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Abstract. A linear interpolation scheme is termed ‘ideal’ when its errors form a polynomial ideal. The paper surveys

basic facts about ideal interpolation and raises some questions.

Introduction

Ideal interpolation is, by definition, given by a linear projector on the space Π of polynomials whose
kernel is a polynomial ideal. It is therefore also any linear map, as used in algebra, that associates a
polynomial with its normal form with respect to a polynomial ideal.

This article lists basic facts about ideal interpolation and raises some questions.

Definition and basic algebraic facts

If P is a linear projector of finite rank on the linear space X over the commutative field IF with algebraic
dual X ′, then we can think of it as providing a linear interpolation scheme on X : For each g ∈ X , f = Pg
is the unique element of ranP := P (X) for which

λf = λg, ∀λ ∈ ranP ′ = {λ ∈ X ′ : λP = λ},

with P ′ the dual of P , i.e., the linear map X ′ → X ′ : λ 7→ λP . In other words, given that kerP := {g ∈
X : Pg = 0} = ran(id − P ),

ranP ′ = (kerP )⊥ := {λ ∈ X ′ : kerP ⊂ kerλ},

the set of interpolation conditions matched by P . Not surprisingly, there are exactly as many independent
conditions as there are degrees of freedom, i.e.,

dim ranP = dim ranP ′.

Put into more practical terms, if the column maps

V : IFn → X : a 7→
n∑

j=1

vja(j) =: [v1, . . . , vn]a

and

Λ : IFn → X ′ : a 7→
n∑

j=1

λja(j) =: [λ1, . . . , λn]a,

into X and X ′ respectively, are such that their Gram matrix

ΛtV := (λivj : i, j = 1:n)

is invertible, then, in particular, both V and Λ are 1-1, hence bases for their respective ranges and there is,
for given b ∈ IFn, exactly one element, call it V a, of ranV that satisfies the equation

Λt(V a) = b,
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thus giving rise to the map
P = V (ΛtV )−1Λt

on X , evidently a linear projector, that associates g ∈ X with the unique element f = Pg in ranV = ranP
for which

Λtf := (λif : i = 1:n)

agrees with Λtg, hence λf = λg for all λ ∈ ranΛ = ranP ′.
Consider now, in particular, the linear space

Π = Π(IFd)

of all IF-valued polynomials in d real (IF = IR) or complex (IF = C) variables. It will be important that Π
is also a ring under pointwise multiplication,

(pq)(x) := p(x)q(x), p, q ∈ Π, x ∈ Cd.

In [Bi79], Garrett Birkhoff defined ideal interpolation as a linear projector P on Π whose nullspace or
kernel is an ideal, i.e., not only closed under addition and multiplication by scalars but also under (pointwise)
multiplication by arbitrary polynomials. Lagrange interpolation is mentioned by Birkhoff as a particular
example. However, ideal projectors are already looked at carefully in [M76], where they are called ‘Hermite
interpolation’.

Ideal projectors are, in a sense, aware of the multiplicative structure of Π, hence we would expect insights
from considering their interaction with multiplication, as exhibited by the following very handy fact.

Lemma 1 ([dB03]). A linear projector P on Π is ideal if and only if

(2) P (pq) = P (pPq), ∀p, q ∈ Π.

Proof: The condition (2) is equivalent to having

P (Π(id − P )(Π)) = {0},

and, since P is a linear projector hence (id − P )(Π) = kerP , this is equivalent to

ΠkerP ⊂ kerP,

hence, given that kerP is a linear subspace, to kerP being an ideal.

An ideal projector is completely determined by its action on a subspace only slightly larger than its
range. This is readily seen by the following considerations.

Each ideal projector P induces a map,

(3) M : Π→ L(ranP ) : p 7→Mp,

on Π into the space L(ranP ) of linear maps on ranP , by the prescription

(4) Mp : ranP → ranP : f 7→ P (pf), p ∈ Π.

Indeed, Mp so defined is a linear map on ranP , and depends linearly on p, hence the map M is well-defined
and is linear. More than that, for arbitrary p, q ∈ Π and f ∈ ranP ,

MqMpf −Mqpf = P (qP (pf))− P (qpf) = 0,

the last equality by (2), hence M is also a homomorphism, on the ring Π into L(ranP ) considered as a ring
with respect to map composition as multiplication. Also, since Π is a commutative ring, so is ranM , even
though it is a subring of the noncommutative ring L(ranP ).
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The ring Π is generated by the specific polynomials

()j := ()εj , εj := (δjk : k = 1:d), j = 0:d,

with

()α : IFd → IF : x 7→ xα :=
∏

j

x(j)α(j), α ∈ ZZd
+,

a convenient if nonstandard notation for the monomials. Consequently, ranM is generated by the specific
linear maps

(5) Mj : ranP → ranP : f 7→ P (()jf), j = 0:d,

in terms of which

Mp = p(M) :=
∑

α

p̂(α) Mα, p ∈ Π,

with

p =:
∑

α

p̂(α)()α,

and with

Mα :=
∏

j

(Mj)
α(j) = M()α

independent of the order in which this product is formed from its factors. (Since the map M cannot be
composed with itself, hence a polynomial in M makes no sense, it may be excusable to use, as I have done
here, the notations Mα and p(M) for a related but different purpose.)

By way of background, the transpose of the matrix representations of the Mj with respect to a monomial
basis for ranP (if any) are known as ‘multiplication tables’ and the maps Mf as ‘multiplication maps’; see
[CLO98: p.51ff]. The latter term derives from the fact that (see, e.g., [CLO98] and [AS]) it is customary
to think of M as mapping into L(Π/ kerP ) (rather than into L(ranP )), hence, in that setting, Mp models
multiplication by p+kerP ∈ Π/ kerP , i.e., carries the coset q+kerP to the coset pq+kerP = (p+kerP )(q+
kerP ).

It follows, directly from (2), that

(6) p(M)P ()0 = P (p P ()0) = P (p ()0) = Pp, p ∈ Π.

This representation of P has been used in [dB03] to uncover the close connection between the Opitz formula
and the Leibniz formula for univariate divided differences and to prove such formulæ for certain multivariate
divided differences.

Proposition 7. If we know the ideal projector P on ()0 and on

Π1(ranP ) :=

d∑

j=0

()j ranP,

then we know P everywhere.

Proof: As soon as we know P on Π1(ranP ), we can compute the linear maps Mj , hence can compute
p(M) for any p ∈ Π and, with that, can determine Pp from (6) provided we also know P ()0.
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Example As an example, consider the following situation, discussed in [Sh] in the bivariate case: P
is an ideal projector with range

F := ran[()j
1 : j = 0:n−1],

and IF = C hence ()n
1 − P ()n

1 , considered as a univariate polynomial, has n zeros counting multiplicities.
Assume, finally, that these zeros are all simple, hence

(()n
1 − P ()n

1 )(x) =:
n∏

j=1

(x(1)− τ(j))

defines the sequence τ with pairwise distinct entries. Set

zj := (τj , (P ()2)(τj), . . . , (P ()d)(τj)), j = 1:n.

Then any p ∈ F vanishing on z is necessarily zero, hence since z has n entries and dimF = n, there is, for
each p ∈ Π, exactly one element of F , call it Rp, that agrees with p on z. I claim that R = P and, by
Proposition 7, need to check this only for ()α with α(1) < n, α(2:d) = (δij : j = 2:d), i = 2:d, since it is
already evident for α = (n, 0, . . . , 0), hence for α = (m, 0, . . . , 0) for all m ∈ IN, by Proposition 7 (since ()n

1

spans an algebraic complement of F in Π1(F ) when considering only the ring of univariate polynomials).
For the check, notice that

(R()i)(zj) = ()i(zj) = zj(i) = (P ()i)(τj) = (P ()i)(zj),

hence R = P on ()i for i = 2:d. With that, for any j,

P (()j
1()i) = P (()j

1P ()i) = R(()j
1R()i) = R(()j

1()i),

the middle equality since P ()i = R()i ∈ F , while the other two equalities follow from P and R being ideal.

A basis for the ideal kerP

By (6), kerM ⊂ kerP , while, if p ∈ kerP , then p(M)f = P (pf) = P (fPp) = P0 = 0 for all f in ranP
which is the domain of p(M), hence then p(M) = 0. Thus, altogether,

(8) kerM = kerP.

Hence, by Proposition 7, we should be able to derive kerP from ()0 − P ()0 and the action of the restriction

N := P Π1(F )

of P to Π1(F ), with
F := ranP.

Proposition 9. If ()0 ∈ ranP , then

(10) kerP = ideal(kerN) =: I.

Proof: Since kerN = kerP ∩Π1(F ) and kerP is an ideal, we immediately have

kerP ⊇ I.

For the converse containment, let

Πk(S) :=
∑

|α|≤k

()αS, ∅ 6= S ⊂ Π.
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Then, for any additive subset S of Π, we have

Πr+s(S) = Πr(Πs(S)).

In particular,

Πk := Πk(IF) = Π1(Πk−1).

Specifically, ∪kΠk(F ) = Π since we assumed F = ranP to contain ()0. Therefore, we know that kerP ⊆ I
once we show, by induction on k, that

p ∈ kerP ∩Πk(F ) =⇒ p ∈ I.

For k = 1, this is so by definition of I. So assuming it to hold for all k < h, let p ∈ kerP ∩Πh(F ). Then

p =
∑

j=0:d

()jpj

with pj ∈ Π<h(F ), hence (id−P )pj is in Π<h(F )+F = Π<h(F ) as well as in kerP , hence in I by induction
hypothesis. Thus,

p ∈
∑

j

()j(Ppj + I) =
∑

j

()jPpj + I,

while, by (2), P
∑

j()jPpj = P
∑

j()jpj = Pp = 0, hence
∑

j()jPpj ∈ kerP ∩Π1(F ), therefore in I.

It follows that kerP is generated, as an ideal, by any (vector-space) basis for kerP ∩ Π1(F ). Further,
such a basis is readily obtained in the form

(b −Nb : b ∈ B),

with B any basis for an algebraic complement of F in Π1(F ). As the example of bivariate tensor-product
interpolation to gridded data shows, the resulting (ideal) basis may be far from minimal.

Mourrain’s condition

Proposition 9 (though not the proof given here) is essentially due to Mourrain [Mo] who proved it under
the additional assumption that F satisfy what I will call here

(11) Mourrain’s condition. For f ∈ F , f ⊂ Π1(F ∩Π<deg f ); i.e., in Mourrain’s words, F is connected
to 1.

Mourrain’s condition implies that ()0 ∈ F but is, offhand, much stronger. For example, in the univariate
case, (11) implies that F = Πk for some k, hence also that F is D-invariant, i.e., closed under differentiation.
See [dB05b] for the fact that, in the multivariate case, (11) and D-invariance are not related.

Mourrain [Mo] investigates the following problem: Given a finite-dimensional linear subspace F of Π
and a linear projector N on Π1(F ) with range F , provide necessary and sufficient conditions on N to be the
restriction to Π1(F ) of an ideal projector P with range F .

There is at most one such ideal projector since, by Proposition 9, its kernel is necessarily the ideal
generated by kerN . Mourrain shows the existence of such an ideal projector under the (obviously necessary)
assumption that the linear maps

Mj : F → F : f 7→ N(()jf), j = 1:d,

commute, but only for a F that satisfies (11).

5



Theorem 12 ([Mo]). Let F be a finite-dimensional linear subspace of Π satisfying Mourrain’s condition,
(11). Let N be a linear projector on Π1(F ) with range F . Then, the following are equivalent:
(a) N is the restriction to Π1(F ) of an ideal projector P with range F .
(b) The linear maps Mj : F → F : f 7→ N(()jf), j = 1:d, commute.
Further, if either holds, hence both hold, then kerP = ideal(kerN).

Proof: We only have to prove that (b) implies (a). With the Mj commuting, we can define

R : Π→ F : p 7→ p(M)()0

and find it to be a linear map into F , but it is, offhand, not clear that it coincides with N on F , nor that it
is a projector.

To begin with, we know for sure that R and N agree on Π0 ⊆ F . If C is a linear subspace of F for
which we already know that R = N on it, then, for any f =:

∑
j()jcj ∈ Π1(C),

Nf =
∑

j

N(()jcj) =
∑

j

Mjcj =
∑

j

Mjcj(M)()0 = f(M)()0 = Rf,

hence we also know it for Π1(C). So, starting with C = Π0, we can iterate C ← Π1(C) ∩F , and in this way
generate an increasing sequence of subspaces. Since F is finite-dimensional, this leads to the linear subspace
C∗ of F containing ()0 and satisfying C∗ = Π1(C∗) ∩ F , and, on it, R = N , but it is not clear that C∗ = F .

It is exactly this difficulty that Mourrain’s condition, (11), is designed to deal with. For, Mourrain’s
condition certainly ensures that C∗ = F , hence that R extends N , i.e., R = N on Π1(F ). Since ranR ⊂
F ⊂ Π1(F ), this also implies that R is a linear projector, with range F .

For a simple univariate example, consider F = ran[()0, ()2] ⊂ Π(IF), for which Π1(ran[()0])∩F = ran[()0],
hence Mourrain’s condition fails spectacularly. At the same time, let N be the linear projector on Π1(F ) = Π3

specified by
N(()0, ()1, ()2, ()3) = (()0, ()0, ()2, 0).

N is indeed a linear projector, with range equal to F , but kerN contains both ()1− ()0 and ()3 and, as these
are relatively prime, ideal(kerN) = Π. Hence, while the Mj trivially commute (there being only one), no
extension of N to an ideal projector exists.

To be sure, since the question of whether a projector is ideal only depends on its nullspace, it is easy
to construct an ideal projector having this particular F as its range. Simply take ranP ′ = ran[δ0, δ1] (with
δv : f 7→ f(v)). Then N := P Π1(F ) is given by the recipe

N(()0, ()1, ()2, ()3) = (()0, ()2, ()2, ()2).

Now kerN = ran[()2 − ()1, ()3 − ()2 = ()1(()2 − ()1)], hence ideal(ker N) = ideal(()2 − ()1) = kerP . This
confirms Proposition 9. In effect, N has an extension to an ideal projector with the same range if and only
if

F ∩ ideal(kerN) = {0}.

Normal forms

Mourrain’s intent in [Mo] is to construct a convenient “normal form” for the ideal

I := ideal(G)

generated by a given finite set G of polynomials. This is a basic task in computational algebraic geometry
(see, e.g., [CLO92] where the material discussed in this section can be found) and is traditionally performed
with the aid of a Gröbner basis for the ideal. This, in turn, involves a so-called monomial order, i.e., an
ordering < on the set ZZd

+ of multi-indices that respects addition, i.e.,

(13) ∀α, β, γ ∈ ZZd
+ α < β =⇒ α + γ < β + γ,
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and is a well-ordering, meaning that every subset of ZZd
+ has a smallest element. Standard examples are

the Lexicographic Order (lex) in which α < β means that the first nonzero entry in β − α is positive,
and the Graded Reverse Lexicographic Order (grevlex) in which α < β if, either |α| < |β|, or else
|α| = |β| and the last nonzero entry in β − α is positive. Here and below,

|α| :=
∑

j

α(j), α ∈ ZZd
+.

Any such ordering admits the definition of the corresponding polynomial degree:

Deg : Π\0→ ZZd
+ : p 7→ max supp p̂,

with (13) ensuring that

(14) Deg(pq) = Deg(p) + Deg(q).

Note that, in this, the degree of the zero polynomial is undefined. Perhaps a mathematically cleaner definition
of Deg(p) would be the set {α ∈ ZZd

+ : α ≤ max supp p̂} which now has the empty set as the natural definition
of Deg(0) yet still satisfies (14) (since A + ∅ = ∅).

With respect to such an ordering, one then constructs a Gröbner basis G for I, meaning that G is a
finite subset of I with the property that

∀p ∈ I, p ∈
∑

g∈G

g Π≤Deg(p)−Deg(g).

Here and below, for any subset Γ of ZZd
+ (including subsets merely specified by the condition its elements

are to satisfy),
ΠΓ := ran[()γ : γ ∈ Γ].

Actually, a simpler definition in use identifies a Gröbner basis for I as a finite subset G of I with
⋃

g∈G

(Deg(g) + ZZd
+) ⊃ {Deg(f) : f ∈ I} =: Deg(I).

Note that, directly from (14),
Deg(I) = Deg(I) + ZZd

+,

showing Deg(I) to be an upper set. But (by Dickson’s Lemma), any upper set U in ZZd
+ is necessarily of

the form
U = (∂U) + ZZd

+,

with
∂U := {α ∈ U : U\α is upper}

its necessarily finite boundary. This proves the existence of Gröbner bases. A naive definition of the normal
form mod I for p ∈ Π is the element r of p + I of minimal Deg. However, there is, offhand, nothing to
prevent I from containing f 6= 0 with Deg(f) < Deg(r), and then also (r + f)/2 is a different element of
p + I of minimal degree.

So, a better definition is the following. The normal form mod I for p ∈ Π is the unique element in

(p + I) ∩Π\Deg(I).

Indeed, if both r and s are in this intersection, then their difference is in I, yet, if r − s were nonzero, then
Deg(r − s) 6∈ Deg(I). This shows uniqueness.

As to existence, let
F := Π\Deg(I) = ran[()α : α 6∈ Deg(I)].

Then, as we just pointed out, F and I are linear subspaces of Π with trivial intersection,

F ∩ I = {0}.

Further if, in the monomial order, the left shadow

ZZ≤α := {β ∈ ZZd
+ : β ≤ α}

of every α is finite (as is the case, e.g., in grevlex), then, for arbitrary p ∈ Π, the following elimination
algorithm produces an r ∈ F with p− r ∈ I.
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Division by G.

Input: p ∈ Π, G.

r ← p.

for α = argmax(Deg(G) ∩ supp r̂), and g ∈ G so that α = Deg(g), r← r − (r̂(α)/ĝ(α))g.

Output: The resulting r is “the remainder of the division of p by G”.

Indeed, for a monomial ordering such as grevlex, the entire calculation takes place on the finite index
set ZZ≤Deg(p), hence necessarily stops after finitely many steps, at which point, assuming we chose G to be
I, r ∈ F while, at every step, p− r ∈ I.

For a monomial ordering, such as lex, in which left shadows can be infinite, a more subtle argument
is required to prove that, nevertheless, the elimination algorithm terminates in finitely many steps. This
more subtle argument leads naturally to the creation of a Gröbner basis G for I and its use in more refined
versions of the elimination algorithm; see, e.g., [CLO92].

In any case, taking this for granted, we conclude that

Π = F ⊕ I,

with the normal form for p mod I nothing but the projection of p to F along I, i.e., the image of p under
the ideal projector with range F and kernel I.

Note that F is quite a special algebraic complement for I. Not only is it monomial, in the sense that
it is spanned by monomials, but, with that, F is also D-invariant, since Deg(I) = Deg(I) + ZZd

+, hence

α 6∈ Deg(I) =⇒ (α− ZZd
+) ∩Deg(I) = ∅.

In other words, ZZd
+\Deg(I) is a lower set. This also implies that F satisfies Mourrain’s condition (11).

Now, Mourrain’s point is that the construction of a Gröbner basis is, in general, time-consuming, as is
working term by term. Can we, he asks, construct the normal form by some other, perhaps more efficient,
way? If G spans an algebraic complement of some polynomial space F within Π1(F ), and if this F satisfies
his condition (11) and is complementary to I = ideal(G), then, as we saw, for any p ∈ Π, its normal form
mod I is the polynomial p(M)()0, with the Mj determined as above from the linear projector N on Π1(F )
with range F whose kernel is span(G).

Mourrain also investigates the question of just what to do if we have to start with some arbitrary finite
G, and develops an algorithm for constructing an H-basis for I = ideal(G), i.e., a finite subset H of I for
which {h↑ : h ∈ H} is a basis for the homogeneous ideal

I↑ := ideal(p↑ : p ∈ I),

with p↑ uniquely determined (for p 6= 0) by the requirements that it be homogeneous and satisfy

deg(p− p↑) < deg p,

and

deg p := max{|α| : p̂(α) 6= 0}.

Lack of time and space prevents me from pursuing this further here. For H-bases in connection with
multivariate polynomial interpolation, see [dB94], [MSa], [MSb], [MSc], [S98], [S01], [S02], [S05].
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The nature of ranP ′

We now take a look at the interpolation conditions for the ideal projector P , under the assumptions
that P is of finite rank and that IF = C.

Polynomial ideals arise naturally in the study of the common zeros of a collection G of polynomials, i.e.,
the set

V(G) := {v ∈ Cd : g(v) = 0, g ∈ G}.

Any finite weighted sum ∑

g∈G

agg

of elements g of G will have these same zeros, even if we use for the weights ag not just scalars but polynomials.
In other words,

V(G) = V(ideal(G)).

To what an extent is an ideal I characterized by its variety, V(I)? A partial answer is provided by

Hilbert’s Nullstellensatz. If p ∈ Π vanishes on V(I), then some power of p lies in I.

So, while there is no 1-1 correspondence between varieties and ideals, the connection is, nevertheless,
quite close.

In particular, Hilbert’s Nullstellensatz is a kind of multivariate fundamental theorem of algebra: for, if
V(I) is empty, then, e.g., the polynomial ()0 vanishes on that variety, hence must be in I, therefore so must
be ()0 · Π = Π. In other words, any proper ideal has zeros.

In particular, assuming our ideal projector, P , not to be trivial, its kernel

I := kerP

is a proper ideal, hence has zeros. Let

v ∈ V := V(I).

This says that the linear functional

δv : p 7→ p(v)

vanishes on I = kerP , hence is in ranP ′, i.e., provides an interpolation condition for P . More than that,

[δv : v ∈ V ]

is 1-1, hence,

(15) #V ≤ dimΠ/I.

But, and this is a subtlety, there need not be equality here. This is already hinted at by Hilbert’s
Nullstellensatz which only requires a sufficiently high power of p to lie in I. Now, if p(v) = 0, then also
p∗k(v) := (p(v))k = 0, but (for k > 1) v is more of a zero of p∗k in the sense that p∗k(x) goes to zero faster
than p(z) as z → v. Various derivatives of p∗k are zero at v as well. So, as the Nullstellensatz hints at, in
order for p to belong to I, it must vanish at each v ∈ V(I) to the right ‘order’ or multiplicity.

Even this notion of ‘order’ or multiplicity is subtle. It isn’t just that

p(z) = O(|z − v|k)

for some k. The full story is the following.
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“Lefranc’s Nullstellensatz” [Le58]. For an arbitrary polynomial ideal I in Π = Π(Cd),

(16) I =
⋂

v

(I⊥v)⊥v,

where, for any S ⊂ Π,
S⊥v := {q ∈ Π : q(D)m(v) = 0, m ∈ S}

and
S⊥v := {p ∈ Π : m(D)p(v) = 0, m ∈ S}.

Corollary. For an ideal projector P of finite codimension,

ranP ′ =
∑

v

δvQv(D),

with
Qv := I⊥v = {q ∈ Π : q(D)f(v) = 0, f ∈ I}.

Actually, the corollary can already be found in basic algebra books, e.g., [G70: p.168ff], but see already
[G49] and the very nice overview article [G50]. Gröbner attributes the idea to Macaulay, e.g., [Mac: p.64ff],
though it is described there in a different language (i.e., in terms of inverse systems) and there credit for first
defining multiplicity correctly is given to Lasker [La05] (who, however, defines it only as a number, namely
the length (i.e., the codimension) of the associated primary ideal).

The space Qv = I⊥v is called the multiplicity space of I at v (or, less descriptively, the Max
Noether space of I at v; see [MT]). Qv is a linear subspace of Π, of the same dimension as the linear
subspace

δvQv(D) := {f 7→ q(D)f(v) : q ∈ Qv}

of Π′ that it supplies, and, obviously,

δvQv(D) ⊂ I⊥ = (kerP )⊥ = ranP ′.

In other words, any ideal interpolant has interpolation conditions of the form

δvq(D)

for certain sites v and certain polynomials q. But much more is true. Since each of the spaces δvQv(D) lies
in ranP ′, each must, in particular, be finite-dimensional. Also, since any finite sum of the form

∑

v

δvQv(D)

is necessarily direct, there can be only finitely many nontrivial Qv here. But the most important fact is that
each Qv is necessarily D-invariant. Is that obvious?

It can be verified in many ways. Perhaps the simplest is the following which uses the intriguing formula

(17) q(D)f(0) =
∑

α

Dαq(0)Dαf(0)/α! =: q ∗ f,

which, quite rightly, has made its appearance in various papers concerning multivariate polynomials but
under various names (see, e.g., [S05: above Theorem 6.1]). It is the unique bilinear form on Π×Π for which

(18) (rq) ∗ f = q ∗ (r(D)f), r, q, f ∈ Π.

(18) follows directly from (17) while, for the verification of (17), note that it is linear in q and f , hence can
be verified by checking it for

q = [[]]
β

: x 7→ xβ/β!,
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the conveniently normalized power function, and f = [[]]
γ
. For these, Dαq(0) = [[0]]

β−α
= δβ,α, hence

∑

α

Dαq(0)Dαf(0)/α! = δα,βδα,γ/α! = δβ,γ/β!,

while
δ0([[D]]

β
[[]]

γ
) = δ0[[]]

γ−β
/β! = δγ,β/β! .

Note the symmetry, i.e.,
q ∗ f = f ∗ q,

hence, by symmetry, also
(r(D)q) ∗ f = q ∗ (rf).

Therefore, with
Ev : f 7→ f(·+ v)

the translation by v, we have, for q ∈ Qv, f ∈ I and r ∈ Π,

(r(D)q)(D)f(v) = r(D)q ∗ Evf = q ∗ (rEvf) = q ∗ Ev((E−vr)f) = q(D)((E−vr)f)(v) = 0,

since E−vr ∈ Π and therefore (E−vr)f ∈ I.
With each Qv now known to be D-invariant, we know that it contains all constant polynomials if

it is nontrivial. Hence, each nontrivial Qv supplies, in particular, the interpolation condition δv. The
corresponding set

V(I) := {v : Qv 6= {0}}

is the variety of the ideal I, i.e., the set of zeros common to all polynomials in I. But, in general, we have
not just the matching of function values, but also the matching of some derivative information, with the
important restriction that, if δvq(D) is being matched, then so is δv(D

αq)(D) for all α.
In the univariate case, there is only one D-invariant polynomial subspace of dimension k, namely

Π<k, the polynomials of order k. But this says that, in the univariate case, ideal interpolation is Hermite
interpolation. For that reason, we also use the term Hermite interpolation in the multivariate case when
the interpolation conditions are of the form

∑

v

δvQv(D)

with each Qv a D-invariant finite-dimensional polynomial space.
Is any such Hermite interpolation ideal?
If Q is any D-invariant linear subspace of Π, then, for arbitrary v, Q⊥v is an ideal: For, if q ∈ Q and

f ∈ Q⊥v, then, for arbitrary r ∈ Π,

(rf) ∗ Evq = f ∗ r(D)(Evq) = f ∗ Ev(r(D)q) = 0,

since then r(D)q ∈ Q, hence also rf ∈ Q⊥v. But this says that

(
∑

v

δvQv(D))⊥ =
⋂

v

(δvQv(D))⊥ = ∩vQv⊥v

is the intersection of ideals, hence an ideal. In other words, Hermite interpolation is characterized by the
fact that it is ideal.

Apparently, the first to use ‘Hermite interpolation’ in this sense in the multivariate context is H. M.
Möller; see [M76], [M77] which predate [Bi79] and, in contrast to [Bi79], describe ranP ′.

In [dBR90] and, regrettably, not yet aware of Möller’s work, we defined ‘Birkhoff-Hermite interpolation’
to mean that

(19) ranP ′ = ∩v∈V δvQv(D),
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with each Qv dilation-invariant (i.e., p ∈ Qv and h > 0 implies p(·h) ∈ Qv or, what is the same, Qv is
spanned by homogeneous polynomials), and restricted the term ‘Hermite interpolation’ to such P for which
each Qv is also D-invariant. Note that Hakopian and his colleagues reserve the term ‘Hermite interpolation’
for P for which ranP = Πk for some k while ranP ′ is given by (19), with Qv = Πkv

, all v; see, e.g., [H00].
Earlier, [Lo92] called such interpolation ‘Hermite interpolation of type total degree’ but also considered
‘Hermite interpolation of type tensor product’, in which each Qv is of the form

Π≤α := ran[()β : β ≤ α]

for some v-dependent α; see [LL] for an early paper and [Lo00] for a recent survey. Further, [SX95b] use
‘Hermite interpolation’ to mean P with ranP ′ of the form (19) with each Qv spanned by polynomials of the
form

〈·, Y 〉 :=
∏

y∈Y

〈·, y〉,

and containing, with each such 〈·, (y1, . . . , yr)〉, also 〈·, (y1, . . . , yr−1)〉; here

〈x, y〉 :=
∑

i

x(i)y(i).

Such a Qv may fail to be D-invariant unless it contains, with each 〈·, Y 〉, also 〈·, Y \y〉 for every y ∈ Y . [SX95b]
call their ‘Hermite interpolation’ regular in case all the Qv are D-invariant (hence the interpolation is ideal).
This raises the question whether any D-invariant space has such a spanning set, for only then would such
‘regular Hermite interpolation’ be exactly the same as what we have called here ‘Hermite interpolation’.

The above characterization of ideal interpolation implies that Kergin interpolation (see, e.g., [K] and
[Mi]) is ideal only when it is a Taylor projector, i.e., when it involves only one site. In the same vein, the
various mean-value interpolation schemes developed by Hakopian (see, e.g., [BHS]) fail to be ideal except
when the underlying simplex degenerates to a point.

When is Hermite interpolation Lagrange interpolation?

It is evident that Hermite interpolation is Lagrange interpolation exactly when there is equality in (15),
i.e., when

#V(kerP ) = dim ranP.

There is a pretty characterization of this in terms of the linear maps Mj , j = 1:d, introduced in (5). This
characterization is in terms of the eigenstructure of the Mj. Since the Mj commute, they have a joint set of
eigenvectors. The following Lemma is standard (see, e.g., [CLO98: p.54]) but is proved here for the reader’s
convenience.

Lemma 20. For any p ∈ Π, the spectrum of p(M) is

spect(p(M)) = p(V).

Proof: We continue to take for granted that [δv : v ∈ V ] is 1-1, i.e., that

(21) Π→ CV : p 7→ p V is onto.

Take p ∈ Π, µ ∈ C, and consider
p(M)− µid := q(M).

If µ 6∈ p(V), then q does not vanish on V , therefore, by (21), for some polynomial r, ()0− qr vanishes on
V , hence, by Hilbert’s Nullstellensatz, some power of it, say the kth, lies in kerP = kerM . This says that

0 = (()0 − qr)k(M) = (M0 − q(M)r(M))k = id − q(M)Q

for some Q ∈ L(ranP ), showing q(M) = p(M)− µid to be invertible (since ranP is finite-dimensional).
If, on the other hand, µ = p(v) for some v ∈ V , then, for all q ∈ ranP ,

δvMpq = δvP (pq) = δv(pq) = µδvq,

showing δv to be a left eigenvector for Mp for the eigenvalue µ = p(v) (this is Stetter’s insight; see [AS]).
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Proposition 22 ([MSt]). The ideal projector P with F := ranP is Lagrange interpolation (i.e., #V =
dimF ) if and only if the Mj are diagonalizable.

Proof: If #V = dimF , then, since dim ranP ′ = dim F , [δv : v ∈ V ] is an eigenbasis for M ′
p (for any

p). Correspondingly, its dual basis in F , i.e., the basis [ℓv : v ∈ V ] with

ℓv(w) = δvw, v, w ∈ V ,

is an eigenbasis for Mp (again for any p); it is evidently the Lagrange basis for interpolation from F at V .
Conversely, let V : Cn → ranP be an eigenbasis for the Mj. Then, the map

Π→ Cn×n : p 7→ V −1p(M)V

is linear and, by (8), has kerP as its kernel. In other words, with λij the map that carries p ∈ Π to the
(i, j)-entry of the matrix V −1p(M)V , we have

kerP = ∩i,j kerλij ,

hence (λij : i, j = 1:n) spans ranP ′. But, since V is an eigenbasis for the Mj , all the matrices V −1p(M)V
are diagonal, hence only the λii are nontrivial and, since there are only n := dim ranP ′ of them, they must
form a basis for ranP ′. In particular, there must exist p ∈ Π for which #{λiip : i = 1:n} = n. Since
{λiip : i = 1:n} = spect(p(M)) = {p(v) : v ∈ V}, this implies that #V = n.

As the simplest example, consider P : p 7→ p(0)()0 + Dp(0)()1. We compute the matrix representation
for M1 with respect to the standard basis, [()0, ()1], for ranP = Π1(IF):

M1()
0 = P ()1 = ()1; M1()

1 = P (()2) = 0,

hence

M̂1 = [ε2, 0] =

[
0 0
1 0

]
,

the simplest example of a defective matrix.
It seems that Auzinger and Stetter [AS] were the first to propose to use the eigenstructure of the Mj for

the calculation of V . This requires, in principle, nothing more than the calculation of a matrix M̂j similar
to Mj, and this can be obtained in many ways, e.g., by computing the representation of Mj wrto some basis
W of ranP . From this, one can, in principle, compute a basis U consisting of (generalized) eigenvectors for

any particular Mj, and, with that in hand, can now compute M̂j := U−1MjU for every j, hence know, in
particular, not only v(j) for all j, but even the points v themselves, since one then knows the λii at least on
Π1.

However, Auzinger and Stetter go for the eigenvectors of the transpose of M̂j , as these are necessarily of

the form δvU = (u(v) : u ∈ U). Actually, [AS] focus on the left eigenvector av of the matrix M̂p belonging to
the eigenvalue p(v) since it is necessarily (a scalar multiple of) δvW , hence has w(v), w ∈ W , as its entries.
If now W can be chosen to contain ()j , j = 1:d, then av contains the very coordinates of v. If W cannot be
so chosen, still there are then techniques for teasing out v from the vector av; see [St], [MSt].

Is Hermite interpolation the limit of Lagrange interpolation?

While one is, of course, free to give names to hitherto unnamed concepts and constructs, use of an
established name in a new or more general context needs justification. Since it is an integral and often used
aspect of univariate Hermite interpolation that it is the (pointwise) limit of Lagrange interpolation, it is fair
to ask whether multivariate ideal interpolation is also the limit of Lagrange interpolation. This question was
already raised in [dBR90], within the restricted meaning of ‘Hermite interpolation’ used there, but has yet
to be answered even in that restricted context.
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To be sure, pointwise convergence of maps on a linear space depends on the notion of limit in that space
to be employed. On Π, we use uniform convergence on compact sets or, what is the same, coefficient-wise
convergence, i.e.,

lim
n→∞

pn = p ⇐⇒ ∀α ∈ ZZd
+ lim

n→∞
p̂n(α) = p̂(α).

Proposition 23. The pointwise limit of ideal projectors is ideal.

Proof: Since the property of being ideal can be characterized pointwise (see Lemma 1), it is pre-
served under pointwise convergence.

Since a linear projector is determined by its range and the range of its dual, the pointwise convergence
of a sequence (Pn : n ∈ IN) of (finite-rank) linear projectors is equivalent to the convergence of their ranges
and the ranges of their duals. Thus, we are interested in what limits, if any, can linear spaces spanned by
finitely many point evaluations have as the evaluation sites all coalesce at one site, v. The above proposition
implies that, if there is a limiting space, it is necessarily of the form δvQv(D) for some D-invariant space
Qv. But the space Qv will crucially depend on just how the evaluation sites coalesce. Here is an example,
from [dBR90].

Proposition 24. Let v and T be a point, respectively a finite subset, in ZZd. Then

lim
h→0

ran[δv+hτ : τ ∈ T] = δvΠT(D),

with
ΠT :=

⋂

p T=0

kerp↑(D).

Proof: Assume without loss that v = 0. Then the general element of ran[δv+hτ : τ ∈ T] is of the
form

λh : p 7→ λp(h·), with λ :=
∑

τ∈T

c(τ)δτ .

We compute

λhp = λp(h·) =
∑

τ∈T

c(τ)
∑

α

(hτ)αp̂(α)

=
∑

j

hj
∑

|α|=j

∑

τ∈T

c(τ)τα

︸ ︷︷ ︸
λ()α

p̂(α)

=
∑

j≥ord λ

hj
∑

|α|=j

λ()αp̂(α)

with
ordλ := min{|α| : λ()α 6= 0}.

Therefore

lim
h→0

λhp/hordλ =
∑

|α|=ord λ

λ()αp̂(α) =
∑

|α|=ord λ

λ()α 1

α!
Dαp(0)

= q(D)p(0),

with

q :=
∑

|α|=ordλ

∑

τ∈T

c(τ)
τα

α!
()α = ???

a certain polynomial. Note that, in the univariate case, this sum would only have one term in it and,
correspondingly, the limit is just a scalar multiple of the (ordλ)-th derivative at the origin, just as expected.
In the multivariate case, things are more complicated. Yet, as we look further into this polynomial q, we’ll
also discover real beauty.
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What does the term τα/α! remind you of? The exponential function! In fact, you recall

eτ : x 7→ e〈τ,x〉 =
∑

j

〈τ, x〉j/j! =
∑

α

τα

α!
xα,

the exponential with frequency τ . So, with the definitions

f :=
∑

τ∈T

c(τ)eτ =
∑

j

∑

|α|=j

∑

τ∈T

c(τ)
τα

α!
()α

︸ ︷︷ ︸
=: f [j]

,

we see again q:

q = f [ordλ].

In other words: if we organize f =
∑

τ c(τ)eτ into its homogeneous terms ,

f = f [0] + f [1] + · · · ,

then we find that f [ord λ] is the first such term that is non-zero. For that reason, we call it the least or
initial term of f , and denote it by

f↓.

It follows that limh→0 ran[δv+hτ : τ ∈ T] contains δ0(ExpT)↓(D), with

ExpT := ran[eτ : τ ∈ T]

and

F ↓ := span(f↓ : f ∈ F )

for any linear subspace F of

(25) Π′ ∼ P := IF[[x]],

the space of formal power series in d variables x(1), . . . , x(d) with coefficients in IF.

On the other hand, each ran[δv+hτ : τ ∈ T] has dimension equal to #T, hence its limit as h → 0 can
have dimension at most #T, while (see [dBR90]) dimF ↓ = dimF and dimExpT = #T. Therefore

lim
h→0

ran[δv+hτ : τ ∈ T] = δ0(ExpT)↓(D).

Finally (see [dBR92a] and [dBR92b]; for a direct proof, see [dB92]),

(ExpT)↓ =
⋂

p T=0

ker p↑(D).
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The equivalence of Π′ with P claimed in (25) can be established in several ways. For our purposes, it
is convenient to do it via the natural extension of the bilinear form (17) to

P ×Π→ IF : (f, p) 7→ f ∗ p =
∑

α

f̂(α)α!p̂(α).

Note that, for any v ∈ IFd and any p ∈ Π,

ev ∗ p =
∑

α

vαp̂(α) = p(v).

In other words, the exponential function with frequency v represents evaluation at v with respect to this
pairing. In particular, given that we were interested in finding limh→0

∑
τ c(τ)δhτ , the appearance of the

exponential function in the above proof is not accidental.
Note further that ΠT is not only D-invariant (as the intersection of kernels of constant-coefficient

differential operators) but also dilation-invariant (as the span of homogeneous polynomials). In contrast,
in general, the multiplicity spaces Qv for an ideal projector need only be D-invariant. Here is a further
example, from [dBR90], to show how such a δvQv(D) may, nevertheless, be the limit of spaces spanned by
point evaluations.

Let Th := {ξ− := (−h, h2), 0, ξ+ := (h, h2)} ⊂ IF2 and set Mh := ran[δτ : τ ∈ Th]. Then, with
ξ0 := (0, h2), Mh contains

(δξ+
+ δξ− − 2δ0)/h2 = (δξ+

− 2δξ0
+ δξ

−

)/h2 + 2(δξ0
− δ0)/h2,

and this evidently converges to δ0(D
2
1 + 2D2) as h → 0, while certainly (δξ+

− δξ
−

)/h is in Mh and
converges to δ0D1, and δ0 is in Mh for all h. This shows that the 3-dimensional space δ0Q0(D) with
Q0 := ran[()0, ()1,0, ()2,0 + 2()0,1] is in limh→0 Mh, hence must coincide with it since each Mh is only 3-
dimensional. Note that Q0 is D-invariant but not dilation-invariant.

Conjecture. A linear projector on Π ⊂ (Cd → C) is ideal if and only if it is the (pointwise) limit of
Lagrange interpolation.

Some people have told me that this conjecture is obviously true, because of known results concerning
the resolution of singularities. On the other hand, Geir Ellingsrud has pointed out to me that this conjecture
must fail for d > 2, because of results by Iarrobino (see [I]) concerning the dimension of the manifold of
ideals of codimension k with k points in their variety as compared with the dimension of the manifold of
ideals of codimension k with variety {0}. But, lacking as yet a sufficiently good background in Algebraic
Geometry, I have not yet understood his reasoning. In any case, Ellingsrud’s remark does not contradict the
following, very recent, response, by Boris Shektman, to the above conjecture.

Proposition 26 ([Sh]). Any ideal projector on Π ⊂ (C2 → C) with range the polynomials of degree ≤ k
(for some k) is the pointwise limit of Lagrange interpolation projectors.

Proof outline: Let F = Πk be the range of the ideal projector P , and recall from Proposition 22
that P is Lagrange interpolation iff the linear maps Mj : F → F : f 7→ P (()jf) are diagonalizable. Since F
is finite-dimensional, the diagonalizable linear maps on F are dense in L(F ). Hence we are looking for an
indication that the set of all ideal projectors with range F is open in some sense.

From Proposition 7, we know that P is characterized by its action on Π1(F ) = Πk+1, hence by the
polynomials

hα := P ()α ⊂ ranP = Πk, |α| = k + 1,

since P ()α = ()α for |α| ≤ k. On the other hand, while any choice of the hα gives rise to a linear projector N
on Π1(F ) with range F = Πk, not all of them are the restriction to Π1(F ) of an ideal projector with range
F . Since F evidently satisfies Mourrain’s condition (11), we know from Theorem 12 that N is the restriction
of an ideal projector with range F if and only if

N(()iN(()j()
α)) = N(()jN(()i()

α)), |α| ≤ k, 1 ≤ i < j ≤ d.
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Now, for |α| < k, N(()i()
α) = ()i()

α, hence the condition is equivalent to

N(()iN(()j()
α)) = N(()jN(()i()

α)), |α| = k, 1 ≤ i < j ≤ d.

Further, for |α| = k, N(()i()
α) = hεi+α, hence the condition is that

()ihεj+α − ()jhεi+α ∈ kerN, |α| = k, i < j.

But (()β − hβ : |β| = k + 1) is evidently linearly independent (since hβ ∈ Πk) and has dimkerN terms and
is in kerN , hence is a basis for kerN . Therefore, the choice (hβ : |β| = k + 1) specifies an ideal projector
with range Πk if and only there are matrices Cij (necessarily unique) so that

(27) ()ihεj+α − ()jhεi+α =
∑

|β|=k+1

Cij(α, β)(()β − hβ), |α| = k, i < j.

Now, in the bivariate case actually under discussion, there is just one choice for (i, j), namely (1, 2),
hence (hβ : |β| = k + 1) in Πk gives rise to an ideal projector with range Πk if and only if there is some
matrix C so that

(28) ()1hε2+α − ()2hε1+α =
∑

|β|=k+1

C(α, β)(()β − hβ), |α| = k.

It is this equation, Shekhtman derives and looks at. He treats it as an equation for the vector h := (hβ :
|β| = k + 1), hence writes it in the form

Ah− C(b− h) = 0,

with
b := (()β : |β| = k + 1)

and
Ah := (()1hε2+α − ()2hε1+α : |α| = k),

hence
Ab = 0,

therefore (28) is equivalent to

(29) (A + C)(h− b) = 0.

Now, given that A + C has one more column than it has rows, it follows, by a standard formula, that

(30) h := (()β − (−1)β det(A + C)(:, \β) : |β| = k + 1)

solves (29), hence (28). Further, detA(:, \β) = (−1)β()β , hence this h is in Πk, as required. This shows
that each choice of C gives rise to an ideal projector. It also shows that each detA(:, \β) is nonzero almost
everywhere, hence A + C is onto almost everywhere and, therefore, ker(A + C) is 1-dimensional almost
everywhere. In other words, for given C, h uniquely solves (28).

Now notice that (30) describes the solution h as a polynomial function in the entries of the matrix C.
Hence, with Λ a basis for ranP ′ and n := dimF = dim ranΛ, the determinant of the Gram matrix

Λt[()j
1 : j < n]

is also a polynomial in the entries of C, and is nonzero for some choice of C. Hence, every neighborhood of our
ideal projector P contains an ideal projector R with range Πk and such that, for any basis M for ranR′, the
Gram matrix Mt[()j

1 : j < n] is invertible, hence there is a linear projector S with ranS = ran[()j
1 : j < n]

and ranS′ = ranR′, hence an ideal projector. By perturbing, if necessary, the zeros of the polynomial
()n

1 − S()n
1 (considered as a univariate polynomial), we obtain (see the example following Proposition 7) an

interpolating ideal projector T as close to S as we would like, and, with that, the linear projector U with
range Πk and ranU ′ = ranS′ is well-defined and an interpolating projector as close to P as we would like.
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Since (see below) every zero-dimensional ideal has an algebraic complement spanned by monomials and
D-invariant hence satisfying Mourrain’s condition, one can hope that the above version of Shekhtman’s
argument extends to arbitrary ideal projectors on bivariate polynomials.

Returning to our 0-dimensional polynomial ideal I, it is customary to refer to the dimension of Qv = I⊥v

as the multiplicity of v as a point in V(I). But it is clear that, in the multivariate context, this provides too
little information. It is the space Qv itself that carries the detailed information.

[G50] contains a whole section devoted to the pitfalls to be avoided by anyone wishing to explain the
multiplicity of a zero of an ideal in terms of coalescing point evaluations. Specifically, it is pointed out there
that it is not possible to define multiplicity by the number of point-evaluations that might be coalescing there
since that number will surely depend on the particular sequence chosen. In particular, there are cases of
higher-dimensional ideals (hence their variety is not finite) that can be approximated in some nice geometric
sense by 0-dimensional ideals, perhaps even with a bound on the cardinality of their varieties. A footnote
refers to a private communication from Burau who states that, nevertheless, he had been able to arrive
in this way at a satisfactory definition of multiplicity that, not surprisingly, was equivalent to the present,
ideal-theoretic one.

The choice of ranP

A projector’s property of being ideal is entirely determined by its kernel, the ideal I. For a given
nontrivial ideal I or, equivalently, a given ‘ideal’ space I⊥ of interpolation conditions, there are infinitely
many ideal projectors, one for each choice of an algebraic complement of I as ranP .

One popular choice for ranP is to ensure that P be degree-reducing meaning that

deg Pp ≤ deg p, p ∈ Π.

This is called of least degree in [dBR90], and of minimal degree in [dBR92a] and [dBR92b], and
[S97] is entirely devoted to this notion, with a highlight the proof that every 0-dimensional ideal has an
algebraic complement that is spanned by monomials and is D-invariant and whose corresponding projector
is degree-reducing.

As is pointed out in [dB05a], such an algebraic complement can be obtained by Gauss elimination with
partial pivoting, applied to the Gram matrix

ΛtV,

with Λ a column map into Π′ for which kerΛt is the ideal and

V := [()α : α ∈ ZZd
+]

such that the order < on ZZd
+ corresponding to the order of the columns of V commutes with addition, i.e.,

satisfies (13), and respects degree, i.e., |α| < |β| =⇒ α < β. If β1 < · · · < βn is the sequence of indices of the
bound columns of ΛtV as determined by Gauss elimination, then ran[()βi : i = 1:n] is that desired algebraic
complement.

A quite different choice for ranP may result from the wish for a particularly ‘nice’ error formula. One
reason for choosing ideal interpolation in the first place is the resulting possibility of writing the error in the
form

f − Pf =
∑

b∈B

b qb,f

with B a minimal basis for the ideal kerP , and qb,f suitable polynomials depending on f .
In the univariate case, the standard error formula takes the form

f − Pf = b∆(τ1, . . . , τn, ·)f,
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with
b := (· − τ1) · · · (· − τn)

the monic polynomial that vanishes at the interpolation sites to the appropriate multiplicity, i.e., the monic
polynomial that generates the ideal kerP , and ∆(τ1, . . . , τn, x)f the divided difference of f at the sites
τ1, . . . , τn, x, hence a polynomial in x that depends linearly on Dnf . More precisely,

∆(τ1, . . . , τn, x)f =

∫
K(·|τ1, . . . , τn, x)Dnf

for a certain function K, namely a B-spline with knots τ1, . . . , τn, x. Since Dn = b↑(D), one may therefore
hope, in the multivariate case, for an error formula of the form

(31) f(x)− Pf(x) =
∑

b∈B

b(x)Ix,b(b↑(D)f)

with B a minimal generating set for I and with each Ix,b some linear integral operator. Since ranP comprises
exactly those polynomials for which f − Pf = 0, this would imply

⋂

b∈ker P

ker b↑(D) =
⋂

b∈B

ker b↑(D) ⊆ ranP,

the equality holding because B is a basis for the ideal kerP . But since ranP is complementary to the ideal
kerP , this would imply ⋂

p∈ker P

ker p↑(D) = ranP.

But this implies (see [dBR92a]) that P is necessarily the least projector for the given interpolation conditions
(kerP )⊥, as introduced in [dBR92a] for arbitrary (finite-dimensional) spaces of interpolation conditions. I
resist the urge to call the linear projector with

ranPI =
⋂

p∈I

ker p(D) and kerPI = I

a ‘least ideal projector’, and call it least Hermite interpolation instead.
As a simple example, consider interpolation at Σ×T, with Σ and T finite subsets of IF. The ideal I of

all bivariate polynomials vanishing on Σ× T is generated by the two polynomials

pσ : x 7→
∏

σ∈Σ

(x(1)− σ), pτ : x 7→
∏

τ∈T

(x(2)− τ).

Correspondingly, with
m := deg pσ, n := deg pτ ,

the least choice for the space from which to interpolate in this case is the standard one, i.e.,

ranPI = ker(pσ)↑(D) ∩ ker(pτ )↑(D) = kerDm
1 ∩ kerDn

2 = ran[()α : α(1) < deg pσ, α(2) < deg qτ ].

However, the standard formula for the error in such tensor-product interpolation to f involves not only Dm
1 f

and Dn
2 f but also the higher mixed derivative Dm,nf . Nevertheless, it is possible (see [dB97]) to derive an

error formula for this particular, and even for general multivariate, tensor product interpolation, of the form
(31), with B the ‘natural’ basis for I.

But (31) fails the next test, Chung-Yao interpolation, for which the error formula, derived in [dB97], is
of the slightly more complicated form

(32) f(x)− Pf(x) =
∑

b∈B

b(x)Ib,x(b̃↑(D)f),

with (b̃ : b ∈ B) also a (minimal) basis for I and such that b̃↑(D)c = δb,c for b, c ∈ B.
One may therefore hope for an error formula of the form (32) for arbitrary least Hermite interpolation

(a hope first expressed in [dB97]). But, already for general Lagrange interpolation from Πk, this is still only
a hope, as the Sauer-Xu error formula for that case (see [SX95a]) does not readily convert into the form
(32).
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