial locality (for example,
the SPEC95 integer codes in Figure 5-6).

In this section, we perform a brief evaluationgfysical hybridsin which a MOP is divided

into two physically distinct structures. One of the structures is an on-chip extension of physi-

cal memory, and the other is an L2 cache for off-chip data (analogous to the RAC in the Stan-

ford DASH [83], albeit in a uniprocessor context).

We measured the miss rates of our benchmarks running on five different simulated organiza-
tions: (1) all on-chip memory is a fast fraction of physical memory, (2, 3, 4) three physical
hybrids, in which 1/2, 1/4, and 1/8 of the on-chip memory are a cache for off-chip data,
respectively, with the remainder of the on-chip storage in each case going to physical memory,
and (5) all on-chip memory is a cache, and all physical memory is off-chip. For any portion of
the chip devoted to physical memory, we increased the simulated capacity by 20% to compen-
sate for the fact that physical memory would incur smaller area overhead than a cache (smaller
tag overhead, no comparators, etc.) The actual overhead for cache support is non-linear with
respect to cache size. We intend the 20% to be a crude first-order approximation that should be
refined in subsequent studies, in which specific implementations are evaluated. We selected
the pages for the on-chip fraction of physical memory by profiling them, and mapping those
pages that had the highest total static reference counts to the on-chip memory. We chose a
block size of 256 bytes for the cache portions of the MOP, consistent with the earlier experi-
ments in this chapter, but assumed a direct-mapped cache due to the large size of these caches
[59].

In Table 5-5, we list the global miss rate for the data segment (number of misses divided by
the total number of references) for each organization. For each benchmark, we present results

assuming MOPs with capacities equal to 1/2, 1/8, and 1/32 of the data set size. The “all phys-

Benchmark/ Fraction of on-chip cache

% data set

gcc All 172 174 1/8 None

172 0.0002 0.0002 0.0003 0.0006 0.0063
1/8 0.0017 0.0002 0.0025 0.0038 0.1522
1/32 0.0051| = -—--- X X 0.4813
perl All 172 174 178 None

172 0.0003 0.0003 0.0005 0.0006 0.0064
1/8 0.0006 0.0007 0.0009 0.0011 0.0226
1/32 0.0012 0.0013 0.0018 0.0021 0.0353
vortex All 1/2 1/4 1/8 None

172 0.0002 0.0002 0.0002 0.0003 0.0017
1/8 0.0010 0.0005 0.0009 0.0017 0.0060
1/32 0.0028 0.0025 0.0040 0.0058 0.0213
swim All 1/2 1/4 1/8 None

172 0.0026 0.0025 0.0024 0.0024 0.0687
1/8 0.0035 0.0029 0.0031 0.0036 0.1279
1/32 0.0044 0.0039 0.0047 X 0.1497
suZcor All 172 174 178 None

172 0.0002 0.0001 0.0002 0.0002 0.0074
1/8 0.0010 0.0007 0.0010 0.0021 0.0497
1/32 0.0024 0.0033 0.0039 X 0.1610
applu All 172 1/4 1/8 None

172 0.0044 0.0043 0.0044 0.0044 0.0432
1/8 0.0053 0.0052 0.0052 0.0059 0.0987
1/32 0.0061 0.0063 0.0071 X 0.1353
turb3d All 1/2 1/4 1/8 None

172 0.0008 0.0009 0.0008 0.0009 0.1122
1/8 0.0019 0.0017 0.0018 0.0026 0.3509
1/32 0.0029 0.0030 0.0037 0.0054 0.4111
waveb All 172 174 178 None

172 0.0007 0.0006 0.0006 0.0007 0.0264
1/8 0.0024 0.0010 0.0013 0.0019 0.0926
1/32 0.0040 0.0026 0.0050 0.0080 0.1933

Table 5-5: Global miss rates for physical hybrid experiments

119

ical memory” experiment performs quite badly, since there is no buffering of off-chip data.
For a MOP at 1/32 of the data set size, the ratio of off-chip accesses to total accesses is as high
as 0.41 (turb3d) and 0.48 (gcc). However, the combined physical memory/cache experiments
exhibit miss ratios comparable to those of the all-cache experiments. Even when only 1/8 of
the MOP area is devoted to a cache for off-chip data, the miss rates are comparable to all-
cache. When 1/4 of the MOP is devoted to a cache, the total off-chip miss rate is equal to or

better than “all-cache” in fully half of the measured cases.

120
The physical hybrids thus have the potential to provide competitive performance at a lower

cost if MOPs grow to be a sizable fraction of the total system memory. The caveat is that we
used profiling to choose which pages to map on-chip. An interesting research question is
whether heuristics that infrequently promote pages to be on-chip (or demote them) based on
dynamic usage patterns (similar to reactive NUMA [36]) could approach or even outperform

the static, profiled mapping of pages.

5.4 Processor/memory integration

As on-chip storage capacity grows, and system integration on the processor die increases, the
possibility exists that all physical memory will eventually end up on the processor die, with
processor interfaces connecting only to I/O. In Figure 5-2, we track the trend in processor
capacity versus DRAM capacity, and show that they are slowly converging. Extrapolated suf-
ficiently far, one might assume that complete processor/memory integration was likely. How-
ever, the 1997 SIA Roadmap [102] project that the capacities of processors and DRAM chips
will diverge quickly for two reasons. First, SIA projects that DRAM chips, with areas cur-
rently slightly smaller than processor chips (10%), will grow to be twice as big by 2012. Sec-
ond (and more important), the density differential between packed logic-process SRAM cells
and DRAM cells is projected to grow rapidly. Current estimates range from a factor of 21 [40]

to 25 [102]. SIA projects density differentials 8 by 2009 an®4 by 2012.

For full integration to occur (or even a substantial fraction of the memory residing on-chip,
as discussed in Section 5.3), the manufacturing process used to make processors will need to
incorporate support for dense cells (thin gate oxides, support for 3-D stacked or trench capac-
itors, and multiple layers of polysilicon). Conversely, processors could start to be manufac-
tured in a more DRAM-like process, with support for fast gates (and more levels of metal
wiring) added. While such hybrid processes may be used for embedded systems at the low end
(for which great cell density or gate speed may not be needed), for high-end processors they

must either offer a performance potential commensurate with the cost of developing the new

121

Perfect memory

6.0 Perfect L2, hit=1

5ol M PerfectL2, hit=10 - :

4.04 . Perfect L2, hit=20 M -]
O30 B oc i

2.04

1.04 m M

0.0

gcc compress perl vortex swim hydro2d mgrid applu turb3d apsi

Figure 5-7: Performance of perfect L2 caches

process, or be developed in a different market and then move over to high-end processor

design once the development costs have been recouped.

We performed a limited set of experiments to evaluate the potential (at least for our experi-
mental setup) of having all of the physical memory on-chip. In Figure 5-7, we display the per-
formance, measured in IPC, for five different experiments per benchmark, represented by the
five bars in each cluster. The left-most four assume various ideal memories. The first repre-
sents a perfect memory system (all accesses return in one cycle). The second, third, and fourth
assume a system with the same processor and L1 caches described earlier in this chapter, but
with the all physical memory in place instead of the L2 (we call this “perfect L2”). These
three caches effectively never miss (i.e., all of the physical memory is on-chip where the L2
would be), but have hit latencies of 1 cycle, 10 cycles, and 20 cycles, respectively. The right-
most bar, representing the fifth experiment, shows the performance of the ICE++ organization

described in Section 5.2.

We see that there is not a large performance differential between the ICE++ runs and an
integrated system with the same access time (10 cycles) as the ICE. On average, this perfor-
mance differential is 13.3%. In one case (apsi), we again see the effect where longer delays for
some operations (L2 misses) result in less L1 thrashing, a lower L1 miss rate, and thus better
performance for the ICE than for an ideal L2. Only one benchmark (swim) shows a large per-

formance gap between an ideal, 10-cycle on-chip memory and the ICE. If the time required to

122
access the denser store increases, due to heavier banking or larger data arrays, the ICE may

actually outperform an integrated system; the ICE (with 10-cycle access) outperforms an ideal
L2 with a 20-cycle access penaltyewvery case

Our result of a mean 13.3% performance gap is consistent with the results reported by the
Berkeley IRAM group, in which they showed a negligible performance improvement for a
large IRAM chip (a mean of 4%) and a result comparable to ours (16%) for a small IRAM
chip, over a conventional alternative [42]. These results indicate that (for these benchmarks
and target system assumptions) there is not a sufficient performance gain to justify any costly
process support. Different applications may result in different conclusions, of course. Given
the large real estate that will be available on future chips, processor designers will likely be
able to implement as many processors on-chip as makes sense, either for increasing the per-
formance of a specific job, or for throughput-oriented processing. In either case, on-chip buff-
ering and off-chip bandwidth are likely to be the resources that limit how many cores may be
placed on a chip and used effectively. If that were the case, modifying the process to support
denser memory cells on-chip—and thus higher off-chip effective bandwidths—would proba-
bly be worthwhile.

In the nearer term, however, the projected disparity between the two technologies—coupled
with the dropping number of DRAM chips in (uniprocessor) systems—makes the scenario in
which the system consists of two main chips likely. One chip will be the processor, optimized
for speed and throughput, and the other will be optimized for density. The two will likely be
closely coupled, perhaps in a single package or in a multi-chip module. This package would
offer both dense storage and fast processing, and could be used as a building block for larger
systems.

If all of the DRAM for a small system is packaged closely to a processor, the question arises
as to how more memory should be added, and/or how the system can be extended using that
single package as a building block. Also, if the DRAM moves onto the processor die because
of numerous processors on the main processor die, how those multiple units can be used to
accelerate a single application is an important question. In the next chapter, we propose a class

of architectures called memory-centric architectures, that address the two questions posed

123
above: how to transparently run codes on systems with multiple processing units, each of

which is closely coupled to some local memory.

124

Chapter 6

Memory-Centric Architectures

In Chapter 1, we discussed how both memory hierarchies and distributed processing could
increase the width of the processor/memory interface cost-effectively. In the previous two
chapters, we described techniques to improve PMI performance in a traditional memory hier-
archy. In this chapter, we describe a class of architectures, aakgdory-centric architec-
tures which provide a PMI that is both distributed and transparent to the programmer and

compiler.

A large number of distributed PMI architectures (which includes all parallel processors)
have been built in the past. Traditional parallel processors, whether shared-memory or mes-
sage-passing machines, were primarily proposed and/or built not to improve performance
across the PMI, but because codes needed more functional units than could be cost-effectively
provided in one chip. When computational capability was the system bottleneck, the use of
multiple inexpensive, commodity processors was the best way to improve performance, so
long as parallel binaries were available. Future architectures will face a different problem as
discussed in Chapter 1: not the challenge of providing enough functional unit throughput on a
given chip, but the dual challenges of building architectures that can move the data across the
PMI at a sufficiently high rate, and finding ways to map the computation onto these architec-

tures.

The current model of a centralized PMI will allow performance to scale acceptably so long
as two conditions hold: first, that the processing core has sufficient work to do (ILP or perhaps
other lightweight threads) to tolerate cache miss latencies, and second, that the processor has
enough bandwidth to load changes to the cache working set without excessive queueing. Both

of these conditions are growing more difficult to meet. Cache miss latencies are growing,

125
making it harder for the processor to find enough work to tolerate those latencies. The laten-

cies are growing for two reasons: first, because of increasing DRAM access latencies (which
is a market-driven problem that is solvable in the long term), and second, because of growing
relative delays with smaller wires [86], which is a less tractable problem in the long term. As
we have discussed extensively in this dissertation, off-chip bandwidth is difficult to scale with

on-chip performance.

One class of architectures that can mitigate these two problems is memory-centric architec-
tures, in which processing power is distributed uniformly into physical memory, and the local
availability of data is what individual processors use to drive decisions dynamically. As we
show in this chapter, this class of solutions can reduce both access latencies and the bandwidth
required for a balanced system. For memory-centric architectures to be commercially feasible,
two conditions must hold. First, processing capability must be inexpensive; the system cost
must be dominated by communication and storage costs. Second, communication from one
part of physical memory to another must be slow (if physical memory is partitioned into
regions, inter-region communication must be slower than intra-region communication). Both
of those conditions are becoming more true; the fraction of the CPU die devoted to actual
computation is shrinking rapidly (see Figure 1-5), and wire delays will eventually make com-
munication latency proportional to intra-chip distance. The processor of 2010 will have die
area sufficient to hold 300 Pentiums, making processors (as implemented today) effectively

free.

These memory-centric architectures may be implemented at several levels of granularity:
intra-chip (small processors strewn along the copious storage on billion-transistor architec-
tures),inter-chip (distributing physical memory among multiple chips, and placing a proces-
sor on each chip, effectively making them IRAM chips), antkr-box (building clusters of
workstations, each of which contains a processor and a fraction of the total system physical
memory, connected by a local bus that is faster than the inter-processor interconnect). In this
dissertation, we evaluate memory-centric architectures at the inter-chip (IRAM) level, but do

not imply that the other foci could not be viable candidates as well.

126
In this chapter, we first describe our historical inspiration for this class of architectures, the

Massive Memory Machine, in Section 6.1. We then describe the DataScalar architecture, an
asynchronous derivative of the MMM, in Section 6.2. We present the results of our DataScalar

performance analysis in Section 6.3.

6.1 The Massive Memory Machine

The DataScalar work was inspired by the Massive Memory Machine, and is effectively an
asynchronous version of the MMM, updated to work with modern processors and communi-
cation topologies. The MMM was a synchronous, SISD architecture that connected a number
of minicomputers with a global broadcast bus [45]. Each computer contained a large memory
(for the time), which was some fraction of the total program memory. Each operand in mem-
ory was thusownedby only one processor.€., each processor resided in the physical mem-
ory of only one processor). All computers ran the same program in lock-step, and the owner of

each operand broadcast it on the global bus when accessed.

6.1.1 Operation of the MMM

This broadcast model was call&$P(which actually does stand for “extra sensory percep-
tion”) in the MMM work. We depict an example of synchronous ESP in Figure 6-1. One pro-
cessor (thdead processor) executes slightly ahead of the others while it is broadcasting
(initially processor 3 in Figure 6-1). When the program execution accesses an operand that the
lead processor does not ownlead changeccurs. All processors stall until the new lead pro-
cessor catches up and broadcasts its operand. In Figure 6-1, a lead change occurs at cycle

seven, when processor 2 begins broadcasting

The MMM supported two classes of physical memory, to which we shall referpdisated
and communicatedReplicated memory is duplicated at every node, with identical contents.

Communicated memory is owned by one node only; there are no copies of communicated

1. Most of the exposition and all of the results in this chapter were taken direcly from previously pub-
lished work [15].

127

Reference string: wq, Wy, ... Wq
processors

1+ wy wy Wa Wy W5 Wg W7 Wg Wq Locations: ws, wg, Wy at proc.2
2 W1 Wy W3 Wy W5 Wg Wy Wg All others at processor 1

3 W1 Wy W3 Wy Wg Wg W7 Wg

—t—t—t—t—t—+—t » time at which processor
| 1 2 3 45 6 7 8 9 101112 13 14 receives a word

Figure 6-1: Operation of the ESP Massive Memory Machine (from [45])

replicated

Proc. A Proc. B

communicated

Figure 6-2: Replicated vs. communicated memory

locations at other processors. In Figure 6-2, we depict the set of memory operations possible
in ESP. At processor B, there are three sets of loads and stores. The first load/store pair is to
locations in replicated memory. The second load/store pair is to remote communicated loca-
tions, owned by processor A. The third load/store pair is to locations in communicated mem-
ory that is owned by processor B. Load 1 is serviced locally by both processor A and
processor B, as they both have copies. Store 1 completes on both processors, overwriting their
respective local copies. Load 2, owned by processor A, is broadcast and received by processor
B without B issuing a request. When processor B issues store 2, it discards the store without
completing it, since processor A generates the same store value, and overwrites the only copy
with that correct value. When processor B issues load 3, it consumes it and also broadcasts it
on the network, since B is the owner and the operand resides in communicated memory. When
processor B issues store 3, it overwrites its local copy without sending it to other processors,
since it is the owner and has the only copy.

The ESP execution model has several advantages over a conventional execution model.
First, since all communication is one-way, no requests ever need to be sent, which reduces

access latency. Second, writes never appear on the global bus, which may reduce bus traffic

128
(since all processors are running the same program, they all generate the same store values,

which need complete only on the owning processor). Third, since the MMM is fully synchro-
nous, and all processors generate the address for each successive operand, no addresses need

to be sent with the data on the global bus.

6.1.2 Limitations of the MMM

The Massive Memory Machine may have been an interesting idea for its time, but its heavy
reliance on synchronous behavior renders it conceptually incompatible with today’s systems.
The limitations of systems even at that time were such that it would show little, if any, perfor-
mance improvements over conventional alternatives [52]. In fact, Jim Goodman wrote the fol-

lowing after visiting Princeton for a site review in December of 1984:

The article and discussions with the authors did not convince me that the novel
ESP architecture is worth further study. In particular, | see little point in the

project to simulate ESP with microprocessors.

The DataScalar architecture, described in the next subsection, addresses the limitations of
synchronous ESP, as well as solving the problems associated with running the ESP execution

model on modern processors.

6.2 DataScalar Architectures

The DataScalar architecture benefits from asynchronous ESP because consecutive dependent
memory operands at a processor may be processed quickly. Dependence chains local to a pro-
cessor will be traversed at local speeds and broadcast to participating nodes, independent of
on which processor the chains reside. Ideally, each processor handles local dependence chains
simultaneously, moving the entire computation ahead at a faster rate. We call a segment of a

dependence chain local to one processtatathread

In this subsection, we describe the benefits associated with the base DataScalar model (ESP

and datathreading) in detail. We describe how ESP reduces off-chip traffic, and we show how

129
datathreading offers the potential for reductions in memory latency. Later in this chapter, we

present simulation results that quantify each of these benefits.

6.2.1 Asynchronous ESP (traffic reduction)

DataScalar systems enjoy, and extend, the benefits of ESP that MMM obtained. ESP reduces
traffic—thereby increasing effective bandwidth—by eliminating both request traffic and write
traffic from the global interconnect. ESP, asynchronous or otherwise, does not further reduce
the number of read operands that must be communicated off-chip over that of a conventional

architecture.

ESP-based systems eliminate request traffic because ESP usgs0ase-onlyor data-
pushing model. Since all processors run the same program, if one processor issues a load to
an address, all the other processors will eventually issue that same load. The owner is there-
fore assured that when it broadcasts the load, all other processors will consume it. Conversely,
when a processor issues a load to a datum that it does not own, it can buffer the request on-
chip, and the matching data will eventually arrive. Thus, requests need never be sent off-chip.
Similarly, when a store is generated at all nodes, only the owner of that address need complete
the store on-chip. Since every chip is generating the value locally, created store values never
need be sent off-chip. All processors will complete the store if the address is a replicated loca-
tion. If the address is cached at all nodes, the store will complete in the cache, and the eventual
write-back (or write-through) operation will be dropped at nodes that do not own that address.
Note that there are none of the traditional cache consistency issues, since every processor is

running the same program.

In a synchronous implementation of ESP, tags need not be broadcast with data—every pro-
cessor is generating the same instruction stream in the same order, so tags can be inferred
from the order in which the broadcasts are received. DataScalar systems do not enjoy this ben-
efit; the out-of-order issue processors will all issue multiple broadcasts in an unpredictable
order. In addition, more than one processor generally will be attempting to broadcast at any

given time. This lack of predictability means that data must be broadcast along with their

130
addresses and/or some other identifying tags (multiple instances of the same address may

require supplementary tag information, such as a sequence number).

6.2.2 Datathreading (latency reduction)

ESP-based systems reduce memory latency by making all off-chip communications one-
way only. These savings might be large if the remote communication time dominates the
memory request latency, or small if the memory access latency and/or memory system queue-
ing delays dominate the request latency.

ESP-based systems offer the potential for further reductions in memory access latencies,
however. Consider a stream of accesses to memory locations, each address of which is depen-
dent on the value of the previous address (e.g., pointer chasing). When two or more dependent
addresses reside in one processor’s local memory, that processor may fetch those values with-
out incurring any off-chip latencies. Those values may then be sent to the other processors by
pipelining the broadcasts, incurring only one off-chip delay on the critical path. All processors
thus complete the processing of those addresses faster than would a traditional system.

To illustrate this concept, we depict a simple example in Figure 6-3a shows a four-chip
DataScalar system in which each MOP contains a quarter of the program’s physical memory.
Figure 6-3b shows a more traditional organization, in which one MOP holds a quarter of the
program’s memory and traditional DRAM chips hold the other three-quarters. In both sys-
tems, operands;xx,, X3 all reside on one chip, and operanginesides on a different chip.

The address of eack ,; is dependent>on . One processor in the DataScalar system can
access the first three without a single off-chip access, and then pipeline the broadcasts of those
three operands to the other nodes (the broadcasts will be separated by the memory access
time, of course). There will be a serialized off-chip access betwgama X, (analogous to a

lead change in the MMM), and then will be broadcast. The system thus incurs two serial-

ized off-chip delays. The traditional system, conversely, incurs two serialized off-chip
accesses (one request, one response) for each operand, for a total of eight in this example The
traditional system would incur zero off-chip delays if all the operands happened to reside in

the on-chip quarter of the memory, as opposed to a minimum of one for a DataScalar system.

131

M M e
X1X2X3
X1,X2,X3 Xq4 SN NK
\ X1 X2 X3 Xa
KKK \4
M M M M M
X4 X1XoX3 X4

(a) DataScalar system: (b) Traditional system:
Pipelined broadcasts Request/response for each operand
Serialized off-chip accesses: 2 Serialized off-chip accesses: 8

Figure 6-3: Comparing off-chip access serializations

We call a series of accesses to consecutive local dependent operdatighaead If the
operands are not dependent, then a traditional system could simply pipeline multiple non-
blocking accesses, obtaining them in two serialized off-chip crossings. When a dependence
spans two nodes, we view that point as initiating a datathread migration from one node to the
other, beginning the access stream of that thread at the new node. The overhead of migrating
this conceptual thread is one serialized off-chip access. The cost of maintaining inexpensive
datathread migrations is precisely that of maintaining SPSD execution— broadcasting loads

and performing computation redundantly at all nodes.

Another conceptual view of asynchronous ESP execution is that from each processor’s per-
spective, it is the main processor, and the others are simply intelligent prefetch engines resid-
ing in the main memory modules. From this perspective, the broadcasts the processor sends
are merely the state the prefetch engines need to continue performing the accurate prefetching.

Since this is a homogenous system, each processor will have this view of the others, of course.

The Massive Memory Machine was able to exploit only one datathread at any time; when a
lead change occurred, a new datathread began at the new leader (in Figure 6-1, opgrands w
Wy, Ws-W7, and wsg-wg would constitute three datathreads, assuming each operand is depen-
dent on the previous one). DataScalar systems, because they implement asynchronous ESP
with out-of-order issue at each node, may have multiple datathreads running concurrently.

DataScalar systems do not require special support for datathreads, since they transparently

132
exploit the locality already inherent in reference streams. However, programs would benefit

from special support to increase datathread length or raise the number of datathreads execut-

ing concurrently.

6.2.3 Implementation issues

In this subsection, we address three of the implementation issues that must be solved for Data-
Scalar systems to have good performance: caching, speculation, and broadcasts. The discus-
sion in this subsection is in the context of the processor datapath shown later in this chapter, in

Figure 6-6.

6.2.3.1 Cache correspondence

In Section 6.1.1 we described static replication of data, in which heavily used pages are cop-
ied at each processor running as a DataScalar machine. Static replication is limited in that it
cannot use run-time information to reduce off-chip accesses—caches are universally used pre-
cisely because this run-time information is so crucial. Dynamic replication, therefore, is cru-

cial to the competitiveness of DataScalar systems.

Dynamic replication in a DataScalar system is analogous to caching in a uniprocessor; pro-
cessors take a broadcast operand or block of data, and decide to cache the data locally for a
period of time (the difference is that multiple processors are all caching the same data instead
of just one). However, replicating data dynamically is more complicated than simple caching.
The goal of replication is to improve average memory access latency by reducing the number
of broadcasts (which are analogous to cache misses in a uniprocessor). If the owner of a datum
decides not to broadcast it upon a load, assuming it to be replicatedy other node must
still have that operandor deadlock will result. Conversely, if the owner broadcasts the oper-
and and other nodes already have that operand locally, superfluous messages may fill up the
gueues on the remote nodes (depending on the broadcasting/receiving implementation). Cer-

tainly unnecessary broadcasts will waste bandwidth.

One solution for this problem is for all nodes in a DataScalar system to keep exactly the

same set of dynamically replicated data, choosing to stop replicating a datum at the same

133
point in the access stream. Furthermore, these nodes should ideally make the decisions about

what to keep replicated and what to throw out basedogal information only—requiring
continuous remote communication solely to reduce the number of broadcasts would make
DataScalar systems non-competitive.

While many solutions are conceivable, in this dissertation we describe only the solution that
we have implemented. Our solution is to fold the decisions about what to replicate dynami-
cally into the first-level caches—a block is considered to be dynamically replicated so long as
it is in those cache|f a level one cache miss occurs for communicated data, the owner must
broadcast that line to the other nodes. This solution implies that no node may ever miss on a
communicated line if another node hits on that line for the same load. We call thea¢the
correspondence@roblem; data must be kepbrrespondenin the primary caches to prevent
deadlocks

Keeping the caches correspondent is a non-trivial problem. Dynamically scheduled proces-
sors will send loads to the cache in different orders, and will also send different sets of instruc-
tions (when branch conditions take longer to resolve at some processors than others, allowing
more mis-speculated instructions to issue). If two loads to different lines in the same cache set
are issued in a different order at two processors, that set will replace different lines, and the
caches will cease to be correspondent.

Our solution is to update the primary cache state only when a memory operatmmisit-
ted not when it is issued. To maintain correct program semantics, instructions must be com-
mitted in the same order at all processors, even though they may be issued in different orders.
This solution also prevents mis-speculated instructions from affecting the cache contents.
Although the caches are updated at instruction commit, broadcasts on misses are still sent out
when a load is issued (this policy will result in extra required tag bandwidth).

We implement this solution with a structure calledCammit Update Buffe(CUB). We

envision separate CUBs for instructions and data (ICUBs and DCUBS), but in this paper we

1. Itis possible to use lower levels of a multi-level cache hierarchy to perform dynamic replication. We
chose to use only the level-one caches because our particular solution requires a tight coupling of the
cache tags and the load/store queue in the processor.

2. Stefanos Kaxiras was a co-inventor of the cache correspondence scheme we present in this paper.

134
only evaluate a DCUB. When a cache miss returns, rather than loading the data into the cache,

the line is placed into an entry of the DCUB, and a pointer to that entry is placed in the load/
store queue at the entry of the load that generated the miss. Memory operations to the same
line are serviced by the data in the DCUB (loads may still be serviced by stores farther ahead
in the load/store queue). When a memory operation is committed, the cache tags are updated,
and, if necessary, the line is loaded from the DCUB into the cache. A DCUB entry is deallo-
cated when the last entry in the load/store queue that uses that line is committed. In addition to
a pointer to the DCUB entry, each entry in the load/store queue contains state that represents

whether the instruction missed in the correspondent tags at issue time.

This extra state is necessary because updating the cache at commit time only is sufficient to
guarantee cache correspondence, but not to guarantee identical hit/miss behavior at all proces-
sors. Since instructions may issue at different times across processors, the same instruction
will issue at different commit points in the instruction stream across the processors, causing
some to hit and others to miss in their caches. By saving whether a hit or miss occurred at
issue time, we can compare that event with the correct commit-time event, and take corrective
action if there is a disparity. Corrective actions include issuing a late broadcast (if the node is
the owner, and took a false miss), or re-reading the commit-update buffer for the data (if the

node is not the owner, and took a false hit).

We show a simple example in Figure 6-4. Two addresXeand Y, conflict in the cache.
Instructions commit from left to right. The second loadXa(X,) misses when issued, but
would have hit at commit time if the instructions were issued in program order (be¥guse
would have already generated the miss). This is an exampléaddermiss Analogously,Y 5
hits at issue time becau¥g had just been committed, but should have missed at commit time
(e.g., at another processdt, might issue afteX, is committed, causing a miss at issue time
instead of a hit). We call this false hit and deal with it by generating a reparative miss when
this situation is detected at commit time (a reparative miss consists of a reparative broadcast
by the owner, or a squash to the local receive queue by a non-owner of that datum). We deal

with false misses by recognizing that any sequence of accesses to the same line will generate

135

<+— Committed Uncommitted—»f— Load/store queue

Program order: Y1 X1 X5 Y,
Issue order: 1 4 2 3

1. Y, is committed, is loaded into cache
2. X, is issued, and misses in the cache
3. Y5 hits in the cache

4. X, misses, but hits in the MSHR

X and Y are accesses to two lines that conflict in the cache

False miss : X, missed at issue but would have hit if in-order issue
False hit: Y hit at issue but would have missed if in-order issue

Figure 6-4: Cache correspondence example

only one miss X, and X in this example). 1fX; issues afteiX,, we can “assign” the miss
generated by, to X, thus ensuring that all processors will generate only one miss for that

line.

6.2.3.2 Speculative execution

Fine-grain speculative execution is now present in state-of-the-art processors, and a success-
ful DataScalar architecture must be compatible with speculation. Much of the promise we see
in DataScalar comes from out-of-order execution, which enables multiple processors to race
ahead simultaneously on different instruction sequences. However, speculation must be
tightly controlled: if remote bandwidth is one of the important (and heavily utilized)
resources, frequent superfluous broadcasts would hinder performance. The two endpoints for
speculative policies are (1) to hold onto speculative broadcasts until the speculative condition
is resolved, and (2) to send the broadcast immediately upon issue, and eventually then send a
corresponding squash if the load that generated the broadcast is squashed. The former con-
serves bandwidth at the expense of added latency, while the latter consumes bandwidth while
reducing latency (again trading off global bandwidth for reduced remote latency, just as we
explored in Chapter 4). A promising approach is to assign confidence values to speculative
loads; loads with high correctness confidence should be broadcast and squashed if incorrect,
whereas loads with low confidence should be held locally until the speculative condition is

resolved.

136
If broadcasts are sent speculatively, they will remain in the remote receive queues until

explicitly deallocated. One method for clearing them from the remote receive queues is for the
sending processor to send squashes when the misspeculation was resolved. This method, how-
ever, consumes remote bandwidth. A more elegant approach is similar in spirit to our cache
correspondence protocol. In the alternative approach, we use local information only to clear
receive queues of stale broadcasts that will not be consumed. With each broadcast, we send a
tag that is also buffered in the receive queue. The tag consists of a counter that is incremented
every time the RUU cycles around (as it is a circular queue). Whenever the highest numerical
slot in the RUU is committedi.g., the RUU cycles around), the counter is incremented and
sent to the receive queue. Any receive queue entry whose tag is less than the counter is deallo-
cated (the deallocations can be done in parallel). The counter thus becomes part of the process
state and the precise interrupt mechanism, since all of the counters and RUU positions must be
made correspondent once a DataScalar task is being restarted after having taken a precise

interrupt.

6.2.3.3 Inter-chip communication

Because of the symmetric nature of the DataScalar execution model, all communicated values
must be broadcast to all nodes. In general, broadcast operations are both expensive and not
scalable. On certain interconnects—such as on a ring or bus—they may be effected with only
minor additional cost, though reliable delivery and error recovery are inevitably more compli-

cated for broadcast operations.

Broadcasts on a bus are free, since every bus transaction is an implicit broadcast. However,
the very feature that makes broadcasts cheap—the centralized nature of a bus—makes the bus
an unlikely candidate for the high-performance interconnect of the future. However, the
demise of the bus has been much slower than predicted, and buses may persist for some time

to come.
Ring operations, such as the IEEE/ANSI standard Scalable Coherent Interface [66, 111]

seem well-suited for this kind of operation. On a ring, operations are observed by all nodes if

the sender is responsible for removing its own message. We envision a ring interconnect

137
because of the high-performance capability [101], but broadcast on a ring is complicated by

the fact that operands originating at different processors are received at other nodes in differ-
ent orders. A simple tag can sort out data to different addresses, but the issue is complicated
when two accesses to the same datum are broadcast close in time. Complications also arise
whenever certain data items must be rebroadcast (e.g., because a receive queue is full), or can-
celled.

One technology that may be an excellent match for DataScalar programs running on large
systems is optical interconnects. One of the properties of free-space optical interconnects is
that they have extremely cheap (essentially free) broadcasts. For massively parallel systems
that use optical interconnects, the SPSD execution model may be a good way to reduce the

execution time spent in serialized code, thus improving scalability [10].

6.2.4 Other pertinent issues

In this subsection, we discuss the issues of cost and required software support for a DataScalar
system.

Cost Conventional systems today typically consist of a single processor and a collection of
memory chips. Each of these components comprise a significant fraction of the total cost of
the system. A DataScalar system would consist of a collection of identical chips, each of
which costs more than a conventional DRAM chip, but less than a processor chip. When com-
paring the cost of a DataScalar system and a traditional system with one processor and “dumb
memory” (such as the comparison in Figure 6-5), the DataScalar system becomes cost-effec-
tive when the performance it adds outstrips the cost of the additional processors.

Wood and Hill showed [131] that for a parallel system to be cost-effectivecabtip(the
relative increase in total cost as more processors are added) should be less Speethgp
(the relative increase in performance as more processors are added). When memory or inter-
connect costs dominate those of the additional processors, the system may still be cost-effec-
tive even if the speedups are comparatively small.

A majority of the die of most modern processors is devoted to memory, even though the

total cache capacity for each is generally only in the tens of kilobytes. We believe that the ratio

138
of on-chip memory area to total chip area will continue to grow in the future, making the rela-

tive expense of the processing logic shrink over time. If true, this trend will make memory and
packaging the dominant costs of future systems. DataScalar architectures could thus be cost-

effective, even though the speedups they provide are much less than linear.

Software support To the extent that an executing program is non-deterministic, operating
system code can be executed in the same manner as user code. Synchronous exceptions, such
as for an unaligned address, would be observed at slightly different times at different proces-
sors, but would cause no special problems. Consider the case in which a write causes a page
fault. Since only one processor actually performs a write to communicated data—the other
processors all simply discard their result—only the owning processor would observe the page
fault. If the other processors did not recognize the page fault, they might proceed beyond the
fault point indefinitely. This problem can be avoided by making sure that all processors have
the same page table entries, and actually check for exceptions on every memory operation.
(The check could be accomplished by requiring that the store be successfully written into the
primary, correspondent cache before being committed.) Thus each processor would observe
this page fault. However, asynchronous events could potentially cause difficulty if they are not
observed at precisely the same point by all processors. External interrupts, likewise, must be
injected into the system with care to assure that all processors observe them at the same point

in their execution.

6.3 Evaluating DataScalar architectures

In this section we evaluate the feasibility of DataScalar architectures, in terms of their poten-
tial to outperform conventional alternatives. We first quantify (through functional simulation)
the amount of traffic that they reduce, which is substantial. Next, we measure the number of
consecutive memory operands that fall on a single node, on average, to see how often lead
changes occur. Finally, we present the timing results of a full implementation, running with

two and four processors.

139
6.3.1 Traffic reduction

We measured the extent to which the ESP execution model reduces remote communication.
With our simulation environment, we simulated a 64-Kbyte, two-way set-associative, write-
allocate, write-back, on-chip level-one data cache (this size is consistent with typical cache
sizes at the time that SPEC95 was released). We measured the aggregate miss traffic from the
cache, and calculated the fraction of traffic that remained once write-backs and requests were
eliminated. In Table 6-1, we show this measured fraction for fourteen of the SPEC95 bench-
marks. We show both total traffic eliminated, and the reduction in the total number of distinct
messages (we count a request/response pair as two transactions). The table shows that, for this
cache size, ESP eliminates rouglyl5 @50 of the off-chip traffic in bytes, and from
0.52 to 0.75 of the individual transactions (because no requests are sent, the transaction

reduction will always be at lea6t50).

These results indicate that—for systems in which memory bandwidth is at a premium—
implementing ESP is likely to improve performance, or reduce the required system cost to
achieve the same performance. These results focus solely on bus traffic reduction—they do
not address the performance penalties associated with necessitating broadcasts on intercon-

nects other than buses.

6.3.2 Datathread lengths

In Table 6-2 we show experimental results that measure the mean number of loads falling con-
secutively on a single node. This is an approximation of datathread length, since we do not
account for dependences. All results presented here assumed a four-processor system. These
simulations also used the SimpleScalar tools and assumed a cache configuration identical to
that presented in Section 6.2.1. For each benchmark, we replicated 32 4-Kbyte pages on each
node. We selected the pages to replicate using static profiling. For each benchmark, we saved
the number of accesses to each page, sorted the pages by number of accesses, and chose the 32
most heavily accessed pages. We distributed the communicated pages among the nodes round-

robin, in blocks with sizes ranging from 4 to 32 pages. The sizes of the distributed blocks of

140

Metric m88ksm gce compress li perl vortex
Traffic 14 19 .54 .39 .32 21
Transactions .52 .55 74 .66 .62 .56
Metric tomcatv swim hydro2d mgrid applu turb3d fpppp waveb
Traffic .16 .39 .33 31 .38 .40 A7 .46
Transactions .52 .66 .62 .61 .65 .66 .53 .70

Table 6-1: Fractions of off-chip data traffic reduced by ESP

data are shown for each benchmark in the first column of Table 6-2. For each benchmark, we
tried to maximize the distribution block size (to improve datathread length) while still keeping

it smaller than 1/4 of both the text and the largest data (globals, heap, stack) segment. This
action prevented either segment from being completely contained at one processor, a situation
which would make the datathread length equal to the number of references.)

The next four columns in Table 6-2 show the distribution of replicated pages among the four
segments. Columns seven through nine show the mean (arithmetic) datathread lengths using
three different definitions of datathreads. All three methods count consecutive references on a
node, beginning the count upon the first reference to a communicated datum local to some
node, ending (and restarting) the count upon the next reference to communicated data local to
a different node. Column seven approximates datathread lengths using all references to mem-
ory (e.g., all cache misses). The second and third columns compute datathread length using
only instruction and data references to memory, respectively.

The right-most column shows the average number of contiguous accesses to replicated
pages in main memory. High numbers of references to replicated pages will extend average
datathread lengths. If references to replicated data are frequent, the threads will tend to be
long.

The average datathread lengths in Table 6-2 are high for instructions—over 20 in every case.
These large numbers are partially due to the replication of a high percentage of the text pages,
which is significant for most programs (li, tomcatv, m88ksim, turb3d, and fpppp have average
code datathreads in the hundreds or thousands, and each has from 1/3 to 1/2 of the code repli-
cated across all processors). However the high spatial locality generally found in code refer-

ence streams also serves to increase the datathread length.

141

Dist. Replicated pages (128Kb) Datathread length approximation
Benchmark .
size (Kb) || text | global |heap |stack |fotal text data repl.
tomcatv 32 22 6 2 2 42.3 | 31486.7 6.7 21.7
swim 32 7 24 0 1 2.1 60.2 2.1 1.0
hydro2d 32 25 5 0 2 1.7 176.9 1.6 1.1
mgrid 32 4 27 0 1 15 314 15 1.0
applu 32 23 8 0 1 2.6 43.3 2.6 1.0
m88ksim 64 16 10 5 1 || 157.3 859.2 69.1 16.2
turb3d 64 19 12 0 1 1.7 1541.6 1.6 11
gcc 256 25 1 0 6 7.4 23.9 4.5 1.2
compress 16 6 25 0 1 103.5 41.7 134.7 1.3
li 16 17 2 12 1 || 841.2 777.2 | 2027.1 | 208.4
perl 128 26 2 3 1 7.6 34.5 4.1 2.1
fpppp 64 27 4 0 1 || 165.6 755.9 33.7 3.7
waveb 64 17 14 0 1 6.4 171.6 5.9 1.7
vortex 128 27 2 1 2 5.5 21.0 2.9 1.9

Table 6-2: Approximate datathread measurements for a four-processor system

Each row shows the experimental parameters for each benchmark, followed by the results. The first
column contains the granularity at which communicated data are distributed round-robin across the
processors. The second through fifth columns show the number of pages (4KB each) from each seg-
ment that were replicated for each benchmark. The right-most four columns show the arithmetic mean
of our datathread length approximations for all reads, all reads to code and data separately, and reads
to replicated memory, respectively.

Data reference thread lengths that we see tend to be shorter than the instruction thread
lengths. They are low (less than 3) for some of the floating point codes (swim, applu, turb3d,
mgrid, and hydro2d). Although floating-point codes tend to have high spatial locality, our
approximation of datathreads is cut by interleaved accesses to arrays residing at different pro-
cessors €.9, c[i] = a[i] +Db[i]). Also, some of the spatial locality is filtered out by the
cache. The three other floating-point codes have higher average datathread lengths, however,
ranging from about 6 to 33. The integer codes tend to have higher datathread lengths than do
the floating-point codes. The datathread length for li is high because most of its data set is rep-
licated. The others show average datathread lengths from about three to over 130.

These results show that many programs will be able to exploit datathreading. Ideally, each
processor in a DataScalar system will run ahead of the others, finding multiple needed oper-
ands and instructions locally, and sending them to the other processors early—sometimes

even before the other processors have resolved those addresses.

142
6.3.3 Performance evaluation

We evaluated a DataScalar system consisting of multiple integrated processor/memory
(IRAM) modules connected via a global bus. In Figure 6-5 we show the DataScalar and con-
ventional system organizations that we compare (for a four-node processor system). A tradi-
tional system (Figure 6-5a) being compared against a four-processor DataScalar machine
(Figure 6-5b) would thus have one-fourth of its main memory on-chip and three-fourths off-
chip. We hold the bus, packaging (number of chips), and physical memory storage constant.
The DataScalar system contains extra processors and level-one caches, so the total chip area
in the DataScalar system is higher (but how much higher depends on the fraction of each chip
consumed by the processor and L1 data cache).

In Figure 6-6 we show a diagram of the high-level datapaths present in our simulated Data-
Scalar implementation. We assume split primary instruction and data caches. We replicate the
program text at each node, obviating the need for dynamically replicated instructions (and
therefore a speculative correspondence protocol). We do support dynamic replication of data,
so a DCUB, not the accesses themselves, updates the data cache tags and storage. We assume
a fast on-chip main memory, which is insufficiently large to hold an entire program data set,
but which is fast enough to eliminate the need for a level-two cache.

We use a simple queue to buffer broadcasts being placed on the global bus. The process of
receiving broadcasts is more involved. We call the broadcast-receiving structures (previously

called receive queues) that we simul8®adcast Status Holding Registers BSHRs. We

143

|:| Statically replicated data network in BSHRs) _ D-cache
- Dynamically replicated data CPU logic
network out E
|:| Communicated data ¢
Broadcasts
¥ |-cachey
BSHR = Broadcast status holding register Intlgrf%ce DCUB
DCUB = Data commit update buffer g
Memory bus | | |
Main
memory
(DRAM)

Figure 6-6: Simulated DataScalar chip datapath

implement the BSHRs as a circular queue. When a broadcast arrives from the network, the

CPUIIEN
DRAM
(L4 M) = Globhalbus=—"—=
=— Globalbus ==—= CPUJEEMJCPUIEEERCPUIEENCP UL
DRAM DRAM DRAM DRAM DRAM DRAM DRAM
(1/4 M) (/4 M) (/4 M) (174 M) (1/4 ™) (174 M) (1/4 ™)
(a) More traditional architecture (b) DataScalar architecture (4 nodes)

Figure 6-5: Comparing two IRAM organizations

BSHR performs an associative search on that address. If a match occurs, the earliest entry
matching that address in the queue is freed and the data are forwarded to the processor. If no
match occurs, the BSHR allocates the next entry in the queue and buffers the data. In this case,
when the processor issues the request for the data, it finds them waiting in the BSHR, and

effectively sees an on-chip hit.

Level-one cache misses become broadcasts if the missing cache line is in communicated
memory, and the processor is the owner of that cache line. The miss allocates a BSHR entry if,
at a given processor, the miss is to a line that is both communicated and unowned by that pro-
cessor. In Figure 6-6 we show a datapath from the processor to the BSHR queue; this path is

used to squash BSHR entries allocated due to false misses.

144
To obtain performance results for DataScalar systems, we extended the SimpleScalar out-of-

order processor simulator with multiple target contexts. The simulator switches contexts after
executing each cycle (i.e., it simulates cyale for all contexts before simulating nycle

for any context). Unlike the other simulations in this dissertation, we assumed a single-level
page table that was locked in physical memory, as opposed to residing in virtual space. Each
page table entry has one bit that determines ownership of a communicated page (only one pro-
cessor will have the ownership bit set for a communicated page; the bit for that page is cleared
in the page table entries of all other processors). Address translation thus also produces the
ownership status of a page, to more quickly determine the action that must be taken upon a
primary cache miss.

For all our experiments, we simulated a processor similar to our timing experiments in
Section 5.2 (8-way issue, dynamically scheduled, etc.). The two significant differences are
that we assumed a 1GHz processor, instead of the 2GHz used in the previous chapter, and that
we assumed perfect branch prediction. Modern branch predictors are already quite accurate,
however, and we have no way of knowing what prediction techniques will be prevalent in
future processors, or the extent to which these processors will engage in aggressive specula-
tion. This assumption simplified our handling of the BSHRs. Assuming perfect branch predic-
tion will also increase the measured IPC, due to the absence of branch misprediction penalties
(the IPC of future processors is likely to be even higher as they engage in speculation that is
much more aggressive than branch prediction [114]).

On-chip memories are likely to be significantly faster than DRAMs are today. Using sub-
banking, with hierarchical word- and bit-lines, will enable DRAM banks to have access laten-
cies that are comparable with those of cache memories. Current high-density (1 Gb) DRAM
prototypes, the processes of which are optimized for density and not speed, have access laten-
cies in the low 30’s of nanoseconds [62, 135]. On-chip DRAM banks implemented in hybrid
memory/logic processes are likely to be significantly faster.

For our simulations, we assume a memory hierarchy on-chip that is just two levels. The first
level is split instruction and data caches, 64KB each with single-cycle access. The caches are

direct-mapped (for speed) and the data cache implements a write-back, write-noallocate pol-

145
icy. We believe that this write policy is superior to write-allocate in an ESP-based system

(with a write-allocate protocol, a write miss requires sending an inter-processor message, only
to overwrite the received data). Both caches are fully non-blocking and can support an arbi-
trarily high number of outstanding requests. The second level of the hierarchy is composed of
high-capacity, on-chip memory banks that can be accessed in 8 ns. They are connected with a
256 bit bus that is clocked at the processor frequency. We assume that our off-chip bus is 128
bits wide and is clocked at 200 MHz (commodity parts that expect to do most of their comput-
ing and memory accesses on-chip are not likely to have support for extremely aggressive off-
chip connections). We assume BSHRs with 3-ns access latencies and 128 entries. We assume
a broadcast queue for the DataScalar simulations, which incurs a two-cycle access penalty
before broadcasting data onto the global interconnect (the baseline architecture, similarly,
buffers off-chip requests at a network interface that functions as a connection between the
local and global buses, also incurring a two-cycle penalty).

As with the previous experiments, the benchmarks that we used were drawn from the
SPEC95 suite [117]. This study was performed before we had defined the std input set, so we
used theestinput set in all cases. For some of the inputs, we reduced the number of iterations
for some of the benchmarks, as in thtel set, after performing an analysis to ensure that the
reduced number of iterations did not perturb our results).

We simulated six of the SPEC95 benchmarks: go, mgrid, applu, compress, turb3d, and
waveb. We ran each benchmark for 200 million instructions or to completion, whichever came
first. We did not statically replicate any data pages; all pages were distributed round-robin
across all nodes. We ran simulations for both two-processor and four-processor DataScalar
systems. Each processor has sufficient capacity to hold one-half and one-fourth of the data set,
respectively, for each benchmark.

We compared the Datascalar performance against two points: an identical processor with a
perfect data cache (single-cycle access to any operand), and a more traditional system which
has the same amount of on-chip memory as does one chip in each DataScalar experiment (as
described earlier in this chapter). We thus compare a two-processor DataScalar execution

against a system which has the same processor, half the memory on-chip, and half off-chip (to

146
make a fair comparison, the buses are the same, and both systems update the primary data

caches at instruction commit, not issue).

The traditional system is likely to benefit if all of the on-chip memory is devoted to a large
second- or third-level cache. Such an organization may well outperform a DataScalar organi-
zation. A DataScalar system would thus be a better match for systems where multiple proces-
sors were available and coupled with regions of memory to begin with; i.e. the designer could
use one processor as the sole processor and its local memory as a cache, treating the rest of the
processor/memory regions as “dumb memory”, or the designer could make use of those pro-
cessors and run in DataScalar mode. Future partitioned processors (with copious computa-
tional capabilities spread across single chips) may be a better match for this execution model.

In Figure 6-7 we plot the instructions per cycle for each experiment. In the upper graph, we
show the performance comparison of a two-node DataScalar system, and in the lower graph,
we show a four-node DataScalar system. The actual IPC value resides atop each bar. We see
that the performance benefits that the DataScalar system has to offer can be substantial, partic-
ularly for four nodes. The results are particularly striking for compress, in which the Data-
Scalar system gains almost a doubling of IPC over the traditional architecture. That particular
performance gain is so larger because compress, running with the test input, issues many more
stores than loads (a ratio of 7:1). The writes and write-back traffic never needs to go off-chip
in a DataScalar system. For all other benchmarks, the DataScalar system manages to capture
much of the available ILP, approaching the IPC of the perfect data cache in some cases (spe-
cifically, wave5 and go).

The DataScalar system deals with a finer-grain distribution of memory better than does the
traditional system; the drops in DataScalar performance when going from two-processor to
four-processor systems are less than 0.05 IPC (the comparable drops in performance on the
traditional system range from 0.1 to 0.6 IPC). The IPCWare actually improves when run-
ning on four processors instead of two (the benefits of more processors running datathreads
concurrently outweigh the additional off-chip communication). In only two cases (mgrid and
turb3d with two nodes) does the DataScalar system perform worse than the traditional system.

This abnormality results from poor correspondence protocol performance (a high rate of false

147

5.0 4.9

4.0 3.9 3.9 4.0
[} 3.7 3.6
- 35 =
g\ 3.3
S 3 O— 3.0 3.1 3.0
9 28 27 Traditional
» 25 2.5
.S DataScalar
5 2.0 2.0
2 L7 B Perfect data
2

1.0

0.0 I I I I I I

Applu Compress Go Mgrid Turb3d Waveb5
2 processors

5.0+ 49

4.0 3.9 4.0
% 3.6 3.6 3.6
> 3.3 23 3.2
= 3.04 3.0 3.0
8 26 28 Traditional
[}] 2.4 25
IS 23 DataScalar
B 2.0
2 15 16 B rerfect data
2

1.0

0.0 I I I I I I

Applu Compress Go Mgrid Turb3d Wave5

4 processors

Figure 6-7: Timing simulation results of a DataScalar architecture

hits at one node causes the other node to stall frequently, waiting for the owner to commit the

offending load and issue a reparative broadcast).

We present the results of a sensitivity analysis in Figure 6-8. The two benchmarks presented
are go and compress, each of which was run to completion. For each benchmark, we plot
results assuming the same parameters that we used for the experiments in Figure 6-7, except
that we vary only one parameter in each graph. The parameters we varied were: data cache
size, main memory access time, global bus clock speed, width of the global bus, and number

of RUU entries. On each graph, we plot the IPC for the same five systems as we measured in

148

Compress
4
3 3
O
o 2 2
1 1
ol 163264128 512 8 16 32 64 o] 163264128 512 | 8 16 32 64 128256
Cache size (KB) Mem. access time (ns) Cache size (KB) Mem. access time (ns)

IPC

ZI3 ll6 3.2 6.4
Bus width (bytes)

2.4.6.8 10
Bus clock (proc. cycles)

4
—a——a— Perfect data cache 3
—a———a— DataScalar (2 nodes) 2
: —v—— DataScalar (4 nodes) 1
0l 8 32 128 512 —o———o— Traditional (1/2 on-chip) 0l 8 32 128 512
RUU entries —o————o— Traditional (1/4 on-chip) RUU entries

Figure 6-8: Sensitivity analysis of DataScalar experiments

Figure 6-7 (perfect data cache, two- and four-processor DataScalar machines, and traditional
systems assuming one-half and one-fourth of the main memory on-chip).

We see that the DataScalar runs consistently outperform the traditional runs over a wide
range of parameters. As expected, the performance of the two types of systems converges
when memory bank access times come to dominate the latency of a memory request (because
DataScalar systems reduce the overhead of transmitting the data, not accessing them). Con-
versely, when the speed differential between the global and on-chip buses grows, so does the
disparity between DataScalar and traditional performance.

In Table 6-3 we list BSHR and broadcast queue statistics from the performance simulations.
The parameters are the same as for the experiments reported in Figure 6-7. The numbers are
the arithmetic mean across all nodes. The percentages are out of the total number of broad-
casts (column one) and out of total BSHR accesses (columns two and three) In columns two

and three, we list the percentage of broadcasts that were issued late, at commit time, due to

149
false hits. These percentages will drop for larger caches, since the probability that a block will
be replaced in between issue time and commit time is inversely proportional to cache size.

The middle column lists the percentage of BSHR entries that were squashed due to false
hits. We note that mgrid and turb3d show the two highest percentages of late broadcasts by far,
which confirms our hypothesis that poor behavior of the cache correspondence protocol was

responsible for the slight two-node performance drops for these two benchmarks (shown in

Figure 6-7).
Benchmark Late BSHR Data found
broadcasts squashes in BSHR
(# of nodes): Z Z 7 Z 7 Z
applu 10% 9% 12% 12% 10% 7%
compress 11% 8% 16% 22% 8% 4%
go 9% 10% 12% 15% 19% 7%
mgrid 23% 21% 31% 31% 6% 4%
turb3d 38% 37% 59% 59% 3% 1%
waveb 9% 7% 11% 3% 3% 1%

Table 6-3: DataScalar broadcast statistics

The right-most column lists the percentage of remote accesses that were waiting in the
BSHR for the local processor’s request. Those values range from 2% to 9%, showing that at
least some of the time, some effective datathreading is occurring, since a processor needs to be
running significantly ahead of another to completely tolerate the transmission latency.

We have shown that memory-centric architectures, and DataScalar systems in particular, are
feasible alternative system organizations. Cost issues aside, they generally outperform con-
ventional alternatives. As communication grows in cost relative to computation, this class of
architectures will become progressively more cost-effective. Whether the relative component
costs shift enough to make DataScalar architectures clearly cost-competitive is an open ques-

tion, and only time will tell.

150

Chapter 7

Conclusions

The processor/memory interface is a concept that is fundamental to computing. It must be
balanced for best cost/performance, and is continually in need of readjustment with each new
improvement in microprocessors, memory systems, and manufacturing technology. In this
dissertation, we have shown that the memory system is limiting processor improvements. Pro-
viding a sufficiently high performance memory system is simple given unlimited cost,
whereas improving processor performance, even given unlimited cost, is more difficult intel-
lectually. As the relative costs of the memory system increase and those of processors decline,
the problem of providing a good enough memory system—given cost constraints—becomes

the paramount emerging challenge.

7.1 Summary

In this dissertation, we focused on the interface between the processing core and the mem-
ory system. Specifically, we examined how the volume of traffic moving across the PMI
affects performance, and then proposed techniques and solutions to mitigate the adverse per-
formance impact of that processor/memory traffic.

We first made a case, by analyzing technology and architectural trends, that memory band-
width will be one of the dominant limits—and perhaps the paramount limit—of scaling
microprocessor performance. We then proposed a performance breakdown that dissected exe-
cution time into three components: the time spent doing useful processing, the time spent
stalling for bank access and transmission memory latency, and the time spent stalling for
gueueing delays and contention in the memory system. We showed that as microprocessors

become more aggressive, with faster clocks and higher levels of ILP, the balance in our

151
decomposition shifts. The fraction of time that processors spend stalling for memory grows

significantly, accounting for over half of execution time in aggressive processors (memory
stall time grew from an average of 27% to 48% for our least and most aggressive simulated
processors, respectively). Furthermore, the balance of latency versus bandwidth stall time
shifts for more aggressive processors; the higher-performance processors become much more
bandwidth-bound. The bandwidth component of memory stall time grew from 54% to 63%
from our least to most aggressive processor, resulting in over 30% of execution time being
spent stalling because of memory contention.

Given these results, we proposed a construct calledntimemal-traffic cachgMTC), to
evaluate the potential for reducing unnecessary traffic by placing a lower bound on how much
is actually needed. We proposed a related metric calédtic efficiencywhich compared the
traffic ratios of a traditional cache with those of a minimal-traffic cache. Our experimentally
measured traffic efficiency results showed the MTC reduced traffic by sometimes large con-
stant factors, with reductions ranging from factors of 2 to factors of 100. We broke this traffic
reduction into the component factors of the MTC (fetch size, associativity, replacement policy,
and write policy). Our results showed that each of the components can reduce traffic by large
constant factors, but the degree to which they do are highly benchmark dependent; there is no
“magic bullet” factor that can uniformly reduce traffic (although, naturally, read fetches are
more important than the other three factors).

We then proposed a number of policies, targeted at large L2 caches, that attempt to trade off
misses and traffic in such a way as to maximize performance. The dual-size fetch policy
switched between fetching blocks and subblocks in a subblocked cache, depending on
whether spatial locality was high (fetching whole blocks to reduce misses) or low (fetching
subblocks to reduce traffic). We evaluated another policy, which we called subblock prefetch-
ing, which saved the subblocks used while a block was in the cache, and reloaded only those
subblocks upon the next tag miss to that block. We then combined the two into a single policy.
Finally, we extended those polices willus prioritization in which non-critical subblocks
predicted by those policies were fetched only when the Rambus channel was idle, reducing

contention delays for subblocks that were actually requested. Our results were mixed; the sub-

152
block prefetching policy did not reduce misses nearly as much as did the dual-size fetching,

and the unified policy beat the two individually only in a few cases. Worse, the performance
penalty of using a subblocked cache—necessary to implement our policies cleanly in a tradi-
tionally managed cache—was sufficiently high that the policies recouped the lost performance

in only a few cases.

The next area that we explored was the organization and management of large on-chip mem-
ories. We discussed how the use of some mechanisms from virtual memory management (as
opposed to traditional cache management) may be a good match for the on-chip memories in
the near- and medium-term future. We proposed three classes of hydrjdscal hybridsin
which the processor chip contains some physical memory and some cache, physically sepa-
rate;logical hybrids in which a combination of cache and virtual memory mechanisms are
used to manage a single structure uniformly; andied hybridsin which blocks of data in a
single structure are either treated as cached data or virtual memory pages, depending on the
management policies. We evaluated the former two, and merely described the third class of
hybrids.

To explore the space of logical hybrids, we described a taxonomy that specified the major
differences between cache and virtual memory mechanisms, and used this taxonomy to sift
through a number of possible hybrids. We discarded most, but chose to evaluate one that
looked promising: théndirect cache (extended)he ICE used software address translation to
access cache lines in a large L2 cache, and used a tag cache to speed the translation process.
The performance results for the ICE were good in some cases, but, like the traffic policies, did
not show consistent improvement over an aggressive baseline. When we evaluated the ICE
with subblocked tags, and coupled that implementation with the unified traffic policies, how-
ever, we found that the two sets of techniques worked synergistically. Together, the two per-
formed both uniformly and substantially better than the aggressive baseline (8% - 30%), and
even outperforming (on average, by 1.6%) the baseline with per-benchmark optimal block
sizes chosen. This synergy occurred because the ICE removed the main implementation draw-

back to the traffic policies: caching data at a coarse (block) granularity.

153
We presented a brief analysis of a physical hybrid, showing global miss rates for several

organizations that had all on-chip memory managed as physical memory, all on-chip memory
managed as a large L2 cache, and various points in between. For on-chip capacities that are a
significant fraction (1/32 to 1/2) of the applications’ data set sizes, we showed that having a
large physical memory structure on-chip, with a smaller L2 cache for off-chip data, can be
competitive with an all-cache scheme, and furthermore shows reduced miss rates in a few
cases. The caveat is that we used application (and data set) specific profiling to choose the
pages mapped on the processor chip in the physical memory banks (based on total frequency

of accesses), and less intelligent static mappings are likely to incur significantly more misses.

With the traffic optimizing policies and the ICE, we have proposed implementable improve-
ments that address fetch size and associativity, two of the four factors by which traditional
caches and MTCs differ. We proposed two techniques (selective write validate and correlated

replacement) that address the other two factors, but did not evaluate them in this dissertation.

The last major study we presented in this dissertation was the DataScalar architecture,
which, among other benefits, eliminated write and request traffic from the global interconnect.
We showed that it is possible to implement a working DataScalar system that achieves perfor-
mance that is consistently higher than a competitive baseline. We proposed solutions for deal-
ing with caching and speculation in an asynchronous implementation of the ESP execution
model, and implemented them in our simulator. Our experiments with four processors showed

speedups from 9% to 100% on unmodified serial binaries.

7.2 Looking back

In this final section, | discuss our results from the perspective at the end of the Ph.D. process,
and describe what | consider to be the impact of this work, the impact thus far, and which por-

tions of the work are likely to have the most impact in the future.
The memory bandwidth portion of my dissertation research, which appeared in ISCA96, is
probably the most cited so far, and thus ostensibly has been the most influential. The initial

publication that described some of our ideas and philosophical framework (with the cumber-

154
some title “The Declining Effectiveness of Dynamic Caching for General-Purpose Micropro-

cessors” [12]) was widely disseminated and read (particularly by industry, if anecdotal
evidence can be believed). The report, while it contained some potentially good (if hazy)
ideas, was fairly naive. | saw the low efficiency measurements, and concluded that the hard-
ware caching paradigm was wasteful and that explicit cache management by the compiler
could make much better use of the resources, and thus be more cost-effective. That viewpoint
was certainly supported by Shen’s results [64], which showed that if you discarded the cach-
ing paradigm, and just focused on optimally managed values, you could obtain orders of mag-
nitude more effective bandwidth. After months of trying, | was unable to come up with
anything implementable that could outperform caches. Our report failed to recognize that
once you have the software break the dynamic caching paradigm, you must work extremely
hard just to break even. Recent and ongoing work at Wisconsin [90] (and elsewhere [126]) has
had elements of this philosophy (separating values from the name space to bypass all of the
baggage of virtual memory and the memory hierarchy), but they used data dependence predic-

tion rather than compiler analysis.

The follow-on paper to our technical report, the ISCA memory bandwidth paper [13], had
two main contributions. The first was the case that pin bandwidth was going to be the prime
bottleneck in future systems. The second was to place and analyze lower bounds on cache
traffic. | used experimental evidence to show that limited bandwidth, particularly pin band-
width, was growing as a contributor to performance loss. However, my simulations assumed
large, fast off-chip L2 caches, which essentially forced the memory bottleneck to the pin inter-
face (main memory latencies were thus rarely incurred because of the large caches and small
benchmarks, plus the bus width to the L2 was necessarily constrained, which is not the case
for more modern L2 caches that are on-chip). That is why both my results and the IRAM
group’s earlier results [42] showed such little gain from having full processor/memory inte-
gration; the truth is that once you have a large on-chip L2, the off-chip bandwidth is not nearly
as much of a problem. | honestly believe that we are currently in an “inflection point”—eventu-
ally, designers will be able to place as much computational power on the chip as they have

available off-chip bandwidth (which the on-chip storage will enhance). Right now, we are

155
starting to see large on-chip storage, but not yet effectively unlimited processing power (mod-

ern processors still consume too large a percentage of the die, but their footprints on the die
are shrinking quickly). In the short term, the only places that processor/memory integration
could be realized are in other markets, which need systems with fewer chips for cost reasons
(price/performance as opposed to performance). The IRAM group seems to be moving in such
a direction, toward low-power, embedded processors that are designed for PDAs and the like.

My work in improving the performance of large L2 caches, with both the traffic optimizing
policies and alternative management organizations, was initially disappointing. Caches (par-
ticularly large L2 caches) work well, particularly when you feed them small benchmarks like
most of SPEC95. We (Steve Reinhardt and 1) didn’t see large or consistent gains from either
the traffic policies or the ICE, until we put them all together, and saw (as our intuition had pre-
dicted) that they worked synergistically. We have some evidence that these techniques show
even larger performance gains (using some traces obtained from Intel) than they did for SPEC,
which is encouraging. The traces were instruction traces that contained between 19 and 149
million instructions, and ranged from 0.2 to 2.7 million distinct references. The two main
drawbacks of this work are the complexity of implementing all of these techniques together
(that requirement makes it much less likely that industry will give some of these ideas a try)
and the persistent, per-tag state store. We need to explore the performance impact of having
state for a finite number of physical tags, before industrial architects are likely to buy the
results. Another question is whether some of these ideas should be applied to current caches
without implementing everything together; if designers were going to build a subblocked
cache for other reasons, then some of the traffic optimizing policies might make sense to
include. Finding a way to get around the granularity issue in a hardware-managed cache (such
as decoupled sectoring) could also permit the traffic policies to work well without requiring
the ICE. Finally, something like the ICE could have impact if industrial designers have other
needs for flexibility (partitioning the L2 for multiprogramming or multithreading, for exam-
ple). Whether this work will have any industrial impact is too early to tell, but possible.

The DataScalar work was the part of my thesis that | think will have the most long-term

impact. Near-term, it seems to have been largely ignored (although the ideas have been widely

156
disseminated within a major microprocessor vendor). Although the performance results we

reported in our ISCA paper were essentially meaningless (by the time the technology is a
good match for a DataScalar-like system, the processors, workloads, and latencies everywhere
will bear no resemblance to those we used), we did show that an asynchronous implementa-
tion of the ESP execution model could outperform a conventional alternative. For such an exe-
cution model to become cost-effective, the underlying system must have the correct sets of
parameters and costs (distributed memory, cheap processors, high-latency communication).
We evaluated the architecture in a MOP context, but given our performance results in
Section 5.4, it seems unlikely that high-performance processors will be fully integrated with
memory anytime soon (and designers would likely be unwilling to put in all of the necessary
hardware and software support to run asynchronous ESP in low-end, low-cost embedded sys-
tems). The technology that may be a better match is the implementation of large, high-perfor-
mance chips, which have multiple powerful, distributed computational units on-chip, but long
delays to transmit global signals. Running in the base DataScalar mode all the time may be
overkill, but having an asynchronous ESP mode, running part of the time (or running select
subsets of the computation as a virtual DataScalar system) may be advantageous. My research
plans for the next few years include trying to develop a system that uses these ideas to outper-
form all the alternatives both in terms of performance and cost/performance, in addition to
showing that it is implementable.

While other parts of this dissertation may have had some short-term impact (the memory
bandwidth work), and other parts have potential for some medium-term impact (the ICE), the
DataScalar work is the only part of this research, in my opinion, which has any potential for

fundamental, long-term impact on how computation and storage resources are organized.

157

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Anant Agarwal. Performance Tradeoffs in Multithreaded ProcesHBEE Transactions
on Parallel and Distributed Systen®5):525-539, September 1992.

Thomas Alexander and Gershon Kedem. Distributed Prefetch-buffer/Cache Design for
High Performance Memory Systems.Rroceedings of the Second International Sympo-
sium on High-Performance Computer Architectyrages 254263, February 1996.

A. Asthana, H. V. Jagadish, J. A. Chandross, D. Lin, and S. C. Knauer. An Intelligent
Memory SystemComputer Architecture New$6(4):12—-20, September 1988.

David Bailey, John Barton, Thomas Lasinski, and Horst Simon. The NAS Parallel
Benchmarks. Technical Report RNR-91-002 Revision 2, NASA Ames Research Center,
Ames, CA, August 1991.

L. A. Belady. A Study of Replacement Algorithms for a Virtual-Storage CompuBan.
Systems Journab(2):78-101, 1966.

Bryan Black and John Paul Shen. Calibration of Microprocessor Performance Models.
IEEE Computer31(5):59-65, May 1998.

D. W. Blevins, E. W. Davis, R. A. Heaton, and J. H. Reif. BLITZEN: a Highly Integrated
Massively Parallel Machine. IRroceedings of the Second Symposium on the Frontiers
of Massively Parallel Computatippages 399-406, October 1988.

Doug Burger and Todd M. Austin. The SimpleScalar Tool Set Version 2.0. Technical
Report 1342, Computer Sciences Department, University of Wisconsin, Madison, WI,
June 1997.

Doug Burger, Todd M. Austin, and Steven Bennett. Evaluating Future Microprocessors:
the SimpleScalar Tool Set. Technical Report 1308, Computer Sciences Department, Uni-
versity of Wisconsin, Madison, WI, July 1996.

Doug Burger and James R. Goodman. Exploiting Optical Interconnects to Eliminate Se-
rial Bottlenecks. InProceedings of the Third International Conference on Massively
Parallel Processing Using Optical Interconned®xctober 1996.

Doug Burger and James R. Goodman. Billion-Transistor ArchitectlE&E Computer
30(9):46-48, September 1997.

Doug Burger, James R. Goodman, and Alain Kagi. The Declining Effectiveness of Dy-
namic Caching for General-Purpose Microprocessors. Technical Report 1261, Computer
Sciences Department, University of Wisconsin, Madison, WI, January 1995.

Doug Burger, James R. Goodman, and Alain Kéagi. Memory Bandwidth Limitations of
Future Microprocessors. Rroceedings of the 23rd Annual International Symposium on
Computer Architecturgpages 78-89, May 1996.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

158

Doug Burger, James R. Goodman, and Alain K&agi. Limited Bandwidth to Affect Proces-
sor DesignlEEE Micro, 17(6):55-62, December 1997.

Doug Burger, Stefanos Kaxiras, and James R. Goodman. DataScalar Architectures. In
Proceedings of the 24th Annual International Symposium on Computer Architecture
pages 338-349, June 1997.

Doug Burger, Steven K. Reinhardt, and Wei fen Lin. Alternative Designs for Large On-
Chip Caches. Technical Report 1390, UWCS, Feb 1999.

Arthur W. Burks, Herman H. Goldstine, and John von Neumann. Preliminary discussion
of the logical design of an electronic computing instrument. Technical report, U.S. Army
Ordinance Department, 1946.

David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetchirfgydoeed-
ings of the Fourth Symposium on Architectural Support for Programming Languages
and Operating Systemgages 40-52, April 1991.

Steve Carr and Ken Kennedy. Blocking Linear Algebra Codes for Memory Hierarchies.
In Proceedings of the Fourth SIAM Conference on Parallel Processing for Scientific
Computing page ?, December 1989.

J. H. Chang, H. Chao, and K. So. Cache Design of a Sub-Micron CMOS System/370. In
Proceedings of the 14th Annual International Symposium on Computer Architecture
pages 208-213, June 1987.

Tien-Fu Chen and Jean-Loup Baer. Reducing Memory Latency via Non-blocking and
Prefetching Caches. lroceedings of the Fifth Symposium on Architectural Support for
Programming Languages and Operating Systgrages 51-61, October 1992.

William Y. Chen, Scott A. Mahlke, Pohua P. Chang, and Wen mei W. Hwu. Data Access
Microarchitectures for Superscalar Processors with Compiler-Assisted Data Prefetching.
In Proceedings of the 24th International Symposium on Microarchitechages 69-73,
November 1991.

Jim Childers, Peter Reinecke, and Hiroshi Miyaguchi. SVP: A Serial Video Processor.
In Proceedings of the 1990 IEEE Custom Integrated Circuits Confergages 17.3.1—
17.3.4, May 1990.

Daniel Citron and Larry Rudolph. Creating a Wider Bus Using Caching Techniques. In
Proceedings of the First International Symposium on High-Performance Computer Ar-
chitecture pages 90-99, January 1995.

Eugene L. Cloud. The Geometric Arithmetic Parallel ProcessoPréteedings of the
Second Symposium on the Frontiers of Massively Parallel Computatges 373-381,
October 1988.

Bob Cmelik and David Keppel. Shade: A Fast Instruction-Set Simulator for Execution
Profiling. In Proceedings of the 1994 ACM Sigmetrics Conference on Measurements and
Modeling of Computer Systenmages 128-137, May 1994.

E. G. Coffman and P. J. Dennin@perating Systems Theomlrentice-Hall, Englewood

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

159
Cliffs, NJ, 1973.

Robert P. Colwell, Robert P. Nix, John J. O’'Donnell, David B. Papworth, and Paul K.
Rodman. A VLIW Architecture for a Trace Scheduling CompilerPimceedings of the
Second Symposium on Architectural Support for Programming Languages and Operat-
ing Systemspages 180-192, October 1987.

Jordi Cortadella and Teodor Jové. Dynamic RAM for On-chip Instruction Ca€lus-
puter Architecture Newd.6(4):45-50, September 1988.

Richard Crisp. Direct Rambus Technology: The New Main Memory StantiaEE M,
17(6):18-27, December 1997.

Stefanos Damianakis, Kai Li, and Anne Rogers. An Analysis of a Combined Hardware-
Software Mechanism for Speculative Loads. Technical Report TR-455-94, Princeton
University, Princeton, NJ, April 1994.

Per-Erik Danielsson, Par Emanuelsson, Keping Chen, and Per Ingelhag. Single-Chip
High-Speed Computation of Optical Flow. In IAPR International Workshop on Ma-
chine Vision Applicationgages 331-335, November 1990.

M. F. Deering, S. A. Schlapp, and M. G. Lavelle. FBRAM: A New Form of Memory Op-
timized for 3D Graphics. IrProceedings of SIGGRAPH 9gages 167-174, Orlando,
FL, July 1994.

Duncan G. Elliott, W. Martin Snelgrove, Christian Cojocaru, and Michael Stumm. A
PetaOp/s is Currently Feasible by Computing in RAMIrPetaFLOPS Frontier Work-
shop Washington DC, February 1995.

Duncan G. Elliott, W. Martin Snelgrove, and Michael Stumm. Computational Ram: A
Memory-SIMD Hybrid and its Application to DSP. l@ustom Integrated Circuits Con-
ference pages 30.6.1-30.6.4, Boston, MA, May 1992.

Babak Falsafi and David A. Wood. Reactive NUMA: A Design for Unifying S-COMA
and CC-NUMA. InProceedings of the 24th Annual International Symposium on Com-
puter ArchitecturgeJune 1997.

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster Architecture: Re-
ducing Cycle Time Through Partitioning. Froceedings of the 30th International Sym-
posium on Microarchitecturedecember 1997.

Matthew Farrens and Arvin Park. Dynamic Base Register Caching: A Technique for Re-
ducing Address Bus Width. IRroceedings of the 18th Annual International Symposium
on Computer Architecturgpages 128-137, May 1991.

Matthew Farrens, Gary Tyson, and Andrew R. Pleszkun. A Study of Single-Chip Proces-
sor/Cache Organizations for Large Numbers of TransistorBréiweedings of the 21st
Annual International Symposium on Computer Architectpagies 338—347, April 1994.

Richard C. Foss. Implementing Application Specific Memory.Proceedings of the
1996 International Solid-State Circuits Conferengages 260-261, February 1996.

Manoj Franklin. The Multiscalar ArchitecturePhD thesis, University of Wisconsin,

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

160
Madison, WI, December 1993.

Richard Fromm, Stylianos Perissakis, Neal Cardwell, Christoforos Kozyrakis, Bruce
McGaughy, David Patterson, Tom ANderson, and Katherine Yelick. The Energy Effi-
ciency of IRAM Architectures. IlProceedings of the 24th Annual International Sympo-
sium on Computer Architectyrpages 327-337, June 1997.

John W. C. Fu and Janak H. Patel. Data Prefetching in Multiprocessor Vector Cache
Memories. InPProceedings of the 18th Annual International Symposium on Computer Ar-
chitecture pages 54-63, May 1991.

Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D. Austin, Jr.
Frederick P. Brooks, John G. Eyles, and John Poulton. Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancemts in Pixel-Planefrdgeedings of SIG-
GRAPH’'85 pages 111-120, San Francisco, CA, July 1985.

Hector Garcia-Molina, Richard J. Lipton, and Jacobo Valdes. A Massive Memory Ma-
chine.lEEE Transactions on Computefs-33(5):391-399, May 1984.

Glenn GiacaloneOetOal. A 1MB, 100MHz Integrated L2 Cache Memory with 128b Inter-
face and ECC Protection. Proceedings of the 1996 International Solid-State Circuits
Conferencepages 370-371. IBM, February 1996.

J. D. Gindele. Buffer Block Prefetching Methd8M Tech. Disclosure Bull20(2):696—
697, July 1977.

Gideon Glass and Pei Cao. Adaptive Page Replacement Based on Memory Reference
Behavior. InProceedings of the 1997 ACM Sigmetrics Conference on Measurements and
Modeling of Computer Systenmages 115-126, June 1997.

Maya Gokhale, Bill Holmes, and Ken lobst. Processing in Memory: the Terasys Mas-
sively Parallel PIM ArraylEEE Computer28(3):23-31, April 1995.

Maya Gokhale, Bill Holmes, Ken lobst, Alan Murray, and Tom Turnbull. A Massively
Parallel Processor-in-Memory Array and its Programming Environment. Technical Re-
port SRC-TR-92-076, Supercomputer Research Centre - Institute for Defense Analyses,
17100 Science Drive, Bowie, MD, November 1992.

James R. Goodman. Using Cache Memory To Reduce Processor-Memory Traffic. In
Proceedings of the 10th Annual International Symposium on Computer Architecture
pages 124-131, June 1983.

James R. Goodman and Honesty C. Young. Comments on "A Massive Memory Ma-
chine".IEEE Transactions on Computers-35(10):907-910, October 1986.

Sridhar Gopal, T.N. Vijaykumar, J.E. Smith, and G.S. Sohi. Speculative Versioning
Cache. InProceedings of the Fourth International Symposium on High-Performance
Computer ArchitectureFebruary 1998.

Edward H. Gornish, Elana D. Granston, and Alexander V. Veidenbaum. Compiler-Di-
rected Data Prefetching in Multiprocessor with Memory Hierarchie®rbteedings of
the 1990 International Conference on Supercompupages 354—-368, June 1990.

[55]
[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

161
Linley Gwennap. Digital 21264 Sets New StandMBR pages 1-6, October 28 1996.

Linley Gwennap. Alpha 21364 to Ease Memory Bottlen@&¢RR, pages 12—-15, October
26 1998.

R. A. Heaton and D. W. Blevins. BLITZEN: a VLSI Array Processing ChipPhoceed-
ings of the 1989 Custom Integrated Circuits Conferemamges 12.1.1-12.1.5, San Di-
ego, CA, May 1989.

Mark D. Hill. Aspects of Cache Memory and Instruction Buffer PerformaRb® the-
sis, University of California at Berkeley, November 1987.

Mark D. Hill. A Case for Direct-Mapped Cachd&EE Computer21(1), January 1998.

Mark D. Hill, James R. Larus, Alvin R. Lebeck, Madhusudhan Talluri, and David A.
Wood. Wisconsin Architectural Research Tool S€obmputer Architecture News
21(4):8-10, August 1993.

Mark D. Hill and Alan Jay Smith. Experimental Evaluation of On-Chip Microprocessor
Cache Memories. IRroceedings of the 11th Annual International Symposium on Com-
puter Architecturepages 158-166, June 1984.

Masashi HoriguchiOetOal. An Experimental 220MHz 1Gb DRAMPhoceedings of the
1995 International Solid-State Circuits Conferenpages 252—-253. Hitachi, February
1995.

L. P. Horwitz, R. M. Karp, R. E. Miller, and A. Winograd. Index Register Allocation.
Journal of the ACM13(1):43-61, January 1966.

Andrew S. Huang and John P. Shen. A Limit Study of Memory Requirements Using Val-
ue Reuse Profiles. IRroceedings of the 28th International Symposium on Microarchi-
tecture pages 71-81, December 1995.

IBM Microelectronics and MotoroldRPowerPC 601: RISC Microprocessor User’'s Man-
ual, 1993.

David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi. Scalable
Coherent InterfacdEEE Computer23(6):74—77, June 1990.

J. M. Jennings, E. W. Davis, and R. A. Heaton. Comparative Performance Evaluation of
a New SIMD Machine. IrProceedings of the Third Symposium on the Frontiers of Mas-
sively Parallel Computatigrmpages 255258, October 1990.

Lizy Kurian John, Raghuveer Reddy, Vijay Kammila, and Peter Maurer. Investigating
the Use of Cache as a Local Memory.Rnoceedings of the 1995 International Confer-
ence on High Performance Computii§95.

T.L. Johnson and W.W. Hwu. Run-time Adaptive Cache Hierarchy Management via
Reference Analysis. IProceedings of the 24th Annual International Symposium on
Computer Architecturgpages 315-326, June 1997.

Norman P. Jouppi. Cache Write Policies and PerformancBrdceedings of the 20th
Annual International Symposium on Computer Architectpeges 191-201, May 1993.

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

162

Norman P. Jouppi and Parthasarathy Ranganathan. The Relative Importance of Memory
Latency, Bandwidth, and Branch Limits to PerformancéMarkshop on Mixing Logic

and DRAM, held at the 24th International Symposium on Computer Architedume

1997.

Toni Juan, Dolors Royo, and Juan J. Navarro. Dynamic Cache SplittilRyokeedings
of the XV International Conference of the Chilean Computer Spbletxember 1995.

Richard Eugene Kessleknalysis of Multi-Megabyte Secondary CPU CacliD the-
sis, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706-1685,
July 1991.

T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One-Level Storage Sys-
tem.IRE Transactions, EC-12:223-235, April 1962.

Peter M. Kogge. EXECUBE - A New Architecture for Scalable MPPstaceedings
of the 1994 International Conference on Parallel Processipages 177—-184, August
1994,

Peter M. Kogge, Toshio Sunaga, Hisatada Miyataka, Koji Kitamura, and Eric Retter.
Combined DRAM and Logic for Massively Parallel SystemsPioceedings of the 1995
Conference on Advanced Research in Yp&yes 4-16, Chapel Hill, NC, March 1995.

Leonidas I. Kontothanassis, Rabin A. Sugumar, G.J. Faanes, James E. Smith, and
Michael L. Scott. Cache Performance in Vector SupercomputeRrdoeedings of Su-
percomputing '94pages 255-264, November 1994.

Christoforos Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Anderson, Krste
Asanovic, Neal Cardwell, Richard Fromm, Jason Golbus, Benjamin Gribstad, Kimberly
Keeton, , Randi Thomas, Noah Treuhaft, and Katherine Yelick. Scalable Processors in
the Billion-Transistor Era: IRAMIEEE Computer30(9):75-78, September 1997.

David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache OrganizatioRrdoeed-
ings of the 8th Annual International Symposium on Computer Architeqiages 81-87,
May 1981.

D. J. Kuck and B. Kumar. A System Model for Computer Performance Evaluation. In
Proceedings of the International Symposium on Computer Performance, Modeling,
Measurement, and Evaluatippages 187-199, March 1976.

Sanjeev Kumar and Christopher Wilkerson. Exploiting Spatial Locality in Data Caches
using Spatial Footprints. IRroceedings of the 25th Annual International Symposium on
Computer ArchitectureJuly 1998.

Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh
Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gup-
ta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH Multiprocessor. In
Proceedings of the 21st Annual International Symposium on Computer Architecture
pages 302-313, April 1994.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop
Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The Stanford DASH Multi-

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]
[97]

[98]

163
processorlEEE Computer25(3):63—79, March 1992.

J. S. Liptay. Structural Aspects of the System/360 Model 85 II: The CéBMeSystems
Journal 7(1), 1968.

Philip Machanick, Pierre Salverda, and Lance Pompe. Hardware-Software Trade-Offs in
a Direct Rambus Implementation of the RAMpage Memory Hierarchyrbteedings

of the Eighth Symposium on Architectural Support for Programming Languages and Op-
erating Systemgages 105-114, October 1998.

Doug Matzke. Will Physical Scalability Sabotage Performance GaESE Computer
30(9):37-39, September 1997.

Geoffrey D. McNiven and Edward S. Davidson. Analysis for Memory Referencing Be-
havior For Design of Local Memories. lProceedings of the 15th Annual International
Symposium on Computer Architectuprages 56—63, May 1988.

Hiroshi Miyaguchi, Hujime Krasawa, and Xhinichi Watanabe. Digital TV with Serial
Video ProcessolEEE Transactions on Consumer Electroni8$(3):318-326, August
1990.

Andreas Moshovos, Scott E. Breach, T.N. Vijaykumar, and Gurindar S. Sohi. Dynamic
Speculation and Synchronization of Data DependencdBrdoeedings of the 24th An-
nual International Symposium on Computer Architegtdtme 1997.

Andreas Moshovos and Guri Sohi. Streamlining Inter-operation Memory Communica-
tion via Data Dependence Prediction.Rnoceedings of the 30th International Sympo-
sium on MicroarchitectureDecember 1997.

David Nagle, Richard Uhlig, Trevor Mudge, and Stuart Sechrest. Optimal Allocation of
On-chip Memory for Multiple-AP1 Operating Systems.Pnoceedings of the 21st Annu-
al International Symposium on Computer Architectyiages 358—-369, April 1994.

David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton,
Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A Case for Intelligent
RAM. IEEE Micro, 17(2):34-44, March/April 1997.

David Patterson, Tom Anderson, and Kathy Yelick. The Case for IRANProteedings
of HOT Chips 8Stanford, CA, August 1996.

Andrew R. Pleszkun and E. S. Davidson. Structured memory access architecRne. In
ceedings of the 1983 International Conference on Parallel Procespages 461-471,
August 1983.

Charles PriceMIPS IV Instruction Set, revision 3.MIPS Technologies, Inc., Mountain
View, CA, January 1995.

Betty Prince. Memory in the fast lan&EE Spectrum31(2):38-41, February 1994.

Steven A. PrzybylskiNew DRAM Technologies: A Comprehensive Analysis of the New
Architectures MicroDesign Resources, Sebastopol, CA, 1994.

Eric Rotenberg, Steve Bennett, and James E. Smith. Trace Cache: A Low Latency Ap-

164

proach to High Bandwidth Instruction Fetching.Rnoceedings of the 29th International
Symposium on MicroarchitectyrBecember 1996.

[99] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working Sets, Cache Sizes,
and Node Granularity Issues for Large-Scale MultiprocessoRdoeedings of the 20th
Annual International Symposium on Computer Architectpages 14-25, May 1993.

[100] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. Missing the Memory Wall: The
Case for Processor/Memory IntegrationPiroceedings of the 23rd Annual International
Symposium on Computer Architectuypages 90-101, May 1996.

[101] Steven L. Scott, James R. Goodman, and Mary K. Vernon. Performance of the SCI Ring.
In Proceedings of the 19th Annual International Symposium on Computer Architecture
pages 403-414, May 1992.

[102] Semiconductor Industry Association. The National Technology Roadmap for Semicon-
ductors. 1997.

[103] André Seznec. Decoupled Sectored Caches: conciliating low tag implementation cost
and low miss ratio. IfProceedings of the 21st Annual International Symposium on Com-
puter Architecturgpages 384—393, April 1994.

[104] Toru Shimizu et al. A Multimedia 32b RISC Microprocessor with 16Mb DRAMPo-
ceedings of the 1996 International Solid-State Circuits Confergramges 216—-217. Mit-
subishi Electric Co., February 1996.

[105] Daniel P. Siewiorek, C. Gordon Bell, and Annel New@bmputer Structures: Princi-
ples and ExampledicGraw-Hill, 1982.

[106] Alan Jay Smith. Cache MemorigSomputing Survey44(3):473-530, September 1982.

[107] Burton J. Smith. Architecture and Applications of the HEP Multiprocessor Computer
System. IrReal-Time Signal Processing,Ipages 241-248, 1981.

[108] James E. Smith. Decoupled Access/Execute Computer Architectusdeedings of
the 9th Annual International Symposium on Computer Architectpages 112-119,
April 1982.

[109] James E. Smith. Decoupled Access/Execute Computer ArchitecA@dd. Transac-
tions on Computer Systen2{4):289-308, November 1984.

[110] James E. Smith and Andrew R. Pleszkun. Implementation of Precise Interrupts in Pipe-
lined Processors. IRroceedings of the 12th Annual International Symposium on Com-
puter Architecturepages 36—44, June 1985.

[111] IEEE Computer Society. Scalable Coherent Interface (S@IBI/IEEE Std 1596-1992
August 1993.

[112] Avinash Sodani and Gurindar S. Sohi. Dynamic Instruction Reus&roceedings of the
24th Annual International Symposium on Computer Architectoages 194-205, June
1997.

[113] Gurindar S. Sohi. Instruction Issue Logic for High-Performance, Interruptible, Multiple

165

Functional Unit, Pipelined ComputerdkEEE Transactions on Computer89(3):349—
359, March 1990.

[114] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar Processors. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture
pages 414-425, June 1995.

[115] Gurindar S. Sohi and Sriram Vajapeyam. Instruction Issue Logic for High-Performance,
Interruptable Pipelined ProcessorsPimceedings of the 14th Annual International Sym-
posium on Computer Architectyngages 27-34, June 1987.

[116] Standard Performance Evaluation Corporat®EC NewsletteFairfax, VA, Decem-
ber 1991.

[117] Standard Performance Evaluation Corporat®iPREC NewsletteFairfax, VA, Septem-
ber 1995.

[118] Harold S. Stone. A Logic-in-Memory ComputdeEE Transactions on Computersag-
es 73-78, January 1970.

[119] Rabin A. Sugumar and Santosh G. Abraham. Efficient Simulation of Caches under Op-
timal Replacement with Applications to Miss CharacterizationPtoceedings of the
1993 ACM Sigmetrics Conference on Measurements and Modeling of Computer Sys-
tems pages 24-35, May 1993.

[120] Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB Performance of Superpages
with Less Operating System Support.Rnoceedings of the Sixth Symposium on Archi-
tectural Support for Programming Languages and Operating Systeages 171-193,
October 1994.

[121] Madhusudhan Talluri, Mark D. Hill, and Yousef A. Khalidi. A New Page Table for 64-
bit Address Spaces. IRroceedings of the 15th ACM Symposium on Operating Systems
Principles pages 184-200, December 1995.

[122] Olivier Temam. Investigating Optimal Local Memory PerformancePitaceedings of
the Eighth Symposium on Architectural Support for Programming Languages and Oper-
ating Systemgages 218-226, October 1998.

[123] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Uniti8M
Journal of Research and Developmetit(1):25-33, January 1967.

[124] Dean M. Tullsen and Susan J. Eggers. Limitations of Cache Prefetching on a Bus-Based
Multiprocessor. IProceedings of the 20th Annual International Symposium on Comput-
er Architecture pages 278-288, May 1993.

[125] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. IRroceedings of the 22nd Annual International Sym-
posium on Computer Architectungages 392—-403, June 1995.

[126] Gary Tyson and Todd Austin. Improving the Accuracy and Performance of Memory
Communication Through Renaming. Rroceedings of the 30th International Sympo-
sium on MicroarchitectureDecember 1997.

166

[127] Gary Tyson, Matthew Farrens, John Matthews, and Andrew Pleszkun. A Modified Ap-
proach to Data Cache ManagementPhoceedings of the 28th International Symposium
on Microarchitecturepages 93-103, December 1995.

[128] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee,
Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Sa-
man Amarasinghe, and Anant Agarwal. Baring It All to Software: Raw Machiits=
Computer 30(9):86—-93, September 1997.

[129] Shlomo Weiss and James E. SmRQWER and PowerP®/organ Kaufmann Publish-
ers, Inc., San Francisco, CA, 1994.

[130] Loring Wirbel. NSA taps Cray Computer, Nation&lectronic Engineering Times
1(816):39—-40, September 1994.

[131] David A. Wood and Mark D. Hill. Cost-Effective Parallel ComputitlgEE Computer
28(2):69-72, February 1995.

[132] William A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the Ob-
vious.Computer Architecture New23(1):24, March 1995.

[133] Nobuyuki Yamashita, Tohru Kimura, Yoshihiro Fujita, Yoshiharu Aimoto, Takashi
Manaba, Shin’ichiro Okazaki, Kazuyuki Nakamura, and Masakazu Yamashina. A
3.84GIPS Integrated Memory Array Processor LSI with 64 Processing Elements and
2Mb SRAM. InProceedings of the 1994 International Solid-State Circuits Conference
pages 260-261. NEC, February 1994.

[134] Tadaaki Yamauchi, Lance Hammond, and Kunle Olukotun. A Single Chip Multiproces-
sor Integrated with DRAM. I'Workshop on Mixing Logic and DRAM, held at the 24th
International Symposium on Computer Architectutene 1997.

[135] J. H. Yoo et sal. A 32-bank 1Gb DRAM with 1 GB/s Bandwidth Aroceedings of the
1996 International Solid-State Circuits Confereppages 378-379. Samsung Electron-
ics Co., February 1996.

[136] Albert Yu. The Future of MicroprocessolSEE Micro, pages 46-53, December 1996.

167

Appendix A

Quantifying Latency and Bandwidth Stalls

In this appendix, we quantify experimentally the effects of latency tolerance optimizations on
the execution time breakdown. Our results show that as we incorporate techniques to tolerate
memory latency more aggressively, the fraction of time spent stalling for bandwidth increases.
Furthermore, while the latency tolerance techniques that we measure are successful at reduc-

ing raw latency stall(), they are ineffective at reduciffig

A.1 Experimental methodology

To measurdp, f, fg (derived in Section 1.2.2), we simulate three configurations per experi-
ment (from which we obtaifp, T;, andT). Our simulations were based on the SimpleScalar
target machine described in Chapter 2, with parameters described later in this section. To
obtainTp, we run a simulation with a perfect memory system, in which every load and store
hits in the L1 cache (one cycle). We meastiydy simulating a memory hierarchy assuming
infinitely wide paths between adjacent levels of the hierarchy. (We define “infinitely wide” by
assuming that any number of requests of any size can be transmitted across any bus in one
cycle, and that there is no need for arbitration). Finally, we meaBuime simulating the full
memory system, including contention at all buses.

In this appendix, we present breakdowns for three separate sets of experiments, published in
previous studies. We will denote the experiment setRB<E2, E3, respectively. In the first
execution time breakdown that we measured)(we used the SPEC92 benchmarks, as we
did not yet have access to SPEC95. In the secondE®t (ve used a subset of the SPEC95
benchmarks. We published both sets of results in ISCA23 [13]. More recently, we were

invited to publish a rewrite of the ISCA paper in IEEE Micro [14]. We reran a set of the

168
SPEC95 benchmarks with our more mature simulation environment, which we improved over

the intervening year, and ran the experiments with updated parameters that were more current

than those i1 andE2. We will refer to that most recent set of experiments3as

In Table A-1, we list the inputs used for the various benchmarkslhE3. At the time of
these studies, we had not yet performed the analysis on the benchmark inputs and data set
sizes presented in Chapter 2. Consequently, in many cases we used input sets that were signif-
icantly smaller than theef data sets. Since smaller inputs and data set sizes tend to shift the
results to be more processor-bound, however, these results are therefore conservative from a

memory system perspective.

In Table A-2 we list the memory system parameters associated with each experiment set.
Since we did not scale the data set sizes of the benchmarks for the newer experiments, the
sizes of the various levels of the memory hierarchy remain the same (with one exception). At
the time of the first studyH1 andE2), we chose cache sizes that were typical of high-perfor-
mance machines at the time (64 KB split level-one caches and an off-chip, 1MB level-two
cache). When we moved to the newer study, we doubled the size of the L2 cache to compen-
sate for the fact that SPEC95 has larger data sets than SPEC92, but we did not scale up the L2
cache to more than 2MB, and we left the L1 caches the same size. Since the data sets
remained unchanged, our goal was to use cache sizes that were from a processor generation
equivalent to the benchmark generation (circa 1995, when SPEC92 was still in wide use and
SPEC95 was just released). We did scale the timing parameters to reflect more current values,
however, assuming that the memory banks got faster (in particular, assuming a more aggres-
sive 14ns for the L2 cache; 30ns was too slow for newer machines). We did not simulate bank
contention at main memory, since the large L2 caches (coupled with the small data sets) kept
the global L2 miss rates sufficiently low (a mean global miss ratio, measuring the data stream
only, of 0.004 across all benchmarks for the 1MB cache, and lower for the 2MB cache) that
memory bank contention would be a small factor. Like the small inputs, this assumption
makes the results more conservative, since the absence of bank contention will only serve to

increase processor utilization.

169

E1 compress eqntott @spresso su2cor swm tomcatv
train int_pri_3.eqn [mlp4 only |in.short [180x180, 50 it. | 256x256, 10 it.
> applu hydro2d li su2cor swim vortex
33x33x33, 2it. test, 1it. test test test test
E3 compress ijpeg perl su2cor swim vortex
train train test test test train, 1it
Table A-1: Input files used for benchmarks in experiments E1-E3
Structure E1 (SPEC92) E2 (SPEC95) E3 (SPEC95)
L1 cache 128KB unified 64KB I, 64 KB D 64KB I, 64 KB D
Direct mapped Direct mapped Direct mapped
On-chip, 1-cycle access | On-chip, 1-cycle access | On-chip, 1-cycle access
L1/L2 bus 128 bits wide 128 bits wide 128 bits wide
bus/proc clock: 1/3 bus/proc clock: 1/4 bus/proc clock: 1/5
L2 cache 1MB 2MB 2MB
4-way set assoc. 4-way set assoc. 4-way set assoc.
Off-chip, 30 ns access | Off-chip, 30 ns access | Off-chip, 14 ns access
L2/memory 64 bits wide 64 bits wide 64 bits wide
bus bus/proc clock: 1/3 bus/proc clock: 1/4 bus/proc clock: 1/5
Memory 90 ns access 90 ns access 80 ns access
No bank conflicts No bank conflicts No bank conflicts

Table A-2: Memory system simulation parameters

In Table A-3 we list the processor parameters that we used for the experiments. For each
experiment set, we ran 6 experiments, which we |#bé&l In Table A-3, parameters that dif-
feramongEl, E2, andE3 are listed for all three, separated by slashes, in the @ilér2/E3.

We ran six experiments per set to examine the effects of latency tolerance techniques upon the
execution time breakdown. We used 4-wide issue superscalar processor cores for all experi-
ments, each of which uses a two-level adaptive gshare branch predictor. Experdménts

andC all use statically scheduled (in-order issue) cores, Whjlg, andF all use dynamically
scheduled (out-of-order issue) cores, based on the RUU described in Chaptan@B use
blocking caches, whileC, D, E, and F use non-blocking (lock-up free) caches [79]. To
improve cache performandB,uses large cache lines (factor of two larger), wiiilandF use

tagged prefetching [47F uses a more aggressive processor core fkdhfor each of the

170

Experiment A B C D E F
Processor in-order issue out-of-order issue
Clock speed 300/400/500 MHz 0.3/0.6/1 GHz
RUU slots 16/64/128 64/128/256
L/S Q entries 8/32/64 32/64/128
Branch predictor 8K/8K/16K 16K/16K/32K
Cache Blocking Lockup-free
L1:L2 block sizes 32:64 64:128 32:64
HW prefetch no | yes

Table A-3: Processor simulation parameters (E1/E2/E3)

experiment sets. We can isolate the effects of the individual latency tolerance mechanisms by
comparing pairs of experiments: larger cache blodB&Af, non-blocking cachesQ/A),
dynamic scheduling¥/C), tagged prefetchingd/D), and a more aggressive processor core
(F/E).

Our implementation of blocking caches differs betw&siE2 andE3. In E1 andE2, we
assume that a miss blocks the cache, but that hits may still occur while the memory system is
servicing the miss (hit-under-miss). EB, we implemented the blocking, hit-under-miss pol-
icy by restricting all caches to one miss status holding register (MSHR), which allows com-
bining of up to 8 separate requests for the same cache block (MSHR hits). The cache may

thereby service multiple misses simultaneously if they are to the same cache block.

Finally, we assume that multiplexed data/address lines are used only on the main memory
bus (the on-chip and cache buses have separate address and data lines), that all channels are
bidirectional, that all memories return the critical word first, and that we have an infinitely

deep write buffer.

A.2 Simulation results

In Figure A-1, Figure A-2, and Figure A-3, we depict the execution time breakdowrislior
E2, andE3, respectively. In all three figures, each bar represents the breakdown of execution

time intofp, f|, andfg (black, dark grey, and light grey bars, respectively) for one experiment.

171
The number atop each bar represents the valdg fof that experiment. The execution times

for each benchmark are normalized to the processing Tigdéqr experimeni.

A.2.1 E1 results

In this experiment set (Figure A-1), several of the benchmarks (egntott and espresso in partic-
ular) do not spend much of their time stalled for memory; for these benchnfarisshigh
(over 0.90 for all experiments). The small data sets typical of the SPEC92 benchmarks pro-
duce high hit rates in both the 64KB L1 caches and in the 1MB L2 cache, causing little time to
be spent in the memory system. For experimésS with the other four benchmarks (com-
press, su2cor, swm, and tomcatv), the time spent stalled for merpry {5) is more signif-
icant: roughly a quarter (su2cor) to a half (compress). The bulk of the memory stall time for
experimentsA-C is spent stalling for latencyf|(). Adding dynamically scheduled cores
changes the breakdown substantially. For the experiments with dynamically scheduled cores
(D-F), the processing timég) is cut roughly in half, the latency stall tim§ J is reduced (dra-
matically in some cases), and the bandwidth stall tifgeificreases, both in relative and in
absolute terms, becoming the dominant component of memory stall time in most cases.
Increasing the block size from 32 to 64 bytes in the L1 cache, and 64 to 128 bytes in the L2
cache, improved the performance of some applications but not others (compare expeBiments
andA). For the SPEC92 version of compress, the unified 128KB L1 cache has a high miss
rate of 4.20% for 32 byte blocks. Increasing the L1 block size to 64 bytes causes a slight
increase in the miss rate, to 4.53%. This increase causes a correspondingly small increase in
f . fg increases by a factor of four, however (0.03 to 0.13), since each L1 miss requires 6 extra
cycles to fill the cache (2 additional bus cycles, since 32 extra bytes must be moved across the
16-byte bus, at 3 processor cycles per bus cycle), contributifigfte every miss. For su2cor,
the larger block size reduces the L1 miss rate slightly (2.97% to 2.53%), causing a decrease in
f_, but the increase ifg (0.02 to 0.08) overcomes the reductiorfjincausing a net increase in
execution time. For swm and tomcatv, the L1 miss rates are reduced substantially by the larger
block size (1.27% to 0.82% and 2.82% to 1.49%, respectivelyf), soreduced substantially,

causing negligible increasesfy) and resulting in a net improvement in execution time.

172

< 25_ 13

2 .

= .03

c 2.04 gHos

=) H f B (limited b/w stalls)
8 15_ '17,30 08 .02 .04

o '2 204 & o2 B o-H . f L (raw latency stalls)
) .010101 .010201 H [Bl oo .

3 1.04 ooy 0710 o7 H., . f P (compute time)
E‘ ' 1030304 HH ,oa H.s

© = .16 = [

g 0.5 0 15

S

Z 0.0

ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF
Compress Eqntott Espresso Su2cor Swm Tomcatv

SPEC92 benchmarks
Figure A-1: Execution time breakdown for E1 (SPEC92)

Adding non-blocking caches to the statically scheduled cores (compare experitnands
A) had a uniform effect on applications’ performance: in each case, a fraction of the memory
latency was hidden by overlapping misses, but contention was increased because of queueing.
With non-blocking caches, two factors drifigin opposite directions: memory requests may
become queued behind others for bus access, increasing latency and tHgrdforéhe data
transmission portion of the cache miss latency (which contributes dirediy toay be toler-
ated by overlapping it with other requests, thus having a smaller impact on the processor and
reducingfg. For experimenté andC, the portion of a L1 cache fill attributable to finite band-
width is six of nineteen cycléswhich is sufficiently small that the overlapping of transmis-
sion time was outweighed by the contention introduced by multiple misses being serviced
simultaneously. For every benchmark in this set, therefigr&creased slightly, but not as
much ad; was reduced, causing small net reductions in execution time. The total reductions
in f, + f5 were small because—since the cores for experirGameére statically scheduled—
the non-blocking caches had only small instruction windows (at most two fetch widths) from

which to find memory requests that could be overlapped.

Using dynamically scheduled cores with non-blocking caches (compare experiinants

C) had three effects on execution time decomposition. First, the time required to perform the

1. The L2 lookup accounts for ten processor cycles, and one bus cycle (at three processor cycles each)
accounts for each of critical word forwarding, bus arbitration, and three transmission of the rest of
the cache line across the cache bus. Of those four latency components, only the last two count toward

f.

173
actual computationT) was reduced, on average by about a third. In the graphs, this effect

corresponds to a reduction fa for experimentD-F, since we are normalizing all execution
times toTp for experimenfA. Second, the effect of uncontested memory latencies is better tol-
erated by the dynamically scheduled core, resulting in 30% to 50% reductigngimrd, the
fraction of execution time resulting from memory contention increases in all cases, because of
bothabsolutedifferences (the dynamically scheduled core allows more memory requests to be
in the memory system simultaneously), amedhtive differences (execution time is reduced
without changing the amount of contention).

The incorporation of tagged prefetching (comp&end D) causes mixed results. The
prefetching increases the L1 miss rates for compress (4.2% to 4.7%) and espresso (0.4% to
0.5%), which results in both andfg increases, even though the L2 miss rates are improved
slightly by the prefetching. For su2cor, the L1 and L2 miss rates are both reduced (3.0% to
2.2% and 3.5% to 0.3%, respectively), but the increaségdiue to increased contention nul-
lify the reduction inf_, causing no net change in execution time. This example demonstrates
that cache miss ratios can be inaccurate predictors of performance. For swm and tomcaty,
however, the prefetching causes large reductions in the miss ratios (1.2% to 0.3% and 3.1% to
1.0% in the L1 caches, respectively), which reducesfth@omponent to near-zero in both
cases. (Both codes, particularly swm, contain sufficient ILP to tolerate almost all cache miss
latencies if the miss rate is sufficiently lowfy changes only slightly for both codes, as the
reductions in misses counterbalance the relative increasksdune to decreased execution
time.

Finally, a more aggressive processor core (compaaadE) serves to reduck, reducef,
and increaség, in all cases. For experimeht fg is the dominant component of memory stalll
time (.e, fg is larger tharf)) in every case. In Table A-4, we show how the composition of
memory stall time shifts fronf, to fg as we compare a simple, statically scheduled core
(experimentA) to an aggressive, dynamically scheduled core (experiffRgniat includes
several latency tolerance mechanisms. The shaded cells represent those experiments for which
memory stall time accounts for less than 10% of execution time (and are thus unimportant).

For the other four benchmarks, significant shifts ffpro fg occur.

174

Compress Eqntott Espresso Su2cor Swm Tomcatv

Exp. fL fg fL fa fi fa fL fg fL fa fi fa

A |/ 0.936 | 0.064 | 0.964 | 0.036 | 0.922 | 0.078 | 0.903 | 0.097 | 0.941 | 0.059 | 0.936 | 0.064

F |/0.452 [0.548 | 0.769 | 0.231 | 0.628 | 0.372 | 0.175| 0.825 | 0.075 | 0.925 | 0.216 | 0.784

Table A-4: Shift from f, to fg for E1

A.2.2 E2 results

In Figure A-2 we show the execution time breakdown & The most notable difference
from the comparable results &l is that the total memory stall time is (on average) larger.
This effect is caused by three factors: the fact that the SPEC95 data sets are considerably
larger than SPEC92 (resulting in higher miss ratios), the longer access times for the L2 cache
and memory (twelve cycles versus ten for the L2 cache, and 36 versus 30 cycles per memory
access), and the slower off-chip buses (we assum&IandE2 that the bus is clocked at
100MHz, except for experimeitin E2, in which the bus is clocked at 150MHz). Vortex has
an extremely high L1 instruction cache miss ratio (between 2% and 4% for all experiments),
which causes high values for bdthandfg, since our microarchitecture assumes that the fetch
unit blocks completely on instruction cache misses.

The addition of non-blocking caches f&2 has a different effect on the time breakdown
than it does forEl. Like E1, execution time is reduced, but unlik€l, the non-blocking
caches irE2 causefg to be reduced instead of increased. This effect occurs because the non-
blocking caches tend to cause higher L1 data cache miss rates, particularly for the more regu-
lar (floating-point) codes. For example, the L1 data cache in the Applu experiment has a miss
rate of 2.2% forA and 4.9% foiC. The extra misses overcome the most of the reductiofys in
due to the non-blocking cache (in two cases, Li and SuZgas, actuallyincreasedby the
non-blocking cachejg is reduced in these cases because the transmission time is mostly hid-
den in the latency of the extra misses (the statically scheduled cores exacerbate this effect by
preventing other instructions from issuing), and is thus not counted.

Using larger blocksE) has similar effects ifc2 as inE1. In all six benchmarks, the larger

L1 cache lines result in lower L1 data cache miss rates. As in E1, most of the benchmarks see

175

2.4 15 .15
A2 26
20 I I 17
= .19‘19
12
1.6 i
I -

124 [oe

01.02 .02
0.8 l 25 ' .05 .05 .06

0.4 == B0

Normalized execution time
[

0.0
ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF
Applu Hydro2d Li Su2cor Swim Vortex

SPEC95 benchmarks

Figure A-2: Execution time breakdown for E2 (SPEC95)

reducedf; , with slightly increasedg (because of greater bus contention, due to more data
transfer per miss), resultant in a net decrease in execution time. The only exception is Applu,
for which bothf andfg are reduced by larger blocks. We do not have a good explanation for

why this aberration occurred in applu.

The addition of a dynamically scheduled core also has consistent effects across the six
benchmarks irE2. In all casesfp is reduced, since the dynamically scheduled core can take
arithmetic dependences off of the critical paty.also increases in every case (becalige
increases in every case, making the bandwidth increase both in absolute and relative terms).
The bandwidth increases occur because the dynamically scheduled core allows more opera-
tions into the memory system, greatly increasing contention, which overwhelms the effects of
the core tolerating the portions of memory delay due to finite bandwlgtts reduced in four
of the benchmarks (applu, hydro2D, su2cor, and swim), as the dynamically scheduled core
better tolerates memory latencies. For these benchmigrksmetimes increases and some-
times decreases, depending on the absolute chanfjeand the relative effects of the inde-
pendent changes g andfg. T| increases in one case and stays the same in another: in Li, the
dynamically scheduled core causes an increase in the L1 data cache miss rate (0.5% to 0.7%).
In Vortex, the dynamically scheduled core does not affect the prime componénttbie L1
instruction cache miss rate, so the absolute valu& ofemains the same, and the relative

component of memory latency stalfg)(increases.

176
Tagged prefetching shows no effect in li or vortex. In li, the cache miss ratio is sufficiently

low that the extra traffic caused by prefetches does not cause much additional contention. In
\ortex, the memory stalling is due to I-cache misses. Since we only implemented prefetches
on the L1 data and L2 caches, the stalls caused by I-cache misses are not affected by prefetch-
ing. In hydro2D, the prefetching causksto increase slightly due to extra traffic, but works

well enough to reduck, resulting in a net win. In the other three benchmarks (applu, su2cor,
and swim), the tagged prefetching is so effective—due to the programs’ regularity—that the
miss rate is reduced enough to overcome the effect of superfluous prefetches, resulting in

reductions in botfy and §.

In experimentF, we improved the processor core and sped up the processor clock (scaling
the off-chip buses but not the memory access latenciggemains unchanged for most of the
benchmarks, but sindg shrinks slightly,fz increases for most of the benchmarks (applu, i,
su2cor, and swim) because the relative siz€gpfrows. The exceptions, vortex and hydro2D,
are the only two that still have significafjt components for the aggressive core (the other
experiments manage to tolerate most of that latency), and the faster clock incfgases
increasing; even more, and causirig to decrease slightly. This result corresponds with our
intuition: if the processor clock scales faster than cache and memory bank acces§ timies,
grow, and if the processor clock scales faster than bus clégks]l grow. Since the latency
tolerance mechanisms seem to almost elimifiaie most cases, it would seem that scaling
bus clocks (as do Rambus interfaces [30]) is more important than providing fast memory

banks.

In Table A-5 we present the relative contributions to memory stall timeH(f 5) for exper-
imentsA andF in setE2. Li is shaded out because its L1 cache miss rate is so low. Vortex
shows little change in the distribution betweignandf, because its high instruction cache
miss ratio is little affected by the latenc4444y tolerance mechanisms and aggressive processor
core. The other four benchmarks (applu, hydro2D, su2cor, and swim) all show a significant
shift from f|_ to fg, in which fg is over 50% of memory stall time for all four of these bench-

marks with experimertt.

177

applu hydro2d li su2cor swim vortex

Exp| 1 fa fL fa fL fa fL fa fL fa fL fa

A |/0.421 | 0.579| 0.714 | 0.286 | 0.789 | 0.211 | 0.674 | 0.326 | 0.817 | 0.183 | 0.731 | 0.269

F |10.270 | 0.730 | 0.454 | 0.546 | 0.600 | 0.400 | 0.372 | 0.628 | 0.113 | 0.887 | 0.770 | 0.230

Table A-5: Shift from f, to fg for E2

A.2.3 E3results

In Figure A-3, we display the execution time breakdown for the updated SPEC95 runs,
using a more mature simulator and more up-to-date parameters. Since many of these bench-
marks were analyzed in the previous subsection, in this subsection we only describe salient
differences in the results.

The most prominent difference between the results fEd@handE3 is thatfg is much higher
across the board for almost all of the benchmark&3n This difference occurs for two rea-
sons: (1) theE3 experiments were run with a higher ratio of processor cycles to bus cycles
(5:1 instead of the 4:1 ratio used f&R), and (2) we assumed a more aggressive memory hier-
archy that had lower L2 cache access latencies (7 cycles instead ofH2) fdihe main mem-
ory access times were actually slightly larger 8 (40 versus 36 cycles), but that small
difference is negligible considering the fairly low global L2 miss ratios.

Another effect that we see B3 is that the aggressive dynamically scheduled core (much
more aggressive thefl or E2, see Table A-3) causes a larger drogdnthan occurs irEl or
E2. This larger drop has the effect of amplifying the relative size of the memory stall compo-
nents, even though the absolute valuelpis typically reduced by the use of a dynamically
scheduled core.

Compress shows different behavior than any other application in any of the experiment sets:
most of the memory stall time in each experiment—which is non-negligible—is caused by
contention. This result is an artifact of the version of the simulator with which we performed
these experiments. The compress input set we used for this experiment setimwas&ccord-
ing to Table 2-5, the smaller input sets for compress have higher frequencies of stores than is

usual (88% of memory operations fiast were stores, and 45% ftnain , as opposed to 35%

178

1.6 14 14 22
1.44 II .15. - L4 III
1.2 13 r
Il | . b
1.0 26 26 .25.27
0 8— I I I _51.50 I I
. 43
0.6 III III 40 43
0.4

0.2
0.0

ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF
Compress lipeg Perl Su2cor Swim Vortex

SPEC95 benchmarks

13
I3
13

13
13
5]

Normalized execution time

Figure A-3: Execution time breakdown for E3 (SPEC95)

for std andref). The older version of our simulator did not simulate a finite write buffer.
Stores could therefore cause cache misses, causing contention that interfered with loads, but
never directly stalled the commit stage of the pipeline. High frequencies of stores therefore
added toTg but notT, . In the newer version of the memory system simulator, write misses
will stall the commit stage, exerting back pressure on the execution stage, and eventually stall-
ing it if the frequency or duration of the write misses are sufficiently high (as they are for com-
press with theéestor train inputs). For these results, however, the older simulator measured
an optimistically lowT, .

Perl displays an effect similar to vortex: high L1 instruction cache miss ratios (1.6%0) for
cause a high memory stall component that is unmitigated by the latency tolerance optimiza-
tions that we implemented (except for the larger cache blocks, which reduced the I-cache miss

ratio to 1.1%).

In Table A-6, we list the effects that going fromto F have on the memory stall time distri-
bution for E3. ljpeg is shaded because its cache miss rates are too low for the memory stall
time distribution to be meaningful (since bdthandfg are negligible). Perl and vortex actu-
ally show a reduction in the fraction of memory stall time attributablis twhen comparingdr
to A. This reduction occurs because both benchmarks havefhigbmponents due to high
instruction cache miss rates. When the clock rate is increased for expeRnigrthanges lit-

tle, butT, increases since L2 and memory instruction fetches become more expensive. This in

179

compress iipeg perl su2cor swim vortex

Exp| 1 fa fL fa fL fa fL fa fL fa fL fa

A |/0.120 | 0.880 | 0.348 | 0.652 | 0.594 | 0.406 | 0.371 | 0.629 | 0.468 | 0.532 | 0.598 | 0.402

F | 0.106 | 0.894 | 0.350 | 0.650 | 0.620 | 0.380 | 0.218 | 0.782 | 0.008 | 0.992 | 0.663 | 0.337

Table A-6: Shift from f, to fg for E3

turn increase$, which decreasefg. Su2cor and swim show significant increases infthe
component of memory stall time. For experiméntswim spends almost all of its memory
stall time in bandwidth stalls. This aberration occurs because the large core can exploit
enough ILP in swim to fully tolerate almost all memory latencies in the absence of memory
contention, making, negligible. Because of contention, however, memory stall time mush-

rooms to 43% of execution time, nearly all of which results from finite bandwidth.

A.3 Summary

Our results show that limited bandwidth and contention in the memory system can cause
serious performance degradation in processor performance. For smaller (SPEC92) bench-
marks running on less aggressive processors, the fraction of time spent in bandwidth stalls
averaged 14%. For slightly larger applications (even using their small data sets) running on
highly aggressive processor, this fraction swelled to over 34%, on average.

Two factors contribute to these large bandwidth stalls. The success of processor cores and
latency tolerance techniques at reducing computation time and raw memory latency stalls,
respectively, increases the bandwidth stalls as a relative component of execution time. Also,
the presence of so many memory operations existing in the memory hierarchy simulta-
neously—for the more aggressive processor models—causes contention to increase, further
contributing to bandwidth stalls.

We see three classes of application behavior in these experiments. The first plasess
sor-boundapplications: these are applications that have such low cache miss ratios that they
are dominated b¥s Eqgntott and espresso i, li in E2, and ijpeg inE3 are all examples of

this class of applications. To improve performance for these applications, better processing

180
cores and faster clocks are the only hardware solution. The second application class we call

instruction-boundapplications; these are applications for which high instruction cache rates
are the performance bottleneck. Perl and vortex are examples of this class of applications. To
improve performance for these applications, instruction cache performance must be improved,
whether with larger instruction caches, trace caches [98], or instruction prefetching schemes
[58]. The third class of applications imndwidth-boundpplications, into which all the other
benchmarks we measured in these studies fall. ILP processor cores and sophisticated latency
tolerance techniques make these programs progressively more bandwidth-bound as these
techniques are pursued more aggressively. Many research efforts are underway to improve the
performance of the first two classes of applications. It is on the third class that we focused in

this dissertation.

Appendix B

Cache performance of SPEC95

B.1 Set associativity

181

benchmark [pssoc. 4KB 8KB |16KB RB2KB 64KB 1P8KB 2b6KB 512KB IMB
099.g0 1 [28.007 |21.403 9.971 5.468 3.035 1.681 1.481 0.001 [0.000
2 | - 15.339 | 8.781 | 2.749 | 0.913 0.356 0.025 0.000 | 0.000
e 5.955 | 2.409 | 0.532 0.066 0.008 0.000 | 0.000
8| -—— | | - 1.892 | 0.477 0.032 0.001 0.000 | 0.000
124.m88ksim 1 [4546 | 2564 | 1.522 | 0.904 | 0.426 0.141 0.132 0.007 | ----
2| e 0.653 | 0.297 | 0.165 | 0.061 0.025 0.008 0.007 | -----
R 0.099 | 0.061 | 0.021 0.009 0.008 0.007 | ------
e e 0.049 | 0.012 0.009 0.008 0.007 | --—--
126.gcc 1 [7951 | 5146 | 3.265 | 1.975 | 1.043 0.619 0.359 0.128 | 0.064
2| - 3.223 | 1.848 | 1.051 | 0.575 0.312 0.145 0.055 | 0.015
4 | - - 1.435 [0.818 | 0.469 0.283 0.129 0.040 | 0.013
8| - | e | e 0.781 | 0.444 0.279 0.124 0.036 | 0.012
129.compress 1] 5617 | 5519 | 5466 | 5427 [5.380 5.162 1.113 0.369 | -----
2 | - 5.367 | 5.337 | 5.320 | 5.304 5.191 1.464 0351 | --—---
e 5.333 | 5.315 | 5.301 5.216 2.063 0351 | --—---
8| -—— | - - 5.315 | 5.300 5.228 3.216 0351 | --—---
130.li 1| 3829 | 2241 | 1.127 | 0.476 | 0.016 0.000 0.000 [- | -
2| e 1.083 | 0.555 | 0.192 | 0.012 0.000 0.000 [- | -
R 0.483 | 0.215 | 0.000 0.000 0.000 [- | -
e e 0.234 | 0.000 0.000 0.000 | - | -
132.1jpeg 1 [9.607 | 3577 | 1843 | 0.826 | 0.552 0.360 0.278 0.233 | 0.217
2| - 1942 | 0.671 [0.338 | 0.205 0.100 0.047 0.042 | 0.042
4 | | - 0.492 | 0.265 | 0.199 0.098 0.044 0.042 | 0.042
8| | e | e 0.251 | 0.202 0.101 0.042 0.042 | 0.042
134.perl 1] 5688 | 3.145 | 2.150 | 1.679 | 0.801 0.495 0.257 0.205 | 0.165
2 | - 1.719 | 1.055 [0.590 | 0.515 0.370 0.209 0.174 | 0.155
e 0.569 | 0.458 | 0.423 0.376 0.214 0.175 | 0.155
8| —- | -1 - 0.441 | 0.423 0.381 0.226 0.175 | 0.156
147.vortex 1| 6955 | 5103 | 3.141 | 1.464 | 0.922 0.519 0.318 0.215 | 0.133
2| - 2674 [1.805 | 1.009 | 0.570 0.308 0.194 0.129 | 0.086
R 1.468 | 0.840 [0.439 0.258 0.156 0.100 | 0.073
e e 0.730 | 0.402 0.228 0.149 0.095 | 0.071

Table

B-1: Miss rates for varied associativities on the SPECINT95 data stream

182

benchmark hssoc. | 4KB | 8KB [16KB [B2KB bH4KB 1P8KB 256KB 5]2KB IMB
101.tomcatv 1 8.955 7.561 4275 1.933 1.1/5 1.157 1.145 1.137 1.176
7 — 5.626 | 4.446 | 0.929 | 0.390 | 0365 | 0361 | 0356 | 0.347
;) — e — 3.647 | 1.075 | 0.363 | 0.362 | 0.361 | 0358 | 0.353
<) p— — 1.105 | 0.363 | 0.362 | 0.361 | 0.358 | 0.353
102.swim T [49.698 | 39.780 |21.024 | 6.658 | 2.015 | 1.980 | 1.976 | 1.968 | 1.960
N — 38.302 [23.768 | 3.296 | 1.963 | 1.943 | 1.943 | 1.942 | 1.940
/) — e — 24958 | 3.391 | 1.056 | 1.676 | 1675 | 1674 | 1.671
R R — e — 3.088 | 1.956 | 1.676 | 1.675 | 1.674 | 1671
103.suZcor T [10.110 | 8.058 | 7.279 | 6.693 | 2.350 | 1.883 | 1372 | 0.640 | 0.286
) — 29013 | 2.440 | 2.294 | 2.136 | 1.742 | 1.292 | 0460 | 0.199
/I — — 2.107 | 1.977 | 1.883 | 1.761 | 1.320 | 0443 | 0.180
) — R — i — 1931 | 1.692 | 1527 | 1.358 | 0.447 | 0.168
104 hydro2d T [5203 | 4258 | 3539 | 2.880 | 2.728 | 2.660 | 2.636 | 2523 | 2.289
N — 3250 | 3.001 | 2.662 | 2.504 | 2587 | 2583 | 2562 | 2.332
;) — e — 2.010 | 2.631 | 2584 | 2.583 | 2.582 | 2.565 | 2.389
i — e — R — 2644 | 2584 | 2584 | 2582 | 2567 | 2400
107.mgrid T [5934 | 2.620 | 1.865 | 1.457 | 1.235 | 0966 | 0001 | 0596 | 0.566
/N — 1224 | 1.001 | 0.967 | 0.933 | 0.775 | 0602 | 0572 [0551
/) — R — 0.994 | 0.977 | 0932 | 0018 | 0603 | 0575 | 0.548
[R — e — 0.075 | 0.932 | 0.004 | 0.601 | 0581 | 0545
110.applu T [5002 | 2.630 | 1.013 | 1.573 | 1.380 | 1.266 | 1.226 | 1.184 | 1.098
i — 1560 | 1.280 | 1.234 | 1.222 | 1217 | 1.200 | 1.156 [1.085
/) E— — 1255 | 1.210 | 1.217 | 1.215 | 1.204 | 1.155 | 1.086
) — R — e — 1218 | 1.217 | 1.215 | 1.207 | 1.141 | 1.098
125.1urb3d T [4.065 | 3.461 | 3.255 | 2.158 | 1.364 | 1.271 | 0.871 | 0394 | 0.386
N — 2584 | 2.306 | 2.072 | 1.234 | 1.166 | 0883 | 0379 | 0.377
;I — e — 1843 | 1.727 | 1.040 | 0.934 | 0932 | 0378 | 0374
< — p— — 1190 | 0578 | 0394 | 0.394 | 0378 | 0374
T41.apsi T [6995 | 59011 | 5.646 | 4450 | 2.043 | 1673 | 0.816 | 0.056 | 0.001
/N — 2.070 | 2.732 | 2611 | 2.130 | 1.478 | 0381 | 0021 | 0.000
/) — e — 2.074 | 2.021 | 1.677 | 0394 | 0.223 | 0.008 [0.000
< J [R — e — 2.002 | 1.739 | 0.388 | 0.158 | 0.011 | 0.000
145 .Tpppp T [5638 | 4334 | 3.726 | 2.986 | 2.021 | 2823 [0.000 | —— | -
7 — 1536 | 0.703 | 0379 | 0072 | 0045 | 0000 | - | -
;I —— R — 0242 | 0.065 | 0.014 | 0.000 | 0.000 | - | -
) — R — i — 0.054 | 0.008 | 0.000 [0.000 | - | -
146.waves T [24.882 [21.038 [12.873 | 7.568 | 1.888 | 1.057 | 0.824 | 0.680 | 0.610
7 — 20.266 [13.995 | 6.446 | 1.234 | 0.700 | 0.438 | 0.315 | 0.249
;) — e — 15.304 | 6.327 | 1.245 | 0.606 | 0384 | 0283 | 0.219
< [p— — 6.448 | 1.293 | 0613 | 0.361 | 0.285 | 0.216

Table B-2: Miss rates for varied associativities on the SPECFP95 data stream

183

B.2 Block size
blk. size | 4KB | 8KB | 16KB |32KB |64KB |128KB ig56KB EleKB pMB
data reference stream
16B 16.270 10.366 6.159 3.605 2.064 1.064 0.835 0.002 0.001
32B | 20.450 | 13.322 7.539 4218 2.377 1.291 1.092 0.002 0.000
64B 28.007 21.403 9.971 5.468 3.035 1.681 1.481 0.001 0.000
128B | 32.791 | 26.280 | 12.884 7.049 3.957 2.283 2.049 0.001 0.000
256B | 37.808 | 30.704 | 16.867 9.378 5.274 3.098 2.804 0.002 0.000
512B 44510 36.112 22.459 13.202 7.460 4.290 3.923 0.003 0.000
1024B 53.363 43.870 30.361 18.400 10.885 6.135 5.521 0.004 0.000
2048B | -—---- 50.711 37.615 25.455 14.553 8.325 7.045 0.232 0.000
4096B | - | - 47549 | 32.105 | 20.485 | 12.932 9.439 0.483 0.000
8192B | ——— | - | - 41768 | 30.578 | 21.073 | 11.938 1.307 0.000
instruction request stream
16B 21.629 18.027 13.931 8.220 2.821 0.740 0.176 0.001 0.000
32B 11.917 9.905 7.697 4572 1.580 0.392 0.094 0.001 0.000
64B 6.912 5.758 4.490 2.673 0.924 0.215 0.051 0.000 0.000
128B 4301 3.564 2.784 1.676 0.561 0.122 0.028 0.000 0.000
256B 2.838 2.337 1.816 1.131 0.368 0.073 0.017 0.000 0.000
512B 2.236 1.768 1.322 0.837 0.270 0.045 0.010 0.000 0.000
1024B 1.979 1.518 1.093 0.679 0.237 0.031 0.006 0.000 0.000
2048B | -—---- 1.476 1.052 0.709 0.182 0.022 0.004 0.000 0.000
4096B | - | - 1.225 0.856 0.215 0.022 0.004 0.000 0.000
8192B | - | - | - 1.031 0.263 0.026 0.006 0.000 0.000
unified instruction and data stream

16B 26.504 21.372 16.477 10.256 5.176 2.468 1.335 0.536 0.534
32B | 18.964 | 14.976 | 11.260 7177 3.925 1.923 1.167 0.439 0.437
64B 15.801 12.620 8.841 5.726 3.350 1.666 1.091 0.369 0.368
128B | 14549 | 11.599 7.800 5.063 3.087 1562 1.071 0.306 0.305
256B | 15.279 | 12.108 7.870 5.100 3.257 1.692 1.181 0.251 0.250
512B 17.902 13.670 9.233 5.792 3.795 1.948 1.387 0.216 0.215
1024B 22.485 16.488 11.506 7.206 4.822 2.552 1.783 0.204 0.203
2048B | -—---- 22.456 15.569 10.007 6.872 3.788 2.333 0.312 0.260
O N = T B e e UL LU R—
8192B | - | - | - 20.390 | 15.210 9215 4838 1.332 1.034

Table B-3: Cache miss rates for 099.go, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB |I.28KB ¢56KB 5}12KB 1|MB
data reference stream
168 3.773 1.807 1.182 0.549 0.275 0.123 0.117 0.028 | —
378 4.189 2157 1.387 0.713 0.337 0.120 0.116 0014 | —
64B 4.546 2.564 1.522 0.904 0.426 0.141 0.132 0.007 | ------
1288 6.394 3.934 1.800 0.976 0.496 0.203 0.183 0.004 | —
256B 10.353 6.730 2.959 1.687 0.762 0.291 0.272 0.002 | ------
512B 14.294 8.890 3.786 2.055 1.087 0.488 0.469 0.001 | ------

Table B-4: Cache miss rates for 124.m88ksim, test input set, direct-mapped caches

184

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB §512KB 1MB
10248 | 19.284 | 12.056 5.159 Z.621 T.498 0.732 0.711 0.00L | —
2048B | - 15.320 7.197 3.837 2.420 1.292 1.251 0.000 | -
4096B | ——— | 12.952 6.783 3.827 1.872 1.824 0.000 | —
8192B | -—— | - | - 8.743 5.751 3.013 2.935 0.000 | -
instruction request stream
16B | 30.053 [23.435 | 15.011 8.854 4.063 0.003 0.002 0.002 | -
32B | 19.390 | 15.153 | 10.078 6.117 3.167 0.002 0.001 0.001 | —
648 | 13431 | 10.782 7472 4.655 2.208 0.001 0.001 0.000 | —
1288 8.953 6.971 4.941 2.957 1.299 0.001 0.000 0.000 | —-
256B 6.243 5.124 3.468 2.137 1.075 0.000 0.000 0.000 | —
512B 4770 4.006 3112 2.126 1.419 0.000 0.000 0.000 | -
1024B 3.764 3142 2.556 1.839 0.984 0.000 0.000 0.000 | -
2048B | - 2.761 2.185 1517 0.767 0.000 0.000 0.000 | -—
4096B | -—— | - 2.229 1.693 0.655 0.000 0.000 0.000 | —
8192B | -—— | - | - 1.657 0.856 0.009 0.000 0.000 | —
unified instruction and data stream
16B | 29.924 [22.802 | 15.009 9.777 4.061 0.060 0.041 0.018 | -
32B | 20.396 | 15.456 | 10.528 7.190 3.130 0.057 0.040 0015 | —
64B | 14.566 | 11.420 7.726 5.317 2.225 0.058 0.042 0.01T | —
1288 | 11.137 8.493 5.939 3.746 1.530 0.076 0.054 0.010 | —-
256B | 10.294 7.609 5.454 3.381 1.300 0.112 0.078 0.0I13 | —
512B | 11.352 8.477 5.926 4.024 1.743 0.228 0.127 0.014 | —
1024B | 16.410 | 10.468 6.303 3.994 1.647 0.318 0.189 0.016 | -
2048B | - 15.047 9.594 6.771 4179 2.287 0.359 0.057 | —
4096B | ——— | - 16.938 | 13.503 | 10.881 8.532 3.688 3250 | —
8192B | — | —- | —- 16.075 | 12.377 9.603 4.409 3707 | —
Table B-4: Cache miss rates for 124.m88ksim, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB |32KB b4KB F28KB ¢56KB Q12KB pMB
data reference stream
16B 8.809 6.129 4155 2.702 1.639 1.027 0.620 0.255 0.144
32B 7.880 5.208 3.349 2.100 1.242 0.767 0.451 0.173 0.093
64B 7.951 5.146 3.265 1.975 1.043 0.619 0.359 0.128 0.064
128B 8.930 5.696 3.560 1.974 0.982 0.560 0.322 0.109 0.052
256B | 11.060 7.106 4304 2.305 1.141 0.614 0.360 0.111 0.050
512B 14.911 9.588 5.913 3.231 1.508 0.772 0.453 0.135 0.060
1024B | = | = | = | = | e e e e ==
2048B | - | | | [e e e =
40968 | - | = | = | = | = | = | = | — | —
8192B | —— | | | | = | = | = | ——— | —
instruction request stream
16B | 21.451 | 16.574 | 11.878 7.341 4218 1.739 1.229 0.475 0.165
32B | 12.812 9.994 7.303 4595 2.651 1.094 0.779 0.295 0.107
64B 8.211 6.492 4.837 3.090 1.766 0.752 0.535 0.194 0.077
128B 5.716 4.561 3.482 2.291 1.319 0.572 0.418 0.149 0.061
2568 4121 3.323 2.591 1.775 1.041 0.452 0.337 0.121 0.055
512B 3.292 2.584 2.043 1.466 0.927 0.435 0.321 0.106 0.050

Table B-5: Cache miss rates for 026.gcc, test input set, direct-mapped caches

185

blk. size 4KB 8KB 16KB [32KB |[64KB 128KB 256KB 512KB 1MB

10248 | —— | — | — [— [— [— 1 — | — [—

LI E— p— e — e e e e

7] EE— p— L ——— - e e e e

BI92B | o | o | o | e | e [e | e [e [

unified instruction and data stream

16B 22.185 17.082 12.468 8.145 4.920 2.443 1.357 0.609 0.296

32B 15.075 11.486 8.382 5.520 3.344 1.695 0.919 0.404 0.203

64B 11.719 8.721 6.313 4.177 2.497 1.314 0.683 0.294 0.155

128B 10.712 7.627 5.429 3.552 2.132 1.130 0.576 0.244 0.130

256B 11.775 7.823 5.327 3.467 2.074 1.089 0.525 0.221 0.120

512B 15.170 9.531 6.148 3.923 2.410 1.267 0.598 0.254 0.146

0248 | = | = | = | = [= [= | = [= =

LI E— pa— e — e e e e

7] EE—— p— L ——— - e e e e

BI92B | o | o | o | e | e | e | e [e [

Table B-5: Cache miss rates for 026.gcc, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB F28KB ¢56KB qlzKB qMB

data reference stream

16B 20.961 20.883 20.840 20.806 20.764 20.336 3.857 1.446 | ------

32B 10.698 10.606 10.564 10.535 10.492 10.223 2.033 0.728 | ------

64B 5.617 5.519 5.466 5.427 5.380 5.162 1.113 0.369 | -—----

128B 3.347 3.223 3.010 2.963 2.903 2.625 0.639 0.190 [------

256B 2.857 2.070 1.778 1.697 1.621 1.357 0.394 0.102 | ------

512B 2.797 1.875 1.454 1.166 0.985 0.727 0.263 0.074 | ---—--

1024B 16.410 10.468 6.303 3.994 1.647 0.318 0.189 0.016 | -----

2048B | - 15.047 9.594 6.771 4.179 2.287 0.359 0.057 | ------
409B | - | - 16.938 13.503 10.881 8.532 3.688 3.250 | -—----
8192B | - | - | - 16.075 12.377 9.603 4.409 3.707 | -

instruction request stream

16B 2.190 0.807 0.567 0.165 0.101 0.049 0.049 0.049 | ------

32B 1.632 0.515 0.354 0.097 0.061 0.028 0.028 0.028 | ------

64B 1.193 0.364 0.244 0.064 0.038 0.016 0.016 0.016 | ------

128B 0.871 0.267 0.177 0.046 0.025 0.009 0.009 0.009 [------

256B 0.590 0.192 0.119 0.036 0.019 0.005 0.005 0.005 | ------

512B 0.516 0.145 0.092 0.030 0.015 0.003 0.003 0.008 | ------

1024B 16.410 10.468 6.303 3.994 1.647 0.318 0.189 0.016 | ------

2048B | - 15.047 9.594 6.771 4.179 2.287 0.359 0.057 | ------
409B | - | - 16.938 13.503 10.881 8.532 3.688 3.250 | -—----
8192B | - | - | - 16.075 12.377 9.603 4.409 3.707 | -

unified instruction and data stream

16B 10.994 9.409 8.805 8.544 8.459 8.248 2.144 0.682 | ------

32B 6.946 5.315 4.638 4.413 4.325 4.181 1.156 0.354 | ------

64B 5.202 3.432 2.666 2.402 2.286 2.154 0.659 0.190 [------

128B 5.220 2.981 1.909 1521 1.340 1.156 0.408 0.109 | ------

256B 6.693 3.553 1.858 1.222 0.925 0.693 0.289 0.068 | ------

512B 10.912 5.569 2.722 1.481 0.908 0.551 0.266 0.052 | ------

Table B-6: Cache miss rates for 129.compress, test input set, direct-mapped caches

186

blk. size 4KB 8KB 16KB |32KB |64KB 128KB 256KB §12KB 1MB
10248~ | 20.175 | 10.065 4929 2425 1.356 0.755 0.439 0145 | —
2048B | - 20.685 9.457 4531 2.491 1.273 0.747 0256 | ——-
409B | - | - 18.201 8.643 4.653 2.296 1.297 0366 | -
8192B | - | e | - 16.840 8.802 4.331 2.276 0.462 | ------

Table B-6: Cache miss rates for 129.compress, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB |L28KB ¢56KB 5}12KB 1|MB
data reference stream
16B 5.088 3.651 2.178 0.993 0.034 0.001 0.00I | - [—-
32B 4.080 2.685 1.446 0.640 0.022 0.001 0.001 | -——— | —
64B 3.829 2.241 1.127 0.476 0.016 0.000 0.000 | - | -
128B 4.072 2.212 1.014 0.405 0.014 0.000 0.000 | - | -
256B 5.311 2.878 1.478 0.592 0.018 0.000 0.000 | - | -
512B 7.583 4145 2.228 0.712 0.020 0.000 0.000 | = [—=
1024B | 14.435 8.824 3.884 0.984 0.049 0.000 0.000 | - | —-
2048B | - 19.512 | 14.353 2.941 1.408 0.000 0.000 | - | —-
4096B | - | - 22.624 6.141 3.766 0.000 0.000 | - | -
8192B | -——- | —— | —- 10.858 6.089 0.000 0.000 | —— | —
instruction request stream
16B | 14.666 7.401 1.762 1.626 0.154 0.000 0.000 | - [—-
32B 9.483 4867 1.214 1.120 0.124 0.000 0.000 | - | —-
64B 5.674 3.037 0.869 0.802 0.098 0.000 0.000 | - | -
128B 3.814 2.265 0.694 0.625 0.073 0.000 0.000 | - | -
256B 2.991 1.794 0.523 0.457 0.080 0.000 0.000 | - | -
512B 2.982 2.059 0.817 0.717 0.379 0.000 0.000 | - | ------
1024B 2.820 1.925 0.783 0.682 0.379 0.000 0.000 | - | —-
2048B | - 2.145 1.140 1.026 0.539 0.000 0.000 | - | —-
4096B | - | - 1.321 1.175 0.586 0.000 0.000 | - | -
8192B | - | - | - 1.159 0.472 0.000 0.000 | - | -
unified instruction and data stream

16B | 16.799 9.233 4252 2.591 1.010 0.064 0.063 | - [—-
32B | 12.438 6.884 3.204 1.851 0.726 0.043 0.043 | - | —
64B 9.103 5.279 2.722 1.448 0.589 0.032 0.031 | - | -
128B 8.328 5.144 2.724 1.383 0.662 0.028 0.028 | - | -
256B 9.590 6.588 3.469 1.582 0.872 0.020 0.020 | - | -
512B | 14.342 9.344 5513 2.613 1.656 0.026 0.026 | - | —-=
1024B | 22.374 | 15.369 8.668 4859 3.655 0.025 0.025 | = | —
2048B | - 26.398 | 17.995 8.266 6.662 0.036 0.036 | - | —-
4096B | - | - 30.784 15.098 11.760 0.089 0.088 | - | -
8192B | - | - | - 27.286 17.566 0.394 0.386 | - | -

Table B-7: Cache miss rates for 130.1i, test input set, direct-mapped caches

187

blk. size | 4KB 8KB 16KB |32KB |64KB |128KB :1256KB E}lZKB |1MB
data reference stream
16B 9.868 4.837 2.821 1.600 1.122 0.705 0.517 0.426 0.387
32B 9.072 3.769 2.082 1.059 0.721 0.453 0.335 0.273 0.248
64B 9.607 3.577 1.843 0.826 0.552 0.360 0.278 0.233 0.217
128B | 11.942 4592 2.150 0.845 0.569 0.389 0.319 0.279 0.266
256B | 16.031 7.063 3.138 1.115 0.759 0.532 0.452 0.406 0.392
512B 21.581 11.593 5.419 1.823 1.242 0.890 0.765 0.689 0.667
1024B 29.368 18.975 10.243 3.508 2.497 1.795 1.566 1.443 1.400
2048B | -——- 22.030 | 12.857 4544 3.137 2.159 1.821 1.653 1.589
4096B | - | - 17.286 8.251 5.056 2.489 1.831 1.468 1.335
8192B | - | - | - 13.007 7579 3.659 2.386 1.658 1.454
instruction request stream
16B 1.629 1.170 0.776 0.328 0.129 0.067 0.004 0.001 0.001
32B 0.907 0.644 0.430 0.186 0.074 0.039 0.002 0.001 0.001
64B 0.535 0.373 0.247 0.107 0.046 0.025 0.002 0.000 0.000
128B 0.332 0.232 0.156 0.065 0.028 0.016 0.001 0.000 0.000
256B 0.230 0.154 0.106 0.041 0.018 0.011 0.001 0.000 0.000
512B 0.177 0.109 0.072 0.028 0.011 0.007 0.001 0.000 0.000
1024B 0.151 0.086 0.053 0.024 0.008 0.006 0.001 0.000 0.000
2048B | - 0.094 0.051 0.023 0.006 0.004 0.001 0.000 0.000
4096B | - | - 0.060 0.032 0.012 0.007 0.001 0.000 0.000
8192B | - | - | - 0.035 0.015 0.009 0.001 0.000 0.000
unified instruction and data stream

16B 6.934 4.274 2.605 1.536 1.132 0.514 0.253 0.161 0.131
32B 5.510 3.003 1.789 1.033 0.741 0.341 0.163 0.104 0.082
64B 5.075 2.455 1.405 0.784 0.538 0.263 0.126 0.082 0.065
128B 5.737 2.585 1.407 0.757 0.494 0.262 0.123 0.085 0.070
256B 7.330 3.242 1678 0.857 0.558 0.328 0.148 0.108 0.092
512B 11.069 5.489 2.522 1.220 0.776 0.500 0.230 0.170 0.149
1024B 17.266 9.534 4.944 2.473 1.643 1.166 0.460 0.355 0.314
2048B | -——- 14.343 7.231 3.822 2.480 1.780 0.633 0.470 0.410
4096B | - | - 11.778 6.333 4106 2.303 0.732 0.498 0.384
8192B | - | - | - 11.038 6.345 3.586 1.318 0.638 0.456

Table B-8: Cache miss rates for 132.ijpeg, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB [64KB |L28KB 2{256KB E}12KB |].MB
data reference stream

16B 6.280 4.258 3.411 3.033 1.772 1.289 0.687 0.603 0.514

378 5.501 3.453 2554 2.180 1.101 0.749 0.397 0.338 | 0.283

648 5.688 3.145 2.150 1.679 0.801 0.495 0.257 0.205 | 0.165
128B 6.940 3.701 2.242 1.588 0.679 0.391 0.198 0.144 0.108
256B 12.152 5.894 3.882 2.950 0.744 0.395 0.197 0.123 0.084
512B 14.912 7.997 5.285 3.714 1.090 0.489 0.238 0.139 0.085
1024B 18.885 11.358 7.769 5.677 2.273 0.770 0.349 0.199 0.114

Table B-9: Cache miss rates for 134.perl, test input set, direct-mapped caches

188

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 312KB 1MB

2048B | - 18.032 12.544 9.290 4.588 2.673 0.566 0.303 0.1/5
4096B | - | - 16.775 12.864 7.737 5.159 0.968 0.483 0.281
8192B | - | - | - 23.074 11.925 7.846 1.685 0.869 0.481

instruction request stream

16B 18.974 11.271 7.493 5.343 2.238 1.873 0.111 0.000 0.000

32B 12.231 7.579 5.007 3.669 1.622 1.324 0.061 0.000 0.000

64B 8.436 5.201 3.608 2.553 1.111 0.920 0.046 0.000 0.000

128B 6.140 4.411 3.302 2.598 1.056 0.897 0.060 0.000 0.000

256B 5.077 3.707 2.819 2.276 0.835 0.689 0.060 0.000 0.000

512B 4.272 3.240 2.455 2.105 0.807 0.609 0.052 0.000 0.000

1024B 3.965 3.021 2.197 1.759 0.662 0.516 0.066 0.000 0.000

2048B | - 2.735 2.072 1.687 0.649 0.386 0.082 0.000 0.000
4096B | - | - 2.555 1.814 0.908 0.652 0.362 0.000 0.000
8192B | - | - | - 2.091 1.293 0.917 0.497 0.000 0.000

unified instruction and data stream

16B 19.935 12.558 8.602 6.469 3.638 3.010 1.358 0.286 0.222

32B 13.999 8.970 5.965 4.494 2.582 2.086 0.879 0.178 0.138

64B 11.489 7.192 4.585 3.361 1.913 1.534 0.650 0.126 0.096

128B 11.459 6.949 4.534 3.530 1.810 1.425 0.596 0.109 0.081

256B 15.128 8.184 5.119 4.010 1.870 1.459 0.764 0.102 0.069

512B 23.130 10.209 6.391 4.540 2.279 1.583 0.915 0.124 0.077

1024B 29.887 15.105 11.108 8.475 5.674 4.704 1.873 0.183 0.108

2048B | - 21.306 15.592 11.834 7.911 6.501 2.056 0.270 0.145
4096B | - | - 24.558 17.095 12.428 10.684 5.755 0.525 0.209
8192B | - | - | - 26.464 18.033 14.470 8.087 1.042 0.533

Table B-9: Cache miss rates for 134.perl, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB |128KB 2]356KB 5}12KB IlMB

data reference stream

16B 6.215 4.947 3.124 1.568 1.028 0.651 0.451 0.345 0.254

32B 6.433 5.043 3.125 1.479 0.938 0.566 0.363 0.260 0.177

64B 6.955 5.103 3.141 1.464 0.922 0.519 0.318 0.215 0.133

128B 11.992 5.646 3.606 1.880 1.244 0.621 0.374 0.241 0.119

256B 14.353 6.564 4.082 2.373 1.627 0.705 0.423 0.259 0.131

512B 18.936 10.572 5.787 3.358 2.441 0.850 0.501 0.293 0.147

1024B 28.702 16.055 8.631 5.377 3.638 1.745 0.604 0.365 0.184

2048B | - 21.186 11.778 7.207 4.676 2.304 0.837 0.493 0.239
4096B | - | e 14.684 9.367 6.154 3.401 1.291 0.781 0.351
8192B | - | - | - 15.966 12.122 5.028 2.141 1.389 0.812

instruction request stream

16B 31.257 17.651 10.732 5.338 2.987 1.663 0.354 0.149 0.000

32B 18.821 10.508 6.445 3.195 1.780 0.970 0.238 0.092 0.000

64B 11.582 6.864 4.363 2.195 1.279 0.743 0.165 0.061 0.000

128B 8.211 4.926 3.099 1.618 0.996 0.605 0.120 0.040 0.000

256B 6.401 3.762 2.485 1.245 0.844 0.532 0.101 0.029 0.000

512B 4.832 3.026 2.023 1.065 0.713 0.439 0.085 0.027 0.000

1024B 4.096 2.779 1.883 1.029 0.750 0.436 0.088 0.025 0.000

Table B-10: Cache miss rates for 147.vortex, test input set, direct-mapped caches

189

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 312KB 1MB

2048B | - 3.182 1.986 1.087 0.766 0.453 0.089 0.024 0.000
4096B | - | - 2.680 1.661 0.991 0.555 0.108 0.032 0.000
8192B | - | - | - 2.006 1.381 0.822 0.328 0.041 0.000

unified instruction and data stream

16B 27.096 16.806 10.982 6.128 3.874 2.042 0.690 0.352 0.140

32B 18.165 11.595 7.808 4.357 2.736 1.396 0.537 0.264 0.106

64B 13.775 8.982 6.128 3.564 2.309 1.180 0.445 0.213 0.084

128B 14.247 8.312 5.690 3.533 2.432 1.175 0.430 0.202 0.075

256B 14.813 9.077 5.461 3.446 2.439 1.250 0.437 0.197 0.079

512B 17.524 | 10.997 6.298 4.036 2.928 1.359 0.500 0.239 0.088

1024B 27.743 16.685 9.314 6.784 5.139 2.021 0.635 0.282 0.116

2048B | - 25.753 17.032 12.335 10.373 2.882 1.004 0.399 0.151
4096B | - | - 25.289 18.088 14.821 3.899 1.722 0.735 0.219
8192B | - | - | - 28.328 23.080 7.109 4.608 1.523 0.437

Table B-10: Cache miss rates for 147.vortex, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB |128KB :}:56KB E+12KB |1MB

data reference stream

16B 7.976 6.722 3.156 2.234 2.144 2.129 2.115 2.096 2.060

32B 8.361 7.072 3.324 1.690 1.495 1.479 1.468 1.457 1.438

64B 8.955 7.561 4.275 1.933 1.175 1.157 1.145 1.137 1.126

128B 12.101 10.301 5.059 2.122 1.034 1.004 0.989 0.979 0.971

256B 13.357 11.487 5.717 2.290 1.006 0.950 0.921 0.906 0.897

512B 16.897 14.215 6.034 2.432 1.048 0.977 0.887 0.869 0.859

1024B 18.262 14.930 6.751 2.884 1.208 1.074 0.899 0.865 0.848

2048B | ------ 21.066 9.900 5.708 3.837 3.582 0.951 0.886 0.853
4096B | - [e 15.929 6.599 4.368 3.873 1.068 0.943 0.881
8192B | - | - | - 9.906 6.037 5.194 1.780 1.568 1.461

instruction request stream

16B 22.869 18.103 12.350 7.068 2.143 0.094 0.000 0.000 0.000

32B 13.489 11.040 7.765 4.639 1.344 0.075 0.000 0.000 0.000

64B 7.951 6.703 4.854 3.052 0.874 0.075 0.000 0.000 0.000

128B 5.097 4.337 3.248 2.197 0.621 0.094 0.000 0.000 0.000

256B 3.445 2.976 2.263 1.681 0.479 0.075 0.000 0.000 0.000

512B 2.300 1.981 1.456 1.089 0.385 0.075 0.000 0.000 0.000

1024B 2.159 1.727 1.333 0.948 0.376 0.094 0.000 0.000 0.000

2048B | ------ 1.821 1.155 0.779 0.282 0.056 0.000 0.000 0.000
4096B | - [e 1.117 0.732 0.300 0.038 0.000 0.000 0.000
8192B | - | - | - 0.788 0.394 0.056 0.000 0.000 0.000

unified instruction and data stream

16B 22.155 17.770 12.438 7.540 3.295 0.949 0.570 0.558 0.546

32B 14.460 11.938 8.510 5.285 2.280 0.710 0.403 0.394 0.386

64B 10.245 8.562 6.112 3.959 1.667 0.600 0.320 0.312 0.306

128B 9.159 7.504 4.996 3.225 1.446 0.563 0.281 0.272 0.267

256B 9.228 6.973 4.594 2.977 1.300 0.567 0.266 0.254 0.248

512B 10.968 7.641 4.223 2.678 1.175 0.501 0.263 0.248 0.240

1024B 16.882 8.551 4.627 2.897 1.363 0.702 0.306 0.253 0.240

Table B-11: Cache miss rates for 101.tomcaty, test input set, direct-mapped caches

190

blk. size 4KB 8KB 16KB 32KB |64KB 128KB 256KB §512KB 1MB

2048B | - 15.825 7.081 4.487 2.854 1.399 0.367 0.296 0.274
409B | - | - 12.987 6.775 4.376 1.723 0.613 0.370 0.332
8192B | - | - | - 13.159 9.039 6.050 4.750 0.557 0.494

Table B-11: Cache miss rates for 101.tomcatyv, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB | 32KB |64KB |128KB :}:56KB E+12KB |1MB

data reference stream

16B | 45.199 | 31.166 8.442 7.393 6.880 6.871 6.865 6.859 6.839

32B 47.764 35.429 13.544 3.900 3.624 3.610 3.603 3.596 3.585

64B 49.698 39.780 21.024 6.658 2.015 1.989 1.976 1.968 1.960

128B 50.823 | 42.673 25.778 8.596 1.246 1.196 1171 1.158 1.149

256B | 51.594 | 44.320 [28.323 9.689 0.934 0.836 0.787 0.762 0.749

512B | 52.356 | 45.481 | 29.900 | 10.467 0.915 0.724 0.629 0.581 0.557

1024B 54.204 | 46.792 31.325 11.334 1.187 0.809 0.620 0.526 0.478

2048B | - 49.780 34.317 12.875 1.912 1.157 0.781 0.592 0.498
4096B | - | - 44.000 23.329 12.693 11.429 10.797 10.482 10.324
8192B | - | - | - 42.222 35.214 33.084 32.382 32.031 31.855

instruction request stream

16B 3.162 2.170 0.809 0.001 0.001 0.001 0.001 0.001 0.001

32B 1.674 1178 0.436 0.001 0.001 0.000 0.000 0.000 0.000

64B 1.302 0.806 0.435 0.001 0.000 0.000 0.000 0.000 0.000

128B 0.868 0.620 0.372 0.000 0.000 0.000 0.000 0.000 0.000

256B 0.868 0.620 0.372 0.000 0.000 0.000 0.000 0.000 0.000

512B 0.743 0.496 0.372 0.000 0.000 0.000 0.000 0.000 0.000

1024B 0.867 0.620 0.248 0.000 0.000 0.000 0.000 0.000 0.000

2048B | - 0.867 0.557 0.000 0.000 0.000 0.000 0.000 0.000
4096B | - | - 0.743 0.000 0.000 0.000 0.000 0.000 0.000
8192B | - | - | - 0.000 0.000 0.000 0.000 0.000 0.000

unified instruction and data stream

16B 14.965 9.976 3.400 2.237 1.792 1.710 1.668 1.646 1.631

32B 14.108 10.080 4.240 1.396 1.025 0.939 0.895 0.873 0.860

64B 14.151 10.784 5.969 2.059 0.663 0.564 0.515 0.490 0.476

128B 14.547 11.409 7.079 2.558 0.510 0.391 0.331 0.301 0.286

256B 16.155 12.116 7.866 2.932 0.500 0.337 0.256 0.215 0.195

512B | 18.250 | 13.050 8.718 3.418 0.636 0.381 0.254 0.190 0.158

1024B | 22.350 15.998 10.833 5.146 2.044 0.555 0.329 0.215 0.159

2048B | - 20.082 13.623 6.645 2.853 0.999 0.547 0.322 0.209
4096B | - | - 17.738 10.026 5.922 3.780 3.095 2.752 2.580
8192B | - | - | - 21.737 12.381 9.477 8.492 7.999 7.753

Table B-12: Cache miss rates for 102.swim, test input set, direct-mapped caches

191

blk. size | 4KB 8KB 16KB |32KB |64KB |128KB ig56KB EleKB pMB

data reference stream

16B 10.739 9.185 8.783 8.492 8.106 6.752 4.993 2.347 0.977

32B 7.238 5.481 4.899 4.531 4.202 3.470 2.554 1.202 0.511

64B 10.110 8.058 7.279 6.693 2.350 1.883 1.372 0.640 0.286

128B 23.005 20.680 19.791 19.191 4552 1.186 0.838 0.383 0.195

256B 30.311 25.402 24.296 23.511 15.463 1.951 0.673 0.296 0.186

512B | 34.351 | 28.759 | 27.091 | 26.020 | 20.827 6.089 1.296 0.287 0.203

1024B | 38.765 | 33.631 | 29.745 | 28.399 | 24.157 9.415 3.971 0.499 0.248

2048B | - 38.735 33.012 30.771 26.572 12.439 6.391 1512 0.403
4096B | - [e 38.035 | 35.276 29.068 15.567 8.662 2.685 0.896
8192B | - | e [- 38.438 30.873 18.934 11.316 4.608 2.185

instruction request stream

16B 9.640 7.180 4.047 1.706 0.850 0.002 0.001 0.001 0.001

32B 5772 4.460 2.616 1.103 0.550 0.001 0.001 0.001 0.001

64B 3.631 2.897 1.838 0.701 0.325 0.000 0.000 0.000 0.000

128B 2.224 1.831 1.212 0.451 0.250 0.000 0.000 0.000 0.000

256B 1.556 1.331 0.974 0.375 0.200 0.000 0.000 0.000 0.000

512B 1.004 0.883 0.662 0.225 0.100 0.000 0.000 0.000 0.000

1024B 0.788 0.672 0.549 0.275 0.125 0.000 0.000 0.000 0.000

2048B | - 0.610 0.511 0.200 0.100 0.000 0.000 0.000 0.000
4096B | - [e 0.526 0.187 0.125 0.050 0.000 0.000 0.000
8192B | - | - | - 0.259 0.161 0.123 0.000 0.000 0.000

unified instruction and data stream

16B 13.690 10.184 6.955 4.969 3.865 2.664 1.769 0.853 0.376

32B 9.742 6.993 4.642 3.211 2.307 1.520 0.925 0.447 0.199

64B 9.090 6.624 4.819 3.645 1.519 0.977 0.517 0.248 0.114

128B 12.499 9.969 8.534 7.671 2.251 0.799 0.355 0.177 0.097

256B 15.388 11.706 10.125 9.139 5.855 1.072 0.311 0.150 0.093

512B 17.748 13.136 11.140 10.003 7.665 2.496 0.549 0.162 0.105

1024B 22.906 16.128 12.506 11.245 8.910 3.672 1.482 0.246 0.128

2048B | - 20.726 15.174 12.990 10.189 4.881 2.386 0.624 0.200
4096B | - | - 19.804 16.255 11.572 6.426 3.318 1.097 0.388
8192B | - | e [- 23.451 14.983 8.428 4.806 2.195 1.234

Table B-13: Cache miss rates for 103.su2cor, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB [64KB |L28KB 2{256KB E}12KB |].MB

data reference stream

16B 13.484 12.734 11.755 10.882 10.599 10.445 10.392 9.982 9.056

32B 7.462 6.730 6.020 5.508 5.333 5.244 5.212 5.005 4.540

64B 5.203 4.258 3.539 2.880 2.728 2.660 2.636 2.523 2.289

128B 5.073 3.539 2.583 1.652 1.479 1.399 1.371 1.301 1.178

256B 8.228 5.113 3.582 1.625 1.324 1.205 1.159 1.103 1.033

512B 15.168 9.177 6.147 2.687 1.471 1.278 1191 1.128 1.078

1024B 24.432 15.510 9.939 4.552 2.630 1.899 1.740 1.642 1511

Table B-14: Cache miss rates for 104.hydro2d, test input set, direct-mapped caches

192

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB §512KB LMB
20488 | — 24327 | 14.881 7.160 T 177 2695 Z2.408 2254 2023
409B | - | - 22.034 11.827 7.672 3.740 3.250 2.989 2.355
8192B | - | - | - 18.172 12.422 6.023 5.237 4.844 2.362
instruction request stream
16B 7.047 5.541 3.649 2.194 0.864 0.482 0.001 0.001 0.001
32B 4,223 3.322 2.257 1.329 0.519 0.273 0.000 0.000 0.000
64B 2.642 2.105 1.493 0.908 0.344 0.164 0.000 0.000 0.000
128B 1.659 1.235 0.891 0.543 0.214 0.097 0.000 0.000 0.000
256B 1.177 0.799 0.609 0.391 0.173 0.062 0.000 0.000 0.000
512B 0.945 0.572 0.442 0.310 0.159 0.035 0.000 0.000 0.000
1024B 0.805 0.417 0.331 0.257 0.149 0.028 0.000 0.000 0.000
2048B | --—---- 0.384 0.299 0.255 0.177 0.021 0.000 0.000 0.000
409B | - | - 0.269 0.226 0.163 0.034 0.000 0.000 0.000
8192B | - | - | - 0.220 0.159 0.034 0.000 0.000 0.000
unified instruction and data stream

16B 11.223 9.172 7.203 5.529 4.140 3.682 3.264 3.127 2.834
32B 7.341 5.662 4.338 3.163 2.247 1.906 1.647 1.573 1.424
64B 5.714 4.075 3.031 2.032 1.337 1.026 0.846 0.800 0.721
128B 5.443 3.446 2.383 1.408 0.883 0.588 0.462 0.421 0.376
256B 7.006 4.296 2.832 1.526 1.011 0.524 0.406 0.364 0.333
512B 10.533 6.281 3.971 2.081 1.213 0.632 0.442 0.385 0.353
1024B 15.732 9.834 6.101 3.190 1.980 0.963 0.655 0.566 0.499
2048B | --—---- 15.453 9.426 5117 3.167 1.369 0.940 0.795 0.678
409B | - | - 15.242 8.499 5.319 2.081 1.426 1.167 0.888
8192B | - | - | - 14.129 8.975 3.562 2.389 1.935 1.011

Table B-14: Cache miss rates for 104.hydro2d, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB |128KB 2]356KB 5}12KB IlMB
data reference stream
168 8.083 4.908 4381 3.991 3.822 3.053 2.963 2233 | 2.153
32B 5.178 3.052 2.510 2.175 2.020 1.600 1.536 1.138 1.093
64B 5.934 2.620 1.865 1.457 1.235 0.966 0.901 0.596 0.566
1288 | 13.171 2.920 1.801 1278 0.908 0.681 0.600 0.333 | 0307
2568 | 18.171 4.007 2.043 1.357 0.873 0.610 0.493 0216 | 0.184
512B | 25.055 7.388 3.964 2.048 1.163 0.718 0.502 0.199 | 0.144
1024B 30.573 12.685 6.377 2.746 1.440 0.832 0.533 0.196 0.121
2048B | = ------ 19.776 12.142 7.764 2.277 1.234 0.720 0.282 0.155
4096B | @ ----—- | - 19.499 13.398 4.990 2.125 1.126 0.486 0.254
81928 | - | o | 23.060 | 13.088 3.872 1.970 0.005 | 0471
instruction request stream

168 0.020 0.018 0.015 0.009 0.004 0.002 0.000 0.000 | 0.000
32B 0.011 0.010 0.009 0.006 0.003 0.001 0.000 0.000 0.000
64B 0.007 0.006 0.005 0.003 0.002 0.001 0.000 0.000 0.000
1288 0.004 0.004 0.003 0.002 0.001 0.001 0.000 0.000 | 0.000
2568 0.003 0.002 0.002 0.001 0.001 0.000 0.000 0.000 | 0.000
5128 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 | 0.000
10248 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000 | 0.000

Table B-15: Cache miss rates for 107.mgrid, test input set, direct-mapped caches

193

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 312KB 1MB

2048B | - 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
4096B | - | e 0.001 0.000 0.000 0.000 0.000 0.000 0.000
8192B | - | - | e 0.000 0.000 0.000 0.000 0.000 0.000

unified instruction and data stream

16B 12.481 8.974 2.906 2.174 1.812 1.367 1.254 0.930 0.880

32B 8.707 6.215 1.927 1331 1.035 0.757 0.670 0.485 0.453

64B 7.588 4.893 1.602 1.011 0.706 0.494 0.413 0.266 0.241

128B 9.387 4.229 1.667 0.964 0.598 0.391 0.298 0.164 0.139

256B 13.314 6.003 2.109 1.148 0.650 0.396 0.272 0.125 0.094

512B 16.806 7.760 3.196 1.629 0.867 0.490 0.300 0.131 0.085

1024B 23.072 13.340 4.958 2.340 1.188 0.641 0.364 0.155 0.088

2048B | - 18.971 8.506 4.934 1.884 1.002 0.557 0.268 0.160
4096B | - | - 14.608 8.795 3.881 1.832 0.955 0.466 0.259
8192B | - | - | - 15.667 8.742 3.574 1.863 0.982 0.585

Table B-15: Cache miss rates for 107.mgrid, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB |128KB :}:56KB E+12KB |1MB

data reference stream

16B 7.216 5.826 5.325 5.061 4.902 4.801 4,723 4.595 4.275

32B 5.234 3.512 2.969 2.693 2.535 2.439 2.389 2.320 2.157

64B 5.092 2.630 1.913 1573 1.380 1.266 1.226 1.184 1.098

128B 6.456 2.852 1.721 1.171 0.873 0.702 0.655 0.622 0.572

256B 9.837 4.124 2.234 1.268 0.753 0.462 0.390 0.352 0.316

512B 15.537 7.355 3.831 2.104 1.145 0.610 0.301 0.240 0.200

1024B 23.102 11671 6.226 3.449 1.850 0.940 0.363 0.213 0.154

2048B | ------ 20.776 10.474 5712 2.996 1.356 0.574 0.307 0.173
4096B | - [e 17.402 9.713 5.127 2.178 0.942 0.559 0.267
8192B | - | - | - 18.624 9.896 4.657 1.804 1.018 0.517

instruction request stream

16B 12.205 4.805 0.003 0.002 0.000 0.000 0.000 0.000 0.000

32B 6.114 2.422 0.002 0.001 0.000 0.000 0.000 0.000 0.000

64B 3.078 1.248 0.001 0.001 0.000 0.000 0.000 0.000 0.000

128B 1.545 0.634 0.000 0.000 0.000 0.000 0.000 0.000 0.000

256B 0.788 0.346 0.000 0.000 0.000 0.000 0.000 0.000 0.000

512B 0.406 0.193 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1024B 0.223 0.134 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2048B | ------ 0.096 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4096B | - [e 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8192B | - | - | - 0.000 0.000 0.000 0.000 0.000 0.000

unified instruction and data stream

16B 13.841 7.226 3.108 2.320 1.832 1671 1.587 1516 1.398

32B 8.522 4.317 1.942 1.351 1.010 0.872 0.814 0.771 0.707

64B 6.295 2.922 1.371 0.886 0.597 0.472 0.427 0.398 0.362

128B 5.656 2.554 1.267 0.718 0.420 0.281 0.238 0.214 0.191

256B 6.956 3.047 1.546 0.791 0.403 0.211 0.156 0.128 0.108

512B 9.310 4.548 2.338 1.190 0.574 0.276 0.135 0.096 0.072

1024B 15.274 6.927 3.603 1.947 0.914 0.418 0.173 0.096 0.061

Table B-16: Cache miss rates for 110.applu, test input set, direct-mapped caches

194

blk. size | 4KB 8KB 16KB |32KB |64KB 128KB 256KB §12KB [MB
20488~ | - II.767 6.252 3393 | 1.487 0.636 0.282 U.145 | 0.0/5
4096B | - | - 13.161 6.023 | 2.629 1.105 0.515 0.294 | 0.122
8192B | - | - | 11.168 | 5.265 2.590 1.335 0.906 | 0.239

Table B-16: Cache miss rates for 110.applu, test input set, direct-mapped caches

blk. size | 4KB | 8KB |16KB |32KB 64KB 1128KB j;seKB qlzKB |1MB
data reference stream
16B 4683 3.920 3.550 2.688 2.268 2.174 1.864 1.505 1.489
32B 4121 3.433 3.178 2.313 1.663 1572 1.204 0.767 0.755
64B 4.065 3.461 3.255 2.158 1.364 1.271 0.871 0.394 0.386
128B 4.644 3.868 3.640 2.119 1.235 1.131 0.710 0.211 0.201
256B 5.738 4.604 4.262 2.149 1.201 1.076 0.637 0.123 0.111
512B 7.478 5.718 5.246 2.256 1.242 1.078 0.617 0.087 0.070
1024B 8.775 6.474 5678 2.390 1.323 1.109 0.620 0.075 0.051
2048B | - 8.759 7.309 2.960 2.506 1.751 1.098 0.541 0.504
4096B | - | -—— 8.740 3.791 3.024 2.387 1.389 0.791 0.730
8192B | - | - | - 7.260 6.202 2.819 1.770 1.002 0.887
instruction request stream
16B | 2.388 | 1.404 | 0.923 0.128 0.037 0.001 0.000 0.000 | 0.000
32B 1.344 0.781 0.532 0.096 0.025 0.001 0.000 0.000 0.000
64B 0.836 0.535 0.382 0.100 0.015 0.000 0.000 0.000 0.000
128B 0.522 0.350 0.276 0.079 0.011 0.000 0.000 0.000 0.000
256B 0.433 0.305 0.259 0.042 0.007 0.000 0.000 0.000 0.000
512B 0.402 0.209 0.189 0.041 0.007 0.000 0.000 0.000 0.000
1024B 0.408 0.207 0.170 0.041 0.007 0.000 0.000 0.000 0.000
2048B | - 0.202 0.166 0.038 0.005 0.000 0.000 0.000 0.000
4096B | - | -—— 0.325 0.043 0.009 0.000 0.000 0.000 0.000
8192B | - | - | - 0.045 0.011 0.000 0.000 0.000 0.000
unified instruction and data stream

16B 7.405 4.438 2.023 1.124 0.868 0.684 0.557 0.441 0.430
32B 5.588 3.170 1.526 0.918 0.636 0.497 0.361 0.228 0.219
64B 4915 2.714 1.375 0.827 0.505 0.400 0.263 0.120 0.114
128B 4773 2.602 1.400 0.802 0.471 0.358 0.217 0.068 0.061
256B 5.477 3.017 1.590 0.807 0.477 0.347 0.198 0.044 0.036
512B 7.615 4.026 2.080 0.885 0.516 0.363 0.197 0.036 0.026
1024B 9.953 5.664 2.669 1.301 0.899 0.383 0.204 0.036 0.022
2048B | - 8.488 3.530 1.617 1.324 0.590 0.354 0.177 0.156
4096B | - | -—— 5.013 2.489 1.676 0.840 0.471 0.266 0.231
8192B | - | - | - 13.694 11.889 1.096 0.660 0.380 0.315

Table B-17: Cache miss rates for 125.turb3d, test input set, direct-mapped caches

195

blk. size | 4KB 8KB 16KB |32KB |64KB |128KB :1256KB E}lZKB |1MB
data reference stream
16B 8.533 7.232 6.902 5.217 3.927 2.491 1.278 0.062 0.001
32B 7.269 6.218 5.985 4.694 3.262 1.939 0.965 0.055 0.001
64B 6.995 5.911 5.646 4.450 2.943 1.673 0.816 0.056 0.001
128B 7.729 6.256 5.954 4369 2.817 1.566 0.761 0.073 0.000
256B 8.978 6.714 6.299 4,466 2.858 1.566 0.767 0.090 0.000
512B 11.845 7.833 7.158 5.060 3.257 1.606 0.789 0.098 0.000
1024B 17.041 10.488 9.395 5.750 3.748 1.712 0.846 0.113 0.000
2048B | -——- 13.644 | 12.018 6.220 3.827 1.699 0.793 0.138 0.002
4096B | - | - 14.810 7.438 4801 1.994 0.984 0.326 0.002
8192B | - | - | - 10.094 6.457 2.329 1.196 0.460 0.024
instruction request stream
16B 4.893 2.957 1.728 0.434 0.169 0.035 0.003 0.000 0.000
32B 2.785 1.682 0.952 0.236 0.090 0.019 0.002 0.000 0.000
64B 1.625 0.965 0.526 0.130 0.051 0.010 0.001 0.000 0.000
128B 0.993 0.570 0.289 0.077 0.033 0.007 0.001 0.000 0.000
256B 0.755 0.405 0.207 0.047 0.022 0.005 0.000 0.000 0.000
512B 0.528 0.302 0.140 0.035 0.017 0.003 0.000 0.000 0.000
1024B 0.500 0.302 0.169 0.028 0.013 0.003 0.000 0.000 0.000
2048B | @ ------ 0.273 0.174 0.028 0.015 0.004 0.000 0.000 0.000
4096B | - | - 0.191 0.031 0.017 0.004 0.000 0.000 0.000
8192B | - | - | - 0.043 0.024 0.004 0.000 0.000 0.000
unified instruction and data stream

16B 11.311 7.846 5.458 3.431 1.824 1.206 0.593 0.133 0.099
32B 8.230 5.686 4.072 2.723 1.430 0.902 0.428 0.081 0.056
64B 6.767 4.575 3.388 2.295 1.236 0.747 0.353 0.057 0.034
128B 6.827 4.386 3.340 2.163 1.164 0.691 0.323 0.052 0.025
256B 8.255 5.097 3.849 2.165 1.180 0.689 0.325 0.055 0.022
512B 11.281 6.398 4,722 2.566 1.350 0.708 0.333 0.058 0.024
1024B 17.684 10.031 6.897 3.531 1.586 0.803 0.407 0.112 0.032
2048B | - 15.133 10.336 4.018 1.742 0.839 0.397 0.125 0.038
4096B | - | - 14.652 6.493 2.596 1.183 0.493 0.208 0.057
8192B | - | - | - 10.815 3.970 1.829 0.769 0.408 0.108

Table B-18: Cache miss rates for 141.apsi, test input set, direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB |I.28KB :1256KB 5}12KB 1|MB
data reference stream
16B 9.008 6.488 5.295 43071 2316 2.182 0.000 | = | —
32B 6.943 5.304 4524 3.737 3.670 3.555 0.000 | - | -
64B 5.638 4334 3.726 2.086 2.921 2.823 0.000 | —= | —=
128B 5.370 4,151 3.477 2.595 2.533 2.427 0.000 [- [-=---
2568 6.615 4.966 4225 3.228 3161 2.008 0.000 | = | ——
512B 9.609 6.752 5.751 4427 2336 2.156 0.000 | - |
1024B | 13.655 9.275 7526 5.016 5.819 5.638 0.000 | = | —

Table B-19: Cache miss rates for 145.fpppp, test input set, direct-mapped caches

196

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB
20488 | —— 16.834 | 14.6/8 | 11478 | I1.36T | I1.I57 0.000 | ——- [—
4096B | - | - 22.152 16.211 16.112 15.431 0.000 | - | -
8192B | -——- | —— | —- 16.722 | 16.664 | 15.859 0.000 | —— | —
instruction request stream
16B 47.068 45.903 34.737 27.516 16.627 0.159 0.001 | - | -
32B 23.760 23.139 17.572 13.858 8.381 0.101 0.000 | - | -
64B 12.076 11.733 8.948 6.997 4.230 0.061 0.000 | - | -
128B 6.208 6.011 4,618 3.553 2.147 0.037 0.000 | - | -
256B 3.247 3.124 2.453 1.824 1.111 0.022 0.000 | - | --—---
512B 1.747 1.668 1.340 0.963 0.592 0.019 0.000 | = --- | -
1024B 0.992 0.927 0.759 0.530 0.320 0.017 0.000 | - | -
2048B | = --—--- 0.554 0.466 0.318 0.178 0.012 0.000 | ------ | ---
4096B | - | - 0.329 0.217 0.123 0.022 0.000 | - | -
8192B | -——- | —— | —- 0.156 0.090 0.022 0.000 | —— | —
unified instruction and data stream

16B 33.305 30.919 24.997 18.429 12.602 3.664 0.165 | - | --—--
32B 18.963 17.142 13.874 10.260 7.216 2.655 0.140 | - | -
64B 11.821 10.179 8.178 5.929 4.284 1.922 0.117 | - | -
128B 8.752 6.915 5.449 3.752 2.808 1.539 0.103 | - | -
256B 9.025 6.505 4.832 3.184 2.539 1.752 0.098 | - | -
512B 12.259 8.074 5.615 3.475 2.921 2.332 0.091 | - | --—--
1024B 19.111 11.465 7.185 4.220 3.612 3.094 0.083 | - | -
2048B | = --—--- 20.217 14.029 7.533 6.560 5.961 0.086 | - | ----
4096B | - | - 21.394 11.199 9.548 8.225 0.078 | - | -
8192B | -——- | —— | —- 17482 | 11.318 9.102 0.094 | —= | —

Table B-19: Cache miss rates for 145.fpppp, test input set,

direct-mapped caches

blk. size | 4KB 8KB 16KB [32KB |64KB |128KB 2]356KB 5}12KB IlMB
data reference stream
16B 27.813 24.393 17.336 12.137 5.585 3.784 3.137 2.631 2.384
32B 25.932 22.256 14.367 9.032 3.108 1.951 1.593 1.332 1.203
64B 24.882 21.038 12.873 7.568 1.888 1.057 0.824 0.680 0.610
1288 | 24516 | 20449 | 12.503 6.950 1.368 0.665 0.455 0361 | 0318
7568 | 25.500 | 20.966 | 12.951 7.326 1.302 0.604 0.300 0.220 | 0.180
512B 28.648 23.647 14.017 7.993 1.696 0.902 0.382 0.259 0.206
10248 | 32.300 | 26.494 | 16.864 9.650 2.663 1679 0.616 0.406 | 0.325
2048B | = ------ 30.507 20.901 12.817 4411 3.047 1.317 0.813 0.667
4096B | @ ----—- | - 28.614 18.424 9.197 6.787 4.604 3.717 3.417
81928 | - | o | 22.907 | 11.998 8579 5.055 3.913 | 3.460
instruction request stream

168 4.198 2.943 1.281 1.258 0.005 0.002 0.000 0.000 | 0.000
32B 2.514 1.803 0.764 0.751 0.004 0.001 0.000 0.000 0.000
64B 1.568 1.145 0.472 0.464 0.003 0.001 0.000 0.000 0.000
1288 0.962 0.702 0.271 0.266 0.003 0.001 0.000 0.000 | 0.000
2568 0.620 0.448 0.160 0.157 0.002 0.000 0.000 0.000 | 0.000
5128 0.517 0.360 0.117 0.113 0.002 0.000 0.000 0.000 | 0.000
10248 0.483 0.372 0.075 0.069 0.002 0.000 0.000 0.000 | 0.000

Table B-20: Cache miss rates for 146.wave5, test input set, direct-mapped caches

197

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB §512KB LMB
20488 | — 0.473 0.053 U.048 0.002 0.000 0.000 0.000 0.000
409B | - | - 0.140 0.135 0.002 0.000 0.000 0.000 0.000
8192B | - | - | - 0.202 0.002 0.000 0.000 0.000 0.000
unified instruction and data stream

16B 15.149 11.907 7.975 5.769 2.519 1.565 1.210 1.002 0.901
32B 13.104 10.300 6.491 4,261 1.553 0.842 0.636 0.525 0.471
64B 12.082 9.452 5.769 3.540 1.088 0.490 0.351 0.286 0.255
128B 11.767 9.101 5.565 3.245 0.907 0.332 0.202 0.157 0.136
256B 12.545 9.479 5.865 3.420 0.952 0.328 0.166 0.121 0.101
512B 14.713 11.007 6.683 3.897 1.274 0.456 0.199 0.139 0.112
1024B 19.544 13.653 8.510 4975 1.990 0.821 0.313 0.214 0.173
2048B | --—---- 19.258 12.449 7.139 3.291 1.395 0.594 0.377 0.306
409B | - | - 18.736 10.792 5.992 3.158 1.860 1.475 1.331
8192B | - | - | - 15.624 9.143 4.281 2.240 1.659 1.419

Table B-20: Cache miss rates for 146.waveb, test input set, direct-mapped caches

B.3 Validating cache simulation

198

direct-mapped 4-way set associative

benchmark indexing 16KB 64KB 256KB 1MB 16KB 64KB 25%6KB 1MB
099.g0 cheet@an/VIVT | 9971 | 3.035 | L.48I | U.000 | 5955 | U532 | U.008 | U.000
sim-cache/VIVT | 9.970 | 3.030 1.480 | 0.000 [5.950 | 0.530 0.010 [0.000
sim-cache/PIPT [10.980 | 4.550 0.970 | 0.000 | 5.950 | 0.630 0.010 [0.000
T2 M8BKSIm Cheeta/VIVT | LIIT | 0528 | 0334 | 0326 | 03/6 | 0337 | 0325 | 0324
sim-cache/VIVT 1.120 | 0.540 0.350 | 0.340 0.380 | 0.350 0.340 | 0.340
sim-cache/PIPT | 1.170 | 0.410 0.350 | 0.340 | 0.380 | 0.350 0.340 | 0.340
T26.gcC | cheetah/VIVT | 3.428 | 1.126 | U.465 | U.109 | 1.558 | U.532 | 0.25Z2 | 0.052
sim-cache/VIVT | 3.440 | 1.170 0.550 | 0.250 | 1.570 | 0.580 0.340 [0.200
sim-cache/PIPT | 3.440 | 1.380 0.580 | 0.260 | 1.570 | 0.620 0.340 [0.200
T29.COmpress cheet@an/VIVT | 4912 | 2643 | 0920 [— 3608 | L.988 | 0.989 | 0.U68
sim-cache/VIVT | 4.910 2.640 0.940 | 0.150 3.610 1.990 1.000 | 0.110
sim-cache/PIPT | 4.310 | 2.500 0.770 | 0.110 | 3.610 | 1.980 0.980 | 0.110
T30.0i cheet@an/VIVT | 2.178 | 0.810 | 0.004 | -——- T.378 [U.628 | 0.004 | 0U.004
sim-cache/VIVT | 2.260 | 1.620 1550 | 1.550 | 1.610 | 1.550 1.550 | 1.550
sim-cache/PIPT | 2.130 | 0.820 0.020 | 0.020 | 1.380 | 0.640 0.020 [0.020
T3Z.ijpeg Cheea/VIVT | L1837 | 0.795 | 0515 | U449 | 0609 | 0.229 | 0.I30 | 0.032
sim-cache/VIVT 1.840 | 0.800 0.610 | 0.580 0.610 | 0.240 0.210 | 0.190
sim-cache/PIPT | 2.120 | 0.570 0.270 | 0.190 | 0.610 | 0.240 0.200 | 0.190
T34 .perl cheetan/VIVT | 2150 | U.80L | U.257 | U.165 | U569 | U.423 | U0.214 | U.155
sim-cache/VIVT | 2.170 | 0.840 0.310 | 0.240 | 0.590 | 0.460 0.270 [0.230
sim-cache/PIPT | 2.280 | 1.540 0.330 | 0.250 | 0.590 | 0.470 0.270 [0.230
TA7vortex | cheetaVIVT | 4.263 | L.738 | 0.364 | U143 | L1402 | 0440 | O.I13 | 0.051I
sim-cache/VIVT | 4.300 1.770 0.400 | 0.190 1.430 | 0.470 0.150 | 0.100
sim-cache/PIPT | 3.570 | 1.120 0.440 | 0.160 | 1.430 | 0.460 0.160 | 0.100

Table B-21: Cache performance varying simulator and indexing for SPECINT95

direct-mapped 4-way set associative
benchmark indexing 16KB pB4KB 256KB 1IMB 16KB 6UKB 2%6KB 1MB
TOT.fomcatv cheetah/VIVT | 12.469 | 3.513 3436 | 3.38L | 10985 | L.U/8 T.0/T | L.U47
sim-cache/VIVT | 12.510 3.530 3.450 3.400 | 11.020 1.090 1.080 1.060
sim-cache/PIPT | 13.020 2.700 1.470 1.150 | 11.020 1.090 1.080 1.060
TO0Z.swim cheetan/VIVT | 28.150 | 2.310 2258 | 2.244 | 33.457 | 2.232 2158 | 2.153
sim-cache/VIVT | 28.150 2.310 2.260 2.250 | 33.460 2.230 2.160 2.150
sim-cache/PIPT | 27.870 8.460 3.750 2.580 | 33.460 2.240 2.160 2.150
TO3.suZcor cheetah/VIVT 7.495 | 2.295 T.774 | 0.722 | 2.202 | 2.140 T.787 | 0.685
sim-cache/VIVT 7.510 2.300 1.780 0.730 2.210 2.150 1.790 0.690
sim-cache/PIPT 4.490 2.350 1.720 0.740 2.210 2.150 1.870 0.710
TO4.NydroZd cheetan/VIV] 3855 | 3.029 2925 | 2544 | 3.240 | 2.866 2864 | 2.662
sim-cache/VIVT 3.860 3.040 2.930 2.550 3.250 2.870 2.870 2.670
sim-cache/PIPT 3.900 3.060 2.920 2.650 3.250 2.870 2.870 2.670
TO7.mgrid cheetah/VIVT T.903 | 1.282 0.954 [0638 | L.05I | 0.997 06/L | U.62L
sim-cache/VIVT 1.900 1.280 0.960 0.650 1.050 1.000 0.670 0.630

Table B-22: Cache performance varying simulator and indexing for SPECFP95

199

direct-mapped 4-way set associative

benchmark indexing 16KB p4KB 256KB 1IMB 16KB 6UKB 25%6KB 1MB
Sim-cache/PIPT | 1.910 | 1.190 | 0.720 | U.650 | 1.050 | T1.000 0.670 | 0.630
TI0.applu | chee@/VIVT | L.839 | 1.319 TI79 | L.094 | L.19T | 1.138 T.132 | L.083
sim-cache/VIVT 1.840 1.320 1.180 1.100 1.190 1.140 1.130 1.090
sim-cache/PIPT 1.980 1.330 1.180 1.110 1.190 1.140 1.130 1.080
T25.1urb3d | cheetah/VIVT | 3.202 | 1.426 0909 | 0.398 | L.792 [1.095 0.982 | 0.372
sim-cache/VIVT 3.200 1.430 0.910 | 0.400 1.790 1.090 0.980 | 0.370
sim-cache/PIPT 2.740 1.590 1.020 [0.900 1.790 0.730 0.560 | 0.480
TAT.apsi | chee@h/VIVT | 5.078 | 4.699 2984 | 0.787 | 241l | 2.069 T.618 | 0.213
sim-cache/VIVT 5.080 4.700 2.980 [0.790 2.410 2.070 1.620 | 0.210
sim-cache/PIPT 3.990 2.470 1.550 | 0.370 2.410 2.050 1.590 | 0.170
T45Tpppp | cheet@VIvVT | 3.798 | 2.988 0001 | —- 0.25T | 0.013 0.00T | 0.001
sim-cache/VIVT 3.800 2.990 0.000 | 0.000 0.250 0.010 0.000 | 0.000
sim-cache/PIPT 1.490 [0.480 0.000 | 0.000 0.250 0.010 0.000 | 0.000
T46.waveb | cheetah/VIVT | 13.825 | Z2.018 0933 | 0.680 | 16.539 | 1.385 0.437 | 0.231
sim-cache/VIVT | 13.830 2.020 0.930 | 0.680 | 16.540 1.390 0.440 [0.230
sim-cache/PIPT | 15.190 2.580 0.630 | 0.320 | 16.540 1.950 0.440 | 0.240

Table B-22: Cache performance varying simulator and indexing for SPECFP95

	Hardware Techniques to Improve the Performance of the Processor/Memory Interface
	by
	Douglas Christopher Burger
	A dissertation submitted in partial fulfillment of
	the requirements for the degree of
	Doctor of Philosophy
	(Computer Sciences)
	at the
	University of Wisconsin–Madison
	1998
	Figure 1�1: Typical modern memory hierarchy

	1.1 Dissertation roadmap and contributions
	1.2 Increasing importance of memory bandwidth
	1.2.1 Increasing bandwidth needs
	Figure 1�2: Processor pin counts
	Figure 1�3: Raw performance per pin
	Figure 1�4: Performance per processor pin bandwidth

	1.2.2 The interactions of latency and bandwidth
	(1-1)
	(1-2)
	(1-3)
	Table 1�1: Effect of memory latency optimizations on execution time breakdown

	1.3 Bandwidth-specific solutions
	1.3.1 Tuning the PMI (reducing memory hierarchy traffic)
	1.3.1.1 Traffic-efficient caches
	1.3.1.2 Large on-chip caches
	Figure 1�5: Fraction of processor transistors devoted to cache

	1.3.2 Distributing the PMI (memory-centric architectures)
	1.3.3 Flattening the PMI (integrating the processor and physical memory)
	1.3.4 Shrinking the PMI (reducing processor/memory communication)

	1.4 A word about cost
	2.1 Software simulation
	2.2 The SimpleScalar tools
	Figure 2�1: Overview of the SimpleScalar tools
	2.2.1 Machine model
	Figure 2�2: Summary of SimpleScalar instructions
	Table 2�1: SimpleScalar architecture register definitions
	Figure 2�3: SimpleScalar architecture instruction formats
	Figure 2�4: Virtual memory organization

	2.2.2 Functional simulation
	2.2.3 Timing simulation
	Figure 2�5: Pipeline for sim-outorder
	Figure 2�6: Structure of the Register Update Unit core

	2.3 SPEC95 benchmarks
	2.3.1 Choosing the input set
	2.3.2 Benchmark characterizations
	Table 2�2: Simulation speeds of the five simulators
	Table 2�3: Instruction profile for SPECINT95
	Table 2�4: Instruction profile for SPECFP95
	Table 2�5: Memory operation profile for SPECINT95
	Table 2�6: Memory operation profile for SPECFP95
	Table 2�7: Data set and segment sizes for SPECINT95
	Table 2�8: Data set and segment sizes for SPECFP95
	Table 2�9: Cache miss rates for varied SPECINT95 data sets (data stream)
	Table 2�10: Cache miss rates for varied SPECFP95 data sets (data stream)

	2.3.3 SPEC95 benchmark analysis
	2.3.3.1 SPEC95 integer codes
	2.3.3.2 SPEC95 floating point codes
	(2-1)

	2.4 Sampling validation
	Table 2�11: Sampling validation for SPECINT95
	Table 2�12: Sampling validation for SPECFP95

	3.1 Cache efficiency
	Figure 3�1: Examples of block liveness
	3.1.1 Methodology
	3.1.2 Measurement of cache efficiencies
	Figure 3�2: Efficiency measurements

	3.2 Traffic efficiency
	3.2.1 Definition of traffic ratios
	(3-1)
	(3-2)
	(3-3)

	3.2.2 Definition of traffic efficiency
	(3-4)
	(3-5)
	(3-6)

	3.2.3 Measurement of traffic ratios
	Table 3�1: Traffic ratios for 32-byte block, direct-mapped caches

	3.2.4 Methodology for measuring traffic efficiency
	Figure 3�3: Extending Belady’s min algorithm

	3.2.5 Measuring traffic efficiency
	Table 3�2: Traffic efficiencies for 32-byte block, direct-mapped caches

	3.2.6 Factorization of traffic efficiency
	Figure 3�4: Total traffic generated by different cache and MTC sizes
	Table 3�3: Experimental parameters for Table�3�4
	Table 3�4: Efficiency gap for different optimizations
	Table 3�5: Fraction of traffic efficiency per factor

	4.1 What to fetch
	Table 4�1: Performance versus pollution points, 1MB 4-way set associative L2 cache

	4.2 Dual-size fetching
	Figure 4�1: Logic for dual-size fetch policy
	Table 4�2: Dual-size fetch functional results, part 1
	Table 4�3: Dual-size fetch functional results, part 2
	Table 4�4: Dual-size fetch functional results, part 3

	4.3 Subblock prefetching
	Figure 4�2: Logic for subblock prefetching policy
	Table 4�5: Subblock prefetch functional results, part 1
	Table 4�6: Subblock prefetch functional results, part 2
	Table 4�7: Subblock prefetch functional results, part 3
	(4-1)

	4.4 Unifying DSF and SBP
	Table 4�8: Trading off misses and traffic for a 1MB, 4-way set associative L2
	Table 4�9: Policy efficiencies; 1MB 4-way set associative L2, threshold and bound = 2

	4.5 Bus prioritization
	Figure 4�3: Datapath for bus prioritization
	Figure 4�4: Performance of traffic optimization schemes
	Figure 5�1: Access penalties for levels in the memory hierarchy
	Figure 5�2: Trends in microprocessor memory hierarchies

	5.1 A taxonomy for memory hierarchies
	5.2 A logical hybrid - the Indirect Cache
	Figure 5�3: Organization of the base ICE
	5.2.1 Additional hit latency
	5.2.1.1 Tag cache misses
	Figure 5�4: Accelerating tag cache misses

	5.2.1.2 Complex replacement
	Table 5�1: Performance impact of an imperfect tag cache (1MB ICE)
	Table 5�2: Relative misses for the ICE (compared to 1MB, 4-way set associative LRU)
	Table 5�3: Performance impact of 16-way subblocked tags)

	5.2.2 Coherence issues
	5.2.3 Performance analysis
	Figure 5�5: Performance of an ICE with traffic optimization schemes
	Table 5�4: Mean speedup (across SPEC95) of ICE++ over 1MB, 4-way set assoc. caches
	Figure 5�6: Comparing ICE++ to traditional caches

	5.3 Physical hybrids
	1. MOPs should not enforce inclusion, since the total system memory could be increased significan...
	2. MOPs should still minimize the off-chip accesses, which will be considerably more expensive th...
	3. MOPs should allow for fine-grain off-chip accesses; loading a page at a time, for example, wil...
	Table 5�5: Global miss rates for physical hybrid experiments

	5.4 Processor/memory integration
	Figure 5�7: Performance of perfect L2 caches

	6.1 The Massive Memory Machine
	6.1.1 Operation of the MMM
	Figure 6�1: Operation of the ESP Massive Memory Machine (from [45])
	Figure 6�2: Replicated vs. communicated memory

	6.1.2 Limitations of the MMM

	6.2 DataScalar Architectures
	6.2.1 Asynchronous ESP (traffic reduction)
	6.2.2 Datathreading (latency reduction)
	Figure 6�3: Comparing off-chip access serializations

	6.2.3 Implementation issues
	6.2.3.1 Cache correspondence
	Figure 6�4: Cache correspondence example

	6.2.3.2 Speculative execution
	6.2.3.3 Inter-chip communication

	6.2.4 Other pertinent issues

	6.3 Evaluating DataScalar architectures
	6.3.1 Traffic reduction
	6.3.2 Datathread lengths
	Table 6�1: Fractions of off-chip data traffic reduced by ESP
	Table 6�2: Approximate datathread measurements for a four-processor system

	6.3.3 Performance evaluation
	Figure 6�5: Comparing two IRAM organizations
	Figure 6�6: Simulated DataScalar chip datapath
	Figure 6�7: Timing simulation results of a DataScalar architecture
	Figure 6�8: Sensitivity analysis of DataScalar experiments
	Table 6�3: DataScalar broadcast statistics

	7.1 Summary
	7.2 Looking back
	A.1 Experimental methodology
	Table A�1: Input files used for benchmarks in experiments E1-E3
	Table A�2: Memory system simulation parameters
	Table A�3: Processor simulation parameters (E1/E2/E3)

	A.2 Simulation results
	A.2.1 E1 results
	Figure A�1: Execution time breakdown for E1 (SPEC92)
	Table A�4: Shift from fL to fB for E1

	A.2.2 E2 results
	Figure A�2: Execution time breakdown for E2 (SPEC95)
	Table A�5: Shift from fL to fB for E2

	A.2.3 E3 results
	Figure A�3: Execution time breakdown for E3 (SPEC95)
	Table A�6: Shift from fL to fB for E3

	A.3 Summary
	B.1 Set associativity
	Table B�1: Miss rates for varied associativities on the SPECINT95 data stream
	Table B�2: Miss rates for varied associativities on the SPECFP95 data stream

	B.2 Block size
	Table B�3: Cache miss rates for 099.go, test input set, direct-mapped caches
	Table B�4: Cache miss rates for 124.m88ksim, test input set, direct-mapped caches
	Table B�5: Cache miss rates for 026.gcc, test input set, direct-mapped caches
	Table B�6: Cache miss rates for 129.compress, test input set, direct-mapped caches
	Table B�7: Cache miss rates for 130.li, test input set, direct-mapped caches
	Table B�8: Cache miss rates for 132.ijpeg, test input set, direct-mapped caches
	Table B�9: Cache miss rates for 134.perl, test input set, direct-mapped caches
	Table B�10: Cache miss rates for 147.vortex, test input set, direct-mapped caches
	Table B�11: Cache miss rates for 101.tomcatv, test input set, direct-mapped caches
	Table B�12: Cache miss rates for 102.swim, test input set, direct-mapped caches
	Table B�13: Cache miss rates for 103.su2cor, test input set, direct-mapped caches
	Table B�14: Cache miss rates for 104.hydro2d, test input set, direct-mapped caches
	Table B�15: Cache miss rates for 107.mgrid, test input set, direct-mapped caches
	Table B�16: Cache miss rates for 110.applu, test input set, direct-mapped caches
	Table B�17: Cache miss rates for 125.turb3d, test input set, direct-mapped caches
	Table B�18: Cache miss rates for 141.apsi, test input set, direct-mapped caches
	Table B�19: Cache miss rates for 145.fpppp, test input set, direct-mapped caches
	Table B�20: Cache miss rates for 146.wave5, test input set, direct-mapped caches

	B.3 Validating cache simulation
	Table B�21: Cache performance varying simulator and indexing for SPECINT95
	Table B�22: Cache performance varying simulator and indexing for SPECFP95

