
Multiresolution analysis by infinitely differentiable compactly supported functions

N. Dyn A. Ron

School of of Mathematical Sciences Computer Sciences Department

Tel-Aviv University University of Wisconsin-Madison

Tel-Aviv, Israel Madison, Wisconsin 53706, USA

September 1992

ABSTRACT

The paper is concerned with the introduction and study of multiresolution analysis based on

the up function, which is an infinitely differentiable function supported on [0, 2]. Such analysis

is, necessarily, nonstationary. It is shown that the approximation orders associated with the cor-

responding spaces are spectral, thus making the spaces attractive for the approximation of very

smooth functions.

AMS (MOS) Subject Classifications: 41A25 41A30 46C99 39B99

Key Words: up function, shift-invariant spaces, wavelets, multiresolution analysis, spectral approx-

imation orders, stability.

Supported in part by the Israel-U.S. Binational Science Foundation (grant 9000220), by the

U.S. Army (Contract DAAL03-G-90-0090), and by the National Science Foundation (grants DMS-

9000053, DMS-9102857).



Multiresolution analysis by infinitely differentiable compactly supported functions

N. Dyn & A. Ron

1. Introduction

Multiresolution analysis based on a compactly supported refinable function is limited to gen-

erators with a finite degree of smoothness. In this paper we discuss multiresolution analysis with

C∞-compactly supported generators. This is possible if the generator of each space is related to

the generator of the next finer space by a mask whose support grows linearly with the resolution

of the space. We consider here a particular instance of such analysis based on the up function of

Rvachev [Rv], defined as follows.

Let

χk(x) :=

{
2k, 0 ≤ x ≤ 2−k,
0, otherwise,

and let σ denote the infinite convolution product

(1.1) σ := χ1 ∗ χ2 ∗ ...

Then the up function, denoted here by φ0, is given by

φ0 = χ0 ∗ σ.

It follows from its definition that the up function is supported on the interval [0, 2] and is infinitely

smooth. Approximation properties of this function can be found in [Rv]. In [DDL] it is shown that

the up function can be obtained as a limit of a non-stationary subdivision scheme, which employs

at a level k the mask of the stationary scheme that corresponds to the B-spline of degree k. As

observed in [DDL], this is equivalent to the existence of a family of functions (φk) satisfying an

infinite system of functional equations relating each φk to (appropriately scaled) shifts of φk+1 in

terms of the above mentioned mask.

In Section 2 we introduce the relevant functions (φk)∞k=0 (the first of which is the above

mentioned up function), and use them to define the ladder of spaces S0 ⊂ S1 ⊂ S2 ⊂ ... with

each Sk being the “span” of the 2−kZZ-shifts of the corresponding φk. The resolution obtained

in this way is nonstationary in the sense that φk is not a dilate of its predecessor. We provide

the wavelet decomposition, based on the general theory of nonstationary multiresolution analysis

of [BDR2]. We discuss the stability issue and show that the generator we choose for each wavelet

space is stable (and even linearly independent), but that the L2-stability bounds blow up with k

at the rate (no faster than) (π/2)3k. On the other hand we show in Section 3, using the general

theory in [BDR1], that the least square approximation from (Sk) is spectral, namely that, for any

r ≥ 0, the L2(IR)-error of best approximation to f ∈ W r
2 from Sk is o(2−rk). This means that

high resolution of a very smooth f can be achieved for a relatively small k, and in such a case the

difficulty of the growth of the stability constants may be less of a problem.
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In the paper, we use, for a compactly supported function f : IR → C, and a function g defined

(at least) on 2−kZZ, the notation

(1.2) f∗′k g :=
∑

j∈2−kZZ

f(· − j)g(j).

2. Wavelet decompositions

The up function provides an interesting example of wavelet decompositions via multiresolution.

A general discussion of these topics can be found in [BDR2], and is certainly beyond the scope of

this paper.

A multiresolution begins with a sequence (φk)k∈ZZ+
⊂ L2(IR). For each k, one denotes by

Sk the smallest closed L2-subspace that contains all the functions

(2.1) φk(· − j), j ∈ 2−kZZ.

The nestedness assumption

(2.2) Sk ⊂ Sk+1, k ∈ ZZ+

is in the essence of the process. With (2.2) in hand, one defines the wavelet space Wk to be the

orthogonal complement of Sk in Sk+1,

(2.3) Wk := Sk+1 	 Sk.

Under mild conditions on the sequence (φk) (cf. section 4 of [BDR2]; these conditions are always

satisfied for compactly supported (φk), which will be the case here) the wavelet spaces provide an

orthogonal decomposition of L2(IR) 	 S0, and the subsequent task is then to find efficient (more

precisely stable) methods for computing the orthogonal projection Pkf of a given f ∈ L2(IR) on

each of the wavelet spaces. The attraction in these decompositions is that (in many examples) the

information on f recorded by Pkf is considered to be “finer” as k increases.

In the original formulation of multiresolution, [Ma], [Me], it was assumed that the ladder (Sk) is

stationary, namely, that each Sk+1 is the 2-dilate of Sk. Analysis of nonstationary decompositions

can be found in [BDR2], with the guiding example there being exponential B-splines. The wavelet

decompositions that correspond to the up function are nonstationary as well, still they form a

different variant in this class. We will elaborate on that point in the sequel.

Our sequence (φk)k can be defined as follows. First, we recall the definition of σ given in (1.1).

With Bk the cardinal B-spline of degree k (i.e, with integer breakpoints and with support [0, k+1]),

we choose

(2.4) φk := (Bk ∗ σ)(2k·).
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Note that suppφk = [0, (k+2)/2k]. The spaces (Sk) are defined as in the beginning of this section,

with respect to the present choice of (φk). Our discussion here is developed in two steps. First, we

will observe below that the spaces (Sk) satisfy the nestedness assumption (2.2). Knowing therefore

that the corresponding wavelets spaces (Wk)k∈ZZ are well-defined, we will then consider the problem

of finding stable generators for the associated wavelet spaces.

Since

(χk ∗ f)(2·) = χk+1 ∗ (f(2·)),

and

Bk = χ0 ∗ ... ∗ χ0︸ ︷︷ ︸
(k+1)−times

,

we find that

φk := χk ∗ ... ∗ χk︸ ︷︷ ︸
(k+1)−times

∗χk+1 ∗ ...

Substituting k − 1 for k we get

φk−1 = χk−1 ∗ ... ∗ χk−1︸ ︷︷ ︸
k−times

∗χk ∗ χk+1 ∗ ...

Therefore, a refinement equation that expresses φk−1 as a linear combination of the translates

of φk will be the same as the one that connects the splines

χk−1 ∗ ... ∗ χk−1︸ ︷︷ ︸
k−times

, and χk ∗ ... ∗ χk︸ ︷︷ ︸
k−times

.

These splines are (up to the factors 2k−1 and 2k respectively) scales of the B-spline Bk−1, and the

refinement equation becomes identical to the well-known one for B-splines. Indeed, the solution Ak

for the convolution equation

φk−1 = φk∗
′
k Ak

is the k-fold convolution product of the sequence

A0
k(j) :=

{
1/2, j = 0, 2−k,
0, j ∈ 2−k(ZZ\{0, 1}),

that solves the equation

χk−1 = χk∗
′
k A

0
k.

Its Fourier transform has the form

Âk(w) = (
1 + e−iw/2k

2
)k.

To conclude, in terms of Fourier transforms we obtained the following refinement equation:
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Corollary 2.5.

φ̂k−1 = Âkφ̂k.

Since Ak is finitely supported, the corollary shows that φk−1 can be expressed as a finite linear

combination of 2−kZZ-shifts of φk, thereby proving the required nestedness property. Consequently,

the corresponding wavelets spaces are well-defined. Note that, while (φk)k satisfies the same refine-

ment equations that are being satisfied by B-splines, the degree of the associated B-spline changes

with k. In particular, the size of the support of the mask sequence Ak grows linearly with k.

In contrast, the nonstationary decompositions associated with exponential B-splines (cf. [BDR2:

§6],[DL]) employ masks with uniformly bounded support.

Corollary 2.5 allows us to apply standard wavelet techniques (cf. [CW], [JM], [BDR2]). In

particular, it is known [BDR2] that the function ψk defined by

(2.6) ψ̂k−1(w) := e−iw/2k

Âk(w + 2kπ)τk(w + 2kπ)φ̂k(w),

with

(2.7) τk(w) :=
∑

j∈2π2kZZ

|φ̂k(w + j)|2

generatesWk in the sense that the 2−kZZ-shifts of ψk are fundamental inWk. A standard application

of Poisson’s summation formula yields that τk is a trigonometric polynomial with frequencies in

(2−kZZ) ∩ [−(k + 1)/2k, (k + 1)/2k]. Some straightforward computation then implies that ψk−1 is

supported in an interval of length (k+1)/2k−2 which is exactly twice the size of the support of φk−1.

Since ψk−1 is expressed as a finite linear combination of the shifts of the infinitely differentiable

φk, we conclude that ψk−1 is infinitely differentiable, too.

Now, we turn our attention to the stability question. The generator ψk is called stable if

the restriction Rk of ψk∗
′
k to `2(ZZ) is well-defined, bounded and boundedly invertible. Since the

decomposition here is nonstationary, it is also important to make sure that the norms ‖Rk‖ and

‖R−1
k ‖ are bounded independently of k (cf. [JM] and [BDR3] for detailed discussion of the stability

problem).

It is known (cf. section 5 of [BDR2] and especially Remark 5.8 there) that ψk is a stable

generator of Wk if each φk′ is a stable generator of Sk′ , k′ ∈ ZZ+, and further, ‖Rk‖ and ‖R−1
k ‖

are bounded by rational expressions in ‖Tk′‖, ‖T−1
k′ ‖, k′ = k, k + 1, with Tk being the restriction

to `2(ZZ) of φk∗
′
k, and with the rational expressions being independent of k:

Proposition 2.8. ψk in (2.6) is a stable generator of Wk if φk′ , k′ = k, k+1, is a stable generator

of Sk′ . Further, the stability constants associated with (ψk)k are uniformly bounded if the same

holds for the stability constants of (φk)k, since

‖Rk‖‖R
−1
k ‖ ≤ const‖Tk‖‖T

−1
k ‖(‖Tk+1‖‖T

−1
k+1‖)

2.

We prove that each φk is a stable generator of Sk with the aid of the following well-known

result (cf. [SF], [DM], [JM] and [BDR3]).
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Result 2.9. Let φ be a compactly supported L2(IR)-function. Then the 2−kZZ-shifts of φ are

L2-stable if and only if for every θ ∈ IR, there exists j ∈ 2k+1πZZ such that φ̂(θ + j) 6= 0. In other

words, the 2−kZZ-shifts of φ are stable if and only if φ̂ does not have a 2k+1πZZ-periodic zero.

We show below that the entire function φ̂k has no 2k+1πZZ-periodic zero in the complex domain

C. This property is known to be equivalent to φk∗
′
k being injective, a property which is usually

referred to as the linear independence of the 2−kZZ-shifts of φk (cf. [Ro] for details). In view of

Result 2.9, this will certainly imply that φk is a stable generator of Sk.

Corollary 2.10. The 2−kZZ-shifts of φk are linearly independent, hence form a stable basis for the

space Sk that they generate. However, the 2−kZZ-shifts of φk′ are not L2-stable, whenever k′ < k.

Proof: By Corollary 2.5, we have

φ̂k′ = Âk′+1φ̂k′+1.

Since Âk′+1 is 2k′+2π-periodic and k′ < k, it is also 2k+1π-periodic, hence, in view of Result 2.9,

the stability of the 2−kZZ-shifts of φk′ , k′ < k, forces Ak′+1 to have no zeros (on IR). However,

Âk′+1 vanishes at 2k′+1π, and this proves the second statement of the corollary.

For the linear independence claim, we first remark that basic convergence criteria (cf. e.g.

Theorem 15.4 of [Ru]) show that φ̂k vanishes at a point (if and) only if one of its factors χ̂
j

vanishes there. Secondly, we observe that since χ̂
j
(w) = 2j

∫ 2−j

0
e−iwt dt,

χ̂
j
(w) = 0 ⇐⇒ w ∈ 2j+1πZZ\0.

In particular, for j < j′, χ̂
j
(w) = 0 if χ̂

j′
(w) = 0. Since φ̂k is the product of factors of the form

χ̂
j
, for j ≥ k, we conclude that the (complex) zeros of φ̂k are identical with these of χ̂

k
. Since

suppχk = [0, 2−k], the 2−kZZ-shifts of this function are trivially linearly independent, hence χ̂
k

cannot have a 2k+1πZZ-periodic zero. Therefore, φ̂k does not have such a zero, and consequently

its 2−kZZ-shifts are linearly independent as well.

While the 2−kZZ-shifts of φk are linearly independent hence stable, the stability constants

are not uniformly bounded. This assertion is based on the next result, which also provides some

estimate on the growth of these constants as k → ∞. A referee’s suggestion helped us in improving

statement (a) of this result. The referee also made the point that such estimates can be found in

the spline theory literature (since they are needed for the estimation of the norm of the odd degree

cardinal spline interpolant).

Proposition 2.11. Let Tk denote the restriction of φk∗
′
k to `2(ZZ). Then, for some positive

constant c, C

(a) ‖Tk‖‖T
−1
k ‖ ≥ c

(
π

2

)k
.

(b) ‖Tk‖‖T
−1
k ‖ ≤ C

(
π

2

)k
.

Proof: We recall ([Me]) that

(2.12) Ck := ‖Tk‖
2‖T−1

k ‖2 =
supw∈IRKk(w)

infw∈IRKk(w)
,
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where

Kk(w) :=
∑

α∈2k+1πZZ

|φ̂k(w + α)|2 =
∑

α∈2πZZ

|(B̂kσ̂)(w + α)|2.

In order to estimate Ck from below (as required for the proof of (a)), we note first that, since, for

each k, B̂k(0) = 1, and also σ̂(0) = 1, we have that ‖Kk‖∞ ≥ 1. This takes care of the numerator

in (2.12). As for the denominator, we observe that

|B̂k(w)| =
( |e−iw − 1|

|w|

)k
,

and that

(2.13)
|e−iw − 1|

|w|
< 1 on IR\0.

This implies, in particular, that ‖σ̂‖∞ ≤ 1, hence that

Kk(w) ≤
∑

α∈2πZZ

|B̂k(w + α)|2 =: K̃k(w).

Thus, the value K̃k(π) bounds infw Kk(w) from above. The number K̃k(π) can be estimated as

follows:

K̃k(π) =
∑

α∈2πZZ

22k

(π + 2πα)2k
= 2

( 2

π

)2k
∞∑

j=0

(1 + 2j)−2k.

The sum
∑∞

j=0(1 + 2j)−2k clearly decreases monotonely to 1, hence, in particular, is uniformly

bounded in k. In summary, we have obtained the estimate

Ck ≥
1

K̃k(π)
≥ ck

( 2

π

)2k

,

with (ck)k → 2 as k → ∞. This proves (a).

To prove (b), we first conclude from (2.13) that (Kk)k is a non-increasing sequence. This

implies the estimate

‖Kk‖∞ ≤ ‖K0‖∞ = const.

In addition, for w ∈ [−π, π], we estimate the sum that defines Kk below by its 0-term:

Kk(w) ≥ |σ̂(w)|2
(
|e−iw − 1|

|w|

)2k

≥ const

(
2

π

)2k

,

where, in the last inequality, we have used the facts that (i): σ̂ vanishes nowhere on [−π, π], (ii):

the minimal value of |e−iw−1|
|w| (assumed at w = π) is 2/π.

Claim (b) is then obtained by combining the estimates in the two last displays.
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From Proposition 2.8, we conclude that the stability constants associated with the wavelets

(ψk)k grow no faster than O((π/2)3k).

3. Approximation Orders

As a natural continuation of the previous discussion, we consider L2-approximation orders of

the spaces (Sk) generated by (φk) of (2.4). Given r > 0, let W r
2 be the usual potential space

(3.1) W r
2 := {f ∈ L2(IR) : ‖f‖W r

2
:= (2π)−1/2‖(1 + | · |)rf̂‖L2(IR) <∞}.

We say that (Sk)k (or, (φk)k) has approximation order r > 0 (in the L2-norm) if

(3.2) Ek(f) := distL2(IR)(f, Sk)

satisfies

(3.3) Ek(f) ≤ constr ‖f‖W r
2
2−kr, ∀f ∈W r

2 , ∀ sufficiently large k.

Here, “sufficiently large” may depend on r, but not on f . If, in addition to the above,

(3.4) 2krEk(f) → 0, as k → ∞, ∀f ∈W r
2 ,

we say that (Sk) has density order r. The notion of density orders extends to r = 0; in such a

case the definition is reduced to the requirement that

Ek(f) → 0, ∀f ∈ L2(IR).

Although it is not obvious from the definition, (φk)k has all approximation orders ≤ j whenever it

has the approximation order j. We will show that the approximation by (Sk)k is spectral which

means, by definition, that (φk)k has all positive approximation orders.

Our precise result is as follows:

Theorem 3.5. The sequence of spaces (Sk) has density order r for every r ≥ 0.

The fact that all approximation orders are obtained is plausible, since each φk is obtained by

smoothing Bk(2k·), and for a fixed j, the functions (Bj(2
k·))k are well-known to have approximation

order j + 1. However, the fact that we obtain even all density orders seems to be less expected.

Furthermore, in what follows we show that for a very smooth function f (whose Fourier transform

decays exponentially), Ek(f) decays exponentially, as well.

A general comprehensive discussion of L2-approximation orders and density orders for shift

invariant spaces is given in [BDR1]. Instead of deriving Theorem 3.5 from those results, we will

apply the approach taken there to our special (and much simpler) case. This will result at tighter

estimates for Ek(f). Similar results in other p-norms are available as well. For example, spectral

approximation in the uniform norm can be proved by employing the results of [BR].
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Our analysis of the approximation orders goes as follows: let I = [−t, t] ⊂ [−π, π]. In order to

estimate Ek(f), we localize f on the Fourier domain. Precisely, we multiply f̂ by the characteristic

function ηk of the interval 2kI, to obtain the function

(3.6) gk := (ηkf̂)∨,

(with f∨ the inverse Fourier transform of f) and use the straightforward bound

(3.7) Ek(f) ≤ Ek(gk) + ‖((1 − ηk)f̂)∨‖.

We refer to the first term in the above sum as the approximation error, or the projection

error, and to the second term as the truncation error.

The decay rate of the truncation error is clearly independent of (φk), and depends on the

smoothness class of f . In particular, the following can be easily proved (cf. [BDR1]):

Lemma 3.8. Let I := [−t, t] be some neighborhood of the origin, and let ηk be the characteristic

function of 2kI. Let f ∈W r
2 , r ≥ 0. Then

‖((1 − ηk)f̂)∨‖L2(IR) ≤ t−r2−kr‖f‖W r
2
εk(f, t),

where 0 ≤ εk(f, t) ≤ 1 and converges to 0 as k tends to ∞.

In view of Lemma 3.8, a proof of Theorem 3.5 requires the study of the behaviour of the

projection error. To estimate this, we employ the following result from [BDR1]. In what follows

we use, for f ∈ L2(IR), the notation S(f) to denote the smallest closed subspace of L2(IR) that

contains all the shifts of f .

Result 3.9. Let ξ be a function in L2 and let g ∈ L2 be a function whose Fourier transform ĝ is

supported in I ⊂ [−π, π]. Let Pg be the orthogonal projection of g on S(ξ). Then

‖g − Pg‖L2(IR) = (2π)−1/2‖ĝΛξ‖L2(I),

where

Λξ
2 := 1 −

|ξ̂|2
∑

j∈2πZZ |ξ̂(· + j)|2
.

We intend to apply the last result to the function g := gk(2−k·), with gk as in (3.6). We first

note that, for any f ∈ L2(IR), by dilating,

Ek(f) = 2−k/2 dist(f(2−k·), S(φk(2−k·))).

Thus, we can use Result 3.9 with respect to ξ := φk(2−k·) = Bk ∗ σ. We estimate Λξ as follows.

We first denote

M2
ξ :=

∑

j∈2πZZ\0

|ξ̂(· + j)|2.

Then

Λ2
ξ =

M2
ξ

|ξ̂|2 + M2
ξ

≤
M2

ξ

|ξ̂|2
.
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Further,

|ξ̂(w)| = |B̂k(w)||σ̂(w)| = |τk(w)||w|−k|σ̂(w)|,

with τk a 2π-periodic trigonometric polynomial. We conclude that, for w ∈ I,

Mξ(w)2

|ξ̂(w)|2
=

∑

j∈2πZZ\0

|ξ̂(w + j)|2

|ξ̂(w)|2
=

∑

j∈2πZZ\0

|w/(w + j)|2k|σ̂(w + j)/σ̂(w)|2 ≤

|w|2k

|σ̂(w)|2
sup

j∈2πZZ\0

‖(· + j)−2k‖L∞(I)

∑

j∈2πZZ\0

|σ̂(w + j)|2.

Since σ ∈ C∞(IR), σ̂ is rapidly decaying, and therefore
∑

j∈2πZZ\0

|σ̂(w + j)|2 =: q(w)2

converges to a smooth bounded function (the boundedness can be proved as follows: if we add to

the sum the summand for j = 0, we get a periodic function which is bounded due to its continuity.

Since each summand, including the j = 0 one, is clearly bounded, it follows that the above sum is,

too).

Since w ∈ I = [−t, t], infj∈2πZZ\0 |w + j| = 2π − t, and we obtain the following estimate

(3.10) Λξ(w) ≤ (2π − t)−k|w|k ‖q/σ̂‖L∞(I) =: const (2π − t)−k|w|k.

Consequently, since the Fourier transforms of f(2−k·) and gk(2−k·) coincide on I, we have for k ≥ r

(2π)1/2Ek(gk) =2−k/2‖ ̂f(2−k·)Λξ‖L2(I)

≤‖ | · |−rΛξ‖L∞(I) 2k/2‖ | · |rf̂(2k·)‖L2(I)

≤const (2π − t)−ktk−r‖ |2−k · |rf̂(·)‖L2(IR)

≤const (2π − t)−ktk−r2−kr‖f‖W r
2
.

Theorem 3.5 now follows when combining the last estimate (say, with t := 1) for the projection

error, with the estimate for the truncation error from Lemma 3.8.

Finally, for very smooth functions, better rates can be derived. First, upon substituting r = k,

t = π in the above estimate and in Lemma 3.8, we obtain:

Corollary 3.11. If f ∈W k
2 for some k then

Ek(f) ≤ constπ−k‖f‖W k
2
2−k2

.

Concrete improvements of the rates of Theorem 3.5 require knowledge on the rate of growth

of (‖f‖W k
2
)k∈ZZ+

. A typical example follows.

Example 3.12. Assume that f is so smooth so that its Fourier transform decays exponentially

at ∞. Precisely, assume that |f̂(w)| ≤ conste−α|w|, for some positive α. Then ‖f‖W k
2

= O((k +

1)!α−k), and therefore we conclude from the last theorem that

Ek(f) ≤ const (k + 1)!(πα)−k2−k2

,

and therefore the error decays in this case exponentially in 2k.
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