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Splines as linear combinations of B-splines. A Survey

Carl de Boor

This paper is intended to serve as a postscript to the fundamental 1966 paper by Curry and Schoenberg on B-splines. It

is also intended to promote the point of view that B-splines are truly basic splines: B-splines express the essentially local, but

not completely local, character of splines; certain facts about splines take on their most striking form when put into B-spline

terms, and many theorems about splines are most easily proved with the aid of B-splines; the computational determination of

a specific spline from some information about it is usually facilitated when B-splines are used in its construction.

1. Introduction

The layout of the survey is as follows. After a short discussion of cardinal B-splines, i.e., of B-splines
on a uniform knot sequence, in Section 2, B-splines for an arbitrary knot sequence are introduced in Section
3 and shown to be a basis for certain spaces of piecewise polynomial functions. Various simple properties of
B-splines are listed in Section 4, and the relationship between a spline and its coordinates with respect to a
B-spline basis is explored in Section 5. This leads naturally into the discussion of local spline approximation
schemes, in Section 6. Results concerning existence and uniqueness of interpolating splines and the related
total positivity and variation diminishing properties of B-splines are presented in Section 7. Section 8
describes the connection between splines and certain ”best” interpolation schemes. Finally, Section 9 is
devoted to generalized B-splines and ends with a new definition of polynomial B-splines in many variables
due to I. J. Schoenberg.

No claim of completeness is made, and the author would be grateful to hear of any omissions.
The following notation is used throughout the paper, usually without further explanation:
ZZ denotes the set of integers, IR the set of real numbers, and AB the set of functions on B into A.

Thus, IRZZ is the set of real bi-infinite sequences.
m(B) is the linear space of bounded real functions on B, normed by ‖f‖∞,B := supx∈B |f(x)|. For

1 ≤ p ≤ ∞, ILp(I) denotes the space of (equivalence classes of) functions f on the interval I for which
‖f‖p := ‖f‖p,I := (

∫
I
|f |p)1/p <∞. Ck(I) is the space of k times continuously differentiable functions on I.

ILkp(I) is the subspace of those f ∈ Ck−1(I) whose (k − 1)st derivative is absolutely continuous and whose

kth derivative is in ILp(I). M
k(I) is the subspace of Ck−2(I) whose elements have an absolutely continuous

(k − 2)nd derivative and a (k − 1)st derivative of bounded variation. Finally, `p(ZZ) := {α ∈ IRZZ : ‖α‖p :=
(
∑
i |αi|p)1/p <∞}.
IPk denotes the linear space of all polynomials of order k (or, degree < k) with real coefficients. For

a strictly increasing sequence ξξξξξ := (ξi), IPk,ξξξξξ denotes the linear space of all piecewise polynomial (or, pp)
functions of order k on I := [inf ξi, sup ξi] with breakpoint sequence ξξξξξ. Explicitly, f ∈ IPk,ξξξξξ ⇐⇒ f (ξi,ξi+1) ∈
IPk (ξi,ξi+1), all i. In addition, f ∈ IPk,ξξξξξ is taken to have two values at ξi, i.e., the values f(ξ−i ) and

f(ξ+i ). If the reader finds it necessary to think of f as a single-valued function, he should choose some rule
f(ξi) := αf(ξ−i ) + (1 − α)f(ξ+i ) (e.g., α = 1/2) and stick with it.

If v = (vi) is a sequence of nonnegative integers corresponding to ξξξξξ, then IPk,ξξξξξ,v denotes the linear
subspace of IPk,ξξξξξ consisting of those f ∈ Pk,ξξξξξ for which

jump ξi
f (v) = 0 for v < vi, all i.

The v–th derivative of f is also denoted by Dvf as well as by f (v). [τ0, . . . , τk]f stands for the k–th
divided difference of f at the points τ0, . . . , τk. In particular, [τ0]f = f(τ0).

constα,...,ω denotes a constant which may depend on the quantities α, . . . , ω.
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2. Cardinal splines

B-splines made their first appearance in Schoenberg’s 1946 paper on the approximation of equidistant
data by analytic functions. There is no doubt that B-splines appear in earlier literature. They play a
prominent role already in Favard’s work [35], and Schoenberg has always maintained that they were already
known to Laplace (see [70, p. 68]). But it is in Schoenberg’s paper that they were thought important enough
to be given a name, “basic kth–order spline curves”. Since this is the same paper in which Schoenberg
introduces splines, I happily conclude that B-splines were there at the very beginning.

Schoenberg introduces the B-spline, neé basic spline curve, alias spline frequency function [29] alias
fundamental spline function [71, 30]

(2.1) Mk(x) :=
1

2π

∫ ∞

−∞

(
sinu/2

u/2

)k
eiuxdu

and then observes that

(2.2) Mk(x) = k[−k/2, 1 − k/2, . . . , k/2] ( · − x)k−1
+ ,

i.e., Mk(x) is k times the k–th divided difference in y at the k + 1 points j − k/2, j = 0, . . . , k, of the
function (y − x)k−1

+ := (max {0, y − x})k−1. These formulae show that Mk is the k–th convolution power of
the characteristic function of the interval [−1/2, 1/2],

(2.3)

M1(x) =





1, for x ∈ (−1/2, 1/2)
,

0, for x /∈ [−1/2, 1/2]

Mk(x) = (Mi ∗Mj) (x) =

∫ ∞

−∞

Mi(x− y)Mj(y) dy for i+ j = k.

Therefore, — and this is why Laplace must have known B-splines — Mk is the density distribution of the
error committed in the sum of k independent real random variables if each variable is replaced by its nearest
integer value [70, p. 76].

It is easily seen from (2.2) or (2.3) that

Mk ∈ IPk,ZZ+k/2 ∩ Ck−2 =: set of “spline curves of order k′′

as Schoenberg calls them. The subject matter of the paper [70] is the study of approximations of the form

Af :=
∑

n∈ZZ

f(n)L ( · − n),

and the B-splines come in because they offer a convenient way of expressing, and thereby analyzing, the
various pp “basic” functions L considered in the paper.

In the 60’s, Schoenberg’s results were rediscovered and considerably extended by those engaged in
studying the mathematical aspects of the finite element method (see Aubin [1,2], Babuška [3], Bramble and
Hilbert [19], Fix and Strang [38] and Strang and Fix [80], Di Guglielmo [33], and others). When restricted to
the one-dimensional setting of Schoenberg’s paper, these people are seen to consider approximation processes
of the form

Af :=
∑

n∈ ZZ

(λf( · + n))L ( · − n)

for some convenient basic function L, e.g., L = Mk, and some linear functional λ ∈ C∗(IR), and to study
the convergence behavior of

Ah := S1/hASh, with (Sαf) (x) := f(αx),

as h→ 0. The results of this study are nicely summarized by Link [57].
Schoenberg himself developed a particular aspect of this ’46 paper, viz Cardinal spline interpolation, in

considerable detail in a sequence of seven papers which appeared in the late 60’s and early 70’s. These papers
have become the basis for his beautiful monograph [76] on cardinal spline interpolation. Readers interested
in the properties and use of B-splines on uniform knot sequences are urged to consult that monograph.
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3. B-splines defined

It was apparently Schoenberg’s colleague H. B. Curry who observed that the formulation (2.2) of Mk

as a k–th order difference generalizes naturally to a k–th order divided difference on arbitrary points,

(3.1) Mi,k(x) := k[ti, . . . , ti+k] ( · − x)k−1
+ .

The resulting paper [30], though written in 1946 (see [29]), was finally published in 1966. The function Mi,k

is easily seen to be a pp function of order k with breakpoints ti, . . . , ti+k, and with smoothness across each
breakpoint tj which depends on its multiplicity, i.e., on the frequency with which the number tj occurs in
the sequence ti, . . . , ti+k. Further, one readily sees that

(3.2) Mi,k(x) ≥ 0 with equality if x /∈ (ti, ti+k)

in case ti ≤ · · · ≤ ti+k.
Now let t := (ti)

∞
−∞ be nondecreasing, with

t−∞ := inf ti, t∞ := sup ti,

and let (Mi,k)
∞
−∞ be the corresponding B-spline sequence. Then, the prescription

(∑

i

αiMi,k

)
(x) :=

∑

i

αiMi,k(x), i.e., pointwise,

makes sense for all x ∈ IR and all α ∈ IRZZ since, by (3.2), at most k of the terms in the second sum are
nonzero for any given x.

In a later publication [73] (but see already Curry’s review [28] of [70]), Schoenberg gave these functions
Mi,k the name basic spline, or B-spline, for the following reason.

Theorem 3.1 [30]. If t := (ti)
∞
−∞ is nondecreasing, with ti < ti+k and di := card {j : tj = ti}, all i, then

the corresponding sequence (Mi,k)
∞
−∞ of B-splines is a basis for the linear space Sk,t of all functions f on IR

which vanish off (t−∞, t∞) and which, on (t−∞, t∞), satisfy

f (ti,ti+1) ∈ IPk (ti,ti+1), jump tif
(r) = 0 for r < k − di, all i,

in the sense that the map IRZZ → Sk,t : α 7→
∑
i αiMi,k is one-one and onto.

This theorem motivates the definition

Sk,t :=
{∑

i

αiMi,k : αi ∈ IR, all i
}

for arbitrary nondecreasing t, bi-infinite or not, with the sum taken over all i for which (ti, . . . , ti+k) is a
segment of t. In particular,

if t = (ti)
n+k
1 , then Sk,t =

{ n∑

i=1

αiMi,k : α ∈ IRn
}
.

Further, we will call Sk,t the collection of (polynomial) splines of order k with knot sequence t.

Corollary (Construction of a B-spline basis for IPk,ξξξξξ,v). Let ξξξξξ := (ξi)
p+1
1 be strictly increasing,

v := (vi)
p+1
1 be a corresponding sequence of integers in [0, k] with v1 = vp+1 = 0, and let IPk,ξξξξξ,v be the space

of pp functions of order k on [ξ1, ξp+1] with breakpoints ξ2, . . . , ξp and continuous v–th derivative at ξi for
v < vi, all i. If

t := (ti)
n+k
1 = (ξ1, . . . , ξ1︸ ︷︷ ︸

v1 = k

, ξ2, . . . , ξ2︸ ︷︷ ︸
v2

, . . . , ξp+1, . . . , ξp+1︸ ︷︷ ︸
vp+1 = k

,
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then n = k +
∑p

2(k − vi), and the sequence (Mi,k)
n
1 of B-splines (restricted to [ξ1, ξp+1]) of order k for the

knot sequence t is a basis for IPk,ξξξξξ,v.

For k even, k = 2m, it is customary to single out the subspace S of so-called “natural” splines in IPk,ξξξξξ,v.
This subspace consists of those f in IPk,ξξξξξ,v for which f (ξ1,ξ2) and f (ξp,ξp+1) are both of degree < m (see

Section 8 below (8.8)). Greville [44] has described the following B-spline like basis for S,

M̂m+1,k, . . . , M̂k,k,Mk+1,k, . . . ,Mn−k,k, M̂n−k+1,k, . . . , M̂n−m,k

with the special functions M̂i,k defined as follows:

(3.3)
M̂i,k(x) := k[tk+1, . . . , ti+k] ( · − x)k−1

+ for i ≤ k

M̂n−i,k(x) := (−1)kk[tn−i, . . . , tn] (x− · )k−1
+ for i < k.

For a different generalization of Mk to a “B-spline” with multiple knots (which are otherwise uniformly
spaced), see Schoenberg and Sharma [77] and Lecture 5 of Schoenberg’s monograph [76]. Certain technical
assumptions made by them in their construction have recently been removed by Lee [56].

4. Simple properties of the B-spline

In this section, we list some simple properties of the B-spline, some of which are enlarged upon in
subsequent sections. The definition of Mi,k as a divided difference together with Taylor’s formula with
integral remainder readily imply that, for ti < ti+k,

(4.1) [ti, . . . , ti+k] f =

∫
Mi,k(s) f

(k)(s) ds/k! , all f ∈ ILk1 [ti, ti+k].

In particular,

(4.2)

∫
Mi,k(s) ds = 1.

This shows that, on [ti, ti+k],

(4.3) ϕ(x) :=

∫ x

−∞

Mi,k(s) ds

is a spline of order k+ 1 with knots ti, . . . , ti+k and rises strictly monotonely from a value of 0 at ti (and to
the left of ti) to a value of 1 at ti+k (and to the right of ti+k). This function is therefore useful in constructing
piecewise monotone spline interpolants as is done in Passow [66], but without having to resort to multiple
knots as he does. One obtains his construction as a special case by letting half the tj ’s equal ti and the other
half equal ti+k. Use of ϕ also produces a very quick proof that splines have property SAIN with respect to
interpolation at a given set of points and the uniform norm (see Chui, Rozema, Smith, and Ward [24], who
use (4.3) in the form (4.11)). Because of its local and monotone character, ϕ has also been instrumental
in DeVore’s successful investigation [32] of the order of approximation to smooth monotone functions by
monotone splines.

It seems more convenient in computations to use the normalized B-spline

(4.4)
Ni,k(x) :=

(
[ti+1, . . . , ti+k] − [ti, . . . , ti+k−1]

)
( · − x)k−1

+

= (ti+k − ti)Mi,k(x)/k,

since it insures (see (5.8) below) that

(4.5)

n∑

i=1

Ni,k = 1 on [tk, tn+1].
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Note that then

(4.6) N
(1)
i,k = Mi,k−1 −Mi+1,k−1 =

k − 1

ti+k−1 − ti
Ni,k−1 − k − 1

ti+k − ti+1
Ni+1,k−1.

If one follows [8] and applies Leibniz’ formula

(4.7) [ti, . . . , tj ] (fg) =

j∑

r=i

[ti, . . . , tr] f [tr, . . . , tj ] g

for the divided difference of a product to

( · − x)j+ = ( · − x)j−1
+ ( · − x)

and notes that all divided differences of ( · −x) of order > 1 vanish, then one obtains the recurrence relation

(4.8) [ti, . . . , ti+k] ( · − x)j+ =

(
x− ti
ti+k − ti

[ti, . . . , ti+k−1] +
ti+k − x

ti+k − ti
[ti+1, . . . , ti+k]

)
( · − x)j−1

+ ,

which in turn implies that

(4.9)
k − j − 1

k − 1
N

(j)
i,k (x) =

x− ti
ti+k−1 − ti

N
(j)
i,k−1(x) +

ti+k − x

ti+k − ti+1
N

(j)
i+1,k−1(x).

For j = 0, this recurrence was found by the author [8] and by L. Mansfield, and by Cox [27] who proved it
by a different argument and for distinct knots only, and gave a backward error analysis in that case for the
evaluation algorithm based on the recurrence. The recurrence provides a scheme for the stable evaluation
of B-splines since, on the interval (ti, ti+k) of interest, i.e., on the support of Ni,k, both weights in (4.9) are
positive. This observation also allows us to establish, by induction on k, that

(4.10) Ni,k > 0 on (ti, ti+k).

Similar recurrence relations for the integral of a B-spline have been given by Gaffney [39], and for the integral
of products of B-splines by Lyche, Schumaker, and the author [17]. In this connection, we note that

(4.11)

∫ x

−∞

Mi,k(s) ds =
i+r∑

j=i

Nj,k+1(x) for x ≤ ti+r+1.

B-splines are convenient for relating splines with multiple knots to splines with simple knots and vice
versa (e.g., [7], Rice [68], Burchard [23], also the paper by P. Smith in these proceedings), since a B-spline
is a continuous function of its knots, within reason. Specifically, writing

Nti,...,ti+k
:= Ni,k

to stress the dependence of Ni,k on its knots ti, . . . , ti+k, the map

(τj)
k
0 7→ Nτ0,...,τk

is continuous as a map from {τ ∈ IRk+1|τ0 ≤ · · · ≤ τk, τj < τj+k−1} to C(IR); it is also continuous as a map

from {τ ∈ IRk+1|τ0 ≤ · · · ≤ τk, τ0 < τk} to ILp(IR) for every 1 ≤ p <∞.
The precise behavior of Ni,k near the boundary of its support can be read off directly from its definition

as a divided difference. Since

(y − x)k−1
+ − (−)k (x− y)k−1

+ = (y − x)k−1,
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and the k–th divided difference of a polynomial of order k vanishes, one can write Ni,k also in the form

(4.12) Ni,k(x) = (−)k
(
[ti+1, . . . , ti+k] − [ti, . . . , ti+k−1]

)
(x− · )k−1

+ .

From this, one infers at once that, e.g., for x near ti,

(4.13) Ni,k(x) = (x− ti)
k−r
+

k−r∏

j=1

k − j

ti+k−j − ti
+O

(
(x− ti)

k−r+1
+

)

if ti = ti+r−1 < ti+r, hence

(4.14)

O
(
(x− ti)Ni,k(x)

)
for j > i as x→ ti

Nj,k(x) =

O
(
(x− ti+k)Ni,k(x)

)
for j < i as x→ ti+k.

If ti < · · · < ti+k, then Ni,k has a zero of order k − 1 at ti by (4.13) and also a k − 1 fold zero at ti+k
by symmetry. This implies that

(4.15) 0 = N
(j−r)
i,k (tj+k) =

∫ ti+k

ti

(ti+k − s)r−1N
(j)
i,k (s) ds/(r − 1)! , r = 1, . . . , j; j = 1, . . . , k − 1,

showing that N
(j)
i,k is orthogonal to IPj on [ti, ti+k], j = 1, . . . , k − 1. (This fact was pointed out to me in

1973 by H. G. Burchard.)

5. The B-spline series

In this section the relationship

(5.1)
∑

i

αiNi ↔ α

between a spline and the sequence of its B-spline coefficients (with respect to the normalized B-splines) is
discussed. Further aspects of this relationship will be mentioned in subsequent sections. From here on, we
suppress the subscript k in Ni,k and Mi,k except when necessary. Also, we restrict the knot sequence t to
be bi-infinite in order to avoid (mostly notational) complications. This is no essential restriction since any
spline can always be extended to a spline with a bi-infinite knot sequence merely by adding to its expansion
appropriate B-splines with zero coefficients.

A B-spline series may be differentiated by differencing the coefficients. Precisely, repeated application
of (4.6) gives

(5.2a)
(∑

i

αiNi,k

)(j)

=
∑

i

α
(j)
i Ni,k−j

with

(5.2b) α
(j)
i :=





αi , j = 0

α
(j−1)
i − α

(j−1)
i−1

(ti+k−j − ti)/(k − j)
, j > 0

The recurrence relation (4.9) (with j = 0) allows one to express a B-spline series as a series of lower
order, but with polynomial coefficients. Precisely,

(5.3a)
∑

i

αiNi,k(x) =
∑

i

α
[j]
i (x)Ni,k−j(x)
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with

(5.3b) α
[j]
i (x) :=





αi , j = 0

(x− ti)α
[j−1]
i (x) + (ti+k−j − x)α

[j−1]
i−1 (x)

ti+k−j − ti
, j > 0 .

In particular, α
[k−1]
i is a polynomial of degree < k which agrees with

∑
i αiNi,k on [t+i , t

−
i+1]. Hence, (5.3)

can be used to evaluate
∑
i αiNi,k at x ∈ [t+i , t

−
i+1] by repeated formation of averages, starting with the k

numbers αi−k+1, . . . , αi (see the first algorithm in [8]).
The quasi-interpolant of Fix and the author [16] provides an ofttimes convenient means for computing

the B-spline coefficients of a given spline. The quasi-interpolant makes use of the linear functional λi given
the rule

(5.4) λif := λτi,ψi,k
f :=

∑

j<k

(−)k−1−jψ
(k−1−j)
i,k (τi) f

(j)(τi).

Here,

ψi,k(x) := (ti+1 − x) · . . . · (ti+k−1 − x)/(k − 1)!

and τi is an arbitrary point in (ti, ti+k). Then, as one verifies directly [16],

(5.5) λiNj = δi,j , all j.

Since λi has support at a point only, it follows that λi
(∑

j αjNj
)

= αi. †
The usefulness of this functional was demonstrated in [9]. For instance, it provides a quick proof of

Theorem 3.1 and its corollary. As another instance, it provides a quick proof of the fact due to Curry and
Schoenberg [30] that B-splines are splines of minimal support: If f ∈ Sk,t has its support in (tr, tr+s) and
s < k, then, for each i, one can choose τi in (ti, ti+k)\(tr, tr+s), hence then λif = 0, all i, i.e., f = 0.

More generally, one obtains

Lemma 5.1. If ti < ti+k, all i, then supp(
∑
i αiNi) = ∪αi 6=0 suppNi.

In order to compute the coefficients of specific splines, we observe that, for f , ψ ∈ IPk, α(τ) := λτ,ψf
is constant as a function of τ , as is clear from the fact that α′(τ) = ψ(τ)f (k)(τ) − (−)kψ(k)(τ)f(τ). Hence,
with τ = y, we get that

λi(y − · )k−1 = λy,ψi,k
(y − · )k−1 = ψi,k(y) (−)k−1(k − 1)! .

This shows that

(5.6) (y − x)k−1 =
∑

i

(y − ti+1) · · · (y − ti+k−1)Ni,k(x),

which is Marsden’s identity [61]. More generally,

λi(y − · )k−p/(k − p)! = (−)p−1ψ
(p−1)
i,k (y) (−)k−p,

so

(y − x)k−p/(k − p)! = (−)k−1
∑

i

ψ
(p−1)
i,k (y)Ni,k(x),(5.7)

† added 1978: For a uniform knot sequence ZZ and τi = t∗i := (ti+1 + · · · + ti+k−1)/(k − 1), (5.4)–(5.5)
reduces to (24), (28) in I. J. Schoenberg’s “Cardinal interpolation and spline functions. II”, J. Approx.
Theory 6 (1972), 404–420.
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and, in particular, with p = k,

(5.8) 1 =
∑

i

Ni,k.

Of course, all these identities hold on (t−∞, t∞) only. One obtains similarly that

(5.9) (y − x)k−1
+ =

∑

i

(y − ti+1)+ · · · (y − ti+k−1)+Ni,k(x), for y ∈ t.

For the uniform knot sequence t = ZZ and for k = 4, one can find (5.6) and (5.9) already in Schoenberg [70].
Identities (5.6) and (5.9) illustrate a point to be made repeatedly in this survey, viz how closely a spline

function is modelled by its B-spline coefficients. To elaborate on this point a little, note that, with τττττ := (τi)
k
0

any subsequence of t, (5.9) implies that

(5.10a) k[τ0, . . . , τk] ( · − x)k−1
+ =

∑

i

ατττττ (i)Mi,k(x)

where

(5.10b) ατττττ (i) := (ti+k − ti) [τ0, . . . , τk] ( · − ti+1)+ · . . . · ( · − ti+k−1)+ ≥ 0

This supplies the formula

(5.11) [τ0, . . . , τk] =
∑

i

ατττττ (i) [ti, . . . , ti+k]

for the k–th divided difference at some points in terms of the k–th divided differences at the points of a
refinement of those points, with the coefficients nonnegative. The existence of such a formula with nonneg-
ative weights ατττττ was already known to Favard [35]. The formula is clearly a discrete analog of (4.1), and ατττττ
deserves to be called a discrete B-spline with knots τττττ . Indeed, ατττττ has been called just that by Schumaker
[79] in the special case when t is uniform, ti = t0 + ih, all i. In that case, if f ∈ Sk,t has only the active knots
ti0 , . . . , tir and f =

∑
i αf (i)Ni,k, then αf is a discrete spline of order k with knots i0, . . . , ir in the sense

of Mangasarian and Schumaker [60]. This means that, for each j, αf (i) is a polynomial of order k in i on
ij − k < i < ij+1. It should be said, though, that Mangasarian and Schumaker did not view discrete splines
in this light as B-spline coefficients of continuous splines. They arrived at discrete splines as the solution of
certain discrete minimization problems.

The size of the i–th B-spline coefficient of a spline is closely tied (at least for moderate k) to the size
of that spline “nearby”, i.e., on (ti, ti+k), as can be proved [9] with the aid of the linear functional (5.4).
Slightly more refined arguments produce the following explicit result.

Theorem 5.1 [13]. Let Dk be the smallest number with the property that for every t, every i, and every
a < b with

ti ≤ a ≤ ti+1, ti+k−1 ≤ b ≤ ti+k,

there exists hi ∈ IL∞ such that

(5.12) supp hi ⊆ [a, b], ‖hi‖∞ ≤ Dk/(b− a),

∫
hiNj = δij , all j.

Then (π/2)k/2 ≤ Dk ≤ 2k 9k−1.

Numerical evidence presented in [13] strongly suggests that actually Dk ∼ 2k.
The theorem implies that

(5.13) |αi|(ti+k − ti)
1/p ≤ Dk‖

∑

i

αiNi‖p,[ti,ti+k], 1 ≤ p ≤ ∞,

which leads to
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Theorem 5.2 [9] †. Let E be the diagonal matrix d. . . , (ti+k − ti)/k, . . .c. Then

D−1
k ‖E1/pα‖p ≤ ‖

∑

i

αiNi‖p ≤ ‖E1/pα‖p, all α ∈ IRZZ, 1 ≤ p ≤ ∞.

In particular,
∑

i αiNi ∈ ILp if and only if E1/pα ∈ `p(ZZ).

The proof of the upper bound for ‖∑i αiNi‖p makes use of the fact that the Ni’s are nonnegative and
sum up to 1 while, by (4.2) and (4.4),

∫
Ni,k = (ti+k − ti)/k.

Corollary 1 [9]. Let Ni,k,p := (k/(ti+k − ti))
1/pNi,k. For 1 ≤ p < ∞, (Ni,k,p) is a Schauder basis for

Sk,t ∩ ILp(IR).

We note the estimates

(5.14) k1/p/k ≤ ‖Ni,k,p‖p ≤ 1.

Corollary 2 [12]. Let t be finite, infinite, or bi-infinite, let G := (
∫
Ni,k,2Nj,k,2), and let G−1 = (αij).

Then G−1 decays exponentially away from the diagonal. Explicitly,

|αij | ≤ const q|i−j|

with q = (1 −D−2
k )1/(2k−2) ∈ (0, 1) and const = D3

k/q
k−1 both depending only on k and not on t.

This corollary was proved earlier for a finite uniform t by Domsta [34], and then used by Ciesielski
and Domsta [26] in the construction of a basis for Ck−2[0, 1]d which is, at the same time, also a basis for
ILk−2
p [0, 1]d for 1 ≤ p < ∞. The corollary was used in [12] for a somewhat related purpose, viz in order to

show that least-squares approximation from Sk,t, considered as a map on ILp, can be bounded in terms of
the global mesh ratio

Mt := sup
i,j

(ti+k − ti)/(tj+k − tj).

Corollary 3 [7], [13]. Let mSk,t := Sk,t ∩m(IR) be the subspace of bounded splines of order k with knot
sequence t. Then the rule α 7→ ∑

i αiNi maps `∞(ZZ) onto mSk,t. Further, with ϕ : `∞(ZZ) → mSk,t :
α 7→ ∑

i αiNi, the condition (number) condk,t := ‖ϕ‖ ‖ϕ−1‖ of the basis (Ni) for mSk,t is bounded by Dk

independent of t.

Since (D1, D2, D3, D4, . . .) ≤ (1, 2.5, 5.3, 10.1, . . .), this shows the B-spline basis to be well condi-
tioned, independent of t, for “small” k.

Finally, for another illustration of the fact that B-spline coefficients “model” the function they represent,
observe that, for the particular choice

(5.15) τi = τ∗i := (ti+1 + · · · + ti+k−1)/(k − 1),

the coefficient of f (1)(τi) in (5.4) vanishes. Then

λif = f(τ∗i ) + bi

with

|bi| =
∣∣∣
k−1∑

j=2

(−)k−1−jψ
(k−1−j)
ik (τ∗i )f (j)(τ∗i )

∣∣∣

≤ constk (max ∆tr)
2 max

2≤j<k
‖f (j)‖∞.

Therefore, if, e.g., f is a fixed spline with ‖f (j)‖∞ <∞ for 2 ≤ j < k, and we write f as a linear combination
of B-splines on a knot sequence t which refines the knot sequence for f , then the resulting B-spline coefficient
sequence α for f satisfies

αi = f(τ∗i ) +O
(
max (∆tr)

2
)
.

† added 1978: For a uniform t, this theorem can be found in I. J. Schoenberg, loc.cit. which was the
original inspiration for that part of [9].
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6. Local spline approximation

Because of their local support, B-splines have been instrumental in the construction of local spline
interpolation and approximation schemes. In such a scheme, the approximation is taken in the form

(6.1) Af :=
∑

i

(µif)Ni

with µi a linear functional with support in suppNi = (ti, ti+k). Since then (Af)
(tj ,tj+1)

depends only on

f
(tj+1−k,tj+k)

, such an approximation scheme is capable of reflecting, and taking advantage of, the local

behavior of f .

Lemma 6.1. If A reproduces IPk on (t−∞, t∞), then

‖f −Af‖∞,(tj ,tj+1) ≤
(
sup
i

‖µi‖
)
dist∞,(tj+1−k,tj+k)(f, IPk).

The condition that A reproduce IPk is certainly satisfied in case A is a projector. This will happen iff
(µi) is dual to (Ni), i.e., µiNj = δij , all i, j. In such a case, Af interpolates f at (µi) in the sense that
µiAf = µif , all i. A linear functional µi satisfying

(6.2) suppµi ⊆ suppNi = (ti, ti+k), µiNj = δij , all j,

seems to have been constructed for the first time in [5], for the purpose of demonstrating the linear inde-
pendence over an interval of all B-splines which do not vanish identically on that interval. Since then, such
linear functionals have been constructed in various ways and for a variety of jobs. A summary and detailed
discussion is given in [13].

The first local spline interpolation scheme seems to have been Birkhoff’s local spline approximation by
moments [4]. A corrected and extended version can be found in [6]. The scheme was not given in the form
(6.1). It was therefore somewhat of a surprise to find that local spline approximation by moments is a special
case of the quasi-interpolant of Fix and the author [16], i.e., of the form (6.1) with µi = λi given by (5.4)
with τi = ti+k/2, all i.

The quasi-interpolant approximates well to f and its first k− 1 derivatives, but requires values of f and
of its derivatives for its construction. An earlier scheme [7] constructs µi involving only function evaluations,
and satisfying even

(6.3) suppµi ⊆ (ti+1, ti+k−1), µiNj = δij , all j,

and so that supi ‖µi‖ <∞. This is possible since it can be shown that

(6.4)

Dk,∞ : = sup
t

sup
i

inf
{
‖µ‖ : µ ∈ C∗[ti+1, ti+k−1], µNj = δij , all j

}

= sup
t

sup
i

1/dist∞,[ti+1,ti+k−1]

(
Ni, span (Nj)j 6=i

)

is finite. In fact, it follows from Theorem 5.1 that Dk,∞ ≤ Dk < ∞. Therefore, one finds that, for this
scheme,

(6.5) ‖f − Af‖∞,(tj ,tj+1) ≤ Dk,∞ dist∞,(tj+2−k,tj+k−1)(f, IPk).

But it is not clear how well the derivatives of Af approximate those of f . Also, A is not applicable to
arbitrary f ∈ ILp.

The latter objection can be overcome by choosing µi of the form

µif =

∫
fhi,
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with hi ∈ IL∞[ti, ti+k] chosen as in Theorem 5.1 to satisfy (5.12). The resulting linear projector P ,

(6.6) Pf :=
∑

i

(∫
fhi

)
Ni,

is local and is bounded as a map on ILp by Dk for each p ∈ [1,∞] and independently of t [11]. But, in
order to obtain also good approximations to derivatives (regardless of t, i.e., without recourse to Markov’s
inequality), Lyche and Schumaker [59] found it necessary to give up the condition that Af interpolate f and
to revert to the weaker condition that A merely reproduce IPk. Such local approximation schemes have been
further investigated by Demko [31].

An important local spline approximation scheme (which only reproduces IP2) is Schoenberg’s variation
diminishing spline approximation. It will be discussed in the next section.

The use of local spline approximation schemes for gauging accurately the degree of approximation by
splines is further pursued in DeVore’s contribution to these proceedings.

We close this section with the remark that the dual to the linear projector P in (6.6), i.e., the linear
projector P ′ given by

(6.7) P ′g :=
∑

i

(∫
fNi

)
hi,

is helpful in settling two questions of “smooth” interpolation. The first, raised originally by Schoenberg [74]
and partially answered by Golomb [42], concerns the existence of g ∈ ILkp(IR) which satisfies g(ti) = αi, all

i, for a given α ∈ IRZZ and a given t = (ti) taken strictly increasing for simplicity. Let [ti, . . . , ti+k]α be the
k–th divided difference of the data at ti, . . . , ti+k and recall the diagonal matrix E := d. . . , (ti+k− ti)/k, . . .c
of the preceding section. Then it is easily seen that having E1/p([ti, . . . , ti+k]) in `p is a necessary condition
for the existence of such a g. To see that this is also a sufficient condition, observe [13] that the function g,
given by the conditions that g(ti) = αi, i = 1, . . . , k and that

(6.8) g(k) = (k − 1)!
∑

i

(
[ti, . . . , ti+k]α

)
(ti+k − ti)hi,

is in ILkp by Theorem 5.1 in case E1/p([ti, . . . , ti+k]) ∈ `p, and agrees with α at t since, by (4.2), it has the
same k–th divided differences at the points of t as does α.

The particular interpolant g to the given data α at t just constructed has the property that, on [tj , tj+1],
at most k of the hi in (6.8) are not zero, while, by Theorem 5.1, ‖hi‖∞(ti+k − ti) ≤ Dk, all i. This proves
[13] that, for given t and given α, there exists g ∈ ILk∞ so that g

t
= α and, for all tj < tj+1,

‖g(k)‖∞,[tj ,tj+1] ≤ const max
[tj ,tj+1]⊆ [ti,ti+k]

k! |[ti, . . . , ti+k]α|

for some const ≤ Dk. This answers a question by H.-O. Kreiss as to the existence and the size of such a
const.

7. Total positivity and the variation diminishing properties of B-splines

The strict positivity of Ni,k on (ti, ti+k) (see (4.10)) is a particular instance of the Schoenberg-Whitney
theorem and the variation diminishing properties of B-splines, the subject of this section. A thorough
discussion of these matters in the more general context of Chebyshev splines can be found in Chapter 10 of
Karlin’s book on total positivity [47].

Throughout this section, the knot sequence is taken to be finite,

t = (ti)
n+k
1 , nondecreasing with ti < ti+k, all i,

and (Ni)
n
1 is the corresponding sequence of B-splines of order k. Sk,t has then dimension n. We consider

spline interpolation at points τ1 < · · · < τn. This amounts to finding, for given f , α ∈ IRn so that

(7.1)
n∑

j=1

αjNj(τi) = f(τi), i = 1, . . . , n.

The question of existence and uniqueness of such an interpolant was settled some time ago.

11



Theorem 7.1 (Schoenberg-Whitney [78]). Let

(7.2) S :=

{
k∑

j=1

αjx
j−1 +

n∑

j=k+1

αj(x− tj)
k−1
+ : α ∈ IRn

}

with tk+1 < · · · < tn. If τ1 < · · · < τn, then S contains, for arbitrary f , an s such that s(τi) = f(τi),
i = 1, . . . , n iff τi−k < ti < τi, i = k + 1, . . . , n.

In this connection, it is interesting to note the following theorem published with an elegant proof in
1939, and pointed out to me by Allan Pinkus.

Theorem (Krein and Finkelstein [55]). Let G be a Green’s function for the k–th order linear differential
operator

L =

k∑

j=0

pjD
j

with pj ∈ C[a, b], all j, and pk never zero on [a, b]. Specifically, assume that G is of the form

p∑

j=1

ϕj(x)ψj(y) for x > y,

G(x, y) =
q∑

j=1

ϕ̂j(x)ψ̂j(y) for x < y,

with both (ϕj)
p
1 and (ϕ̂j)

q
1 linearly independent and in ker L. If

det G

(
x1, . . . , xr
y1, . . . , yr

)
≥ 0

for all nondecreasing (xi)
r
1 and (yi)

r
1, then

det G

(
x1, . . . , xr
y1, . . . , yr

)
> 0

for an increasing (xi)
r
1, (yi)

r
1 if and only if xi−p < yi, i = p+ 1, . . . , r, and yi < xi+q, i = 1, . . . , r − q.

Since S, as defined in (7.2), agrees with Sk,t on [tk, tn+1], it is possible to translate Theorem 7.1 into a
statement involving B-splines provided we make the assumption that

(7.3) τ1, . . . , τn ∈ [tk, tn+1].

It is also possible to prove directly

Theorem 7.2. If τ1 < · · · < τn, then (Nj(τi))
n
1 is invertible if and only if τi ∈ supp Ni, i.e., Ni(τi) 6= 0, all

i.

In other words, (Nj(τi)) is invertible iff its diagonal is invertible. Burchard [21, Chap. III, 2(3)] and
Karlin [47, Chap. 10, Lemma 4.1] both prove Theorem 7.2 explicitly in terms of B-splines, with simple knots,
but, on the other hand, more generally for Chebyshev splines.

Karlin and Ziegler [53] remove the restriction in Theorem 7.2 to simple knots. They also allow for
repeated or osculatory interpolation and consider Chebyshev splines rather than just polynomial splines.
Straightforward translation of their result to B-splines would require assumption (7.3).

We will now quit belaboring this minor point and state the theorem directly in terms of B-splines.
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Theorem 7.3 (Karlin-Ziegler [53] extension of Schoenberg-Whitney). Let τ1 ≤ · · · ≤ τn be such
that

τi+1 = · · · = τi+r = tj+1 = · · · = tj+s implies r + s ≤ k,

and define linear functionals (µi)
n
1 by the rule

µif := f (j) (τi) with j := max {r : τi−r = τi}.

Then (µiNj) is invertible if and only if Ni(τi) 6= 0, i = 1, . . . , n.

A simple proof of this theorem, using only elementary properties of B-splines and Rolle’s theorem, can
be found in [15].

Theorem 7.3 states conditions under which it is possible to interpolate by linear combinations of all
B-splines for a given knot sequence. A careful study of Karlin’s proof [47] of the total positivity of (Nj(τi))
reveals the fact that Theorem 7.3 remains valid if we replace the sequence (Nj) by one of its subsequences.

Theorem 7.4 [15]. Under the same assumptions as those of Theorem 7.3, and for any subsequence
(q1, . . . , qm) of (1, . . . , n), det (µiNqj

)mi,j=1 ≥ 0 with equality iff, for some i, Nqi
(τi) = 0.

This theorem implies at once the total positivity of (Nj(τi)).

Theorem 7.5 (Karlin [47]). Let τ1 ≤ · · · ≤ τn. Then (Nj(τi)) is totally positive, i.e., all its minors are
nonnegative.

Karlin [47, p. 563] states that this theorem was communicated to him by Schoenberg.

Corollary. (Ni) is a weak Descartes system, i.e., any subsequence (Nqi
)m1 of (Ni)

n
1 is a weak Chebyshev

system.

The total positivity of (Nj(τi)) provides bounds on the effect of rounding errors when solving (7.1) by
Gauss elimination without pivoting which are smaller than those obtainable for general matrices even when
using pivoting [18]. This means that it is reasonable to solve the banded system (7.1) without pivoting with
the attendant savings in storage and program complexity.

The total positivity of (Nj(τi)) is used in an essential way by Karlin and Pinkus [51] in their extension
to splines and to higher derivatives of earlier results by C. Davis and Videnski concerning the existence of a
polynomial of degree n on [0, 1] with a prescribed sequence of n+ 1 extrema.

The total positivity of (Nj(τi)) leads to one of the more striking spline approximation schemes, Schoen-
berg’s variation diminishing spline approximation, which has found much use in computer-aided design (see
e.g., Riesenfeld [69]). We recall some notation. A real-valued function f on some subset D of IR has at least
m strong sign changes if f alternates (in sign) on some (τi)

m
0 in D, i.e., if

f(τ0) 6= 0 and, in case m > 0, f(τi−1) f (τi) < 0 for i = 1, . . . ,m,

for some nondecreasing sequence (τi)
m
0 in D. It is customary to denote by

S−(f)

the total number of strong sign changes of f on its domain. It is well known (e.g., Theorem 5.1.4 of [47])
that, for a totally positive matrix A and any vector α,

S−(Aα) ≤ S−(α),

i.e., a totally positive matrix transformation is variation diminishing. Since (Nj(τi)) is totally positive, it
follows that the linear map Vτ , given for some nondecreasing τ by

(7.4) Vτf :=
n∑

j=1

f(τj)Nj , all f,
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is variation diminishing, i.e., S−(Vτf) ≤ S−(f). Recall now from Marsden’s identity (see (5.6) and (5.7))
that, for any straight line p and any τ with τi ∈ (ti, ti+k), all i,

p =
n∑

j=1

{
p(τj) + p′(τj)

[ k−1∑

r=1

tj+r − (k − 1)τj

]
/(k − 1)

}
Nj

on [tk, tn+1]. Therefore, with the particular choice

(7.5) τ∗j := (tj+1 + · · · + tj+k−1)/(k − 1), j = 1, . . . , n,

mentioned already in (5.15), Vτ∗ reproduces IP2 on [tk, tn+1], and we have

(7.6) S−(Vτ∗f − p) ≤ S−(f − p) on [tk, tn+1], all p ∈ IP2, all f.

The resulting approximation Vτ∗f to f is Schoenberg’s variation diminishing spline approximation,
introduced by Schoenberg in [73] and further discussed in Marsden and Schoenberg [63].

We note the following result due to Marsden [62]: Write Vτ∗,k to stress dependence on k, and restrict t
so that ti = · · · = tk = 0 and tn+1 = · · · = tn+k = 1. Then

(7.7) Vτ∗,k → 1 pointwise on C[0, 1] iff max
i

∆ti/k → 0,

as Marsden shows with the aid of the Bohman-Korovkin theorem concerning strong convergence of positive
operators to the identity on C[0, 1].

It is possible to refine the proof that S−(Aα) ≤ S−(α) for a totally positive matrix A for the particular
choice A = (Nj(τi)) so as to obtain the following theorem.

Theorem 7.6 [15]. If f :=
∑n
j=1 αjNj alternates on (τi)

m
0 , then

f(τi)αqi
Nqi

(τi) > 0, i = 0, . . . ,m,

for some subsequence q of (1, . . . , n).

Theorem 7.6 illustrates the point made earlier that B-spline coefficients “model” the function they
represent. A spline cannot change sign at a point without its B-spline sequence also changing sign “nearby”.

As a specific application of this theorem, consider the spline N
(j)
i which, by (5.2), is the linear combi-

nation of j + 1 B-splines (of order k − j), hence cannot have more than j strong sign changes, by Theorem

7.6. On the other hand, if N
(j−1)
i is continuous, hence absolutely continuous, then N

(j)
i is orthogonal to IPj

on [ti, ti+k], by (4.15), therefore must have at least j strong sign changes.

Corollary [30]. B-splines are bell-shaped. Precisely, if N
(j−1)
i is continuous for some j < k, then N

(j)
i

has exactly j zeros in (ti, ti+k), all simple, i.e., there exists (ξr)
j+1
0 with ti = ξ0 < · · · < ξj+1 = ti+k so that

(−)rN
(j)
i > 0 on (ξr, ξr+1), r = 0, . . . , j.

Finally, we record the relationship between B-splines and Pólya frequency functions discovered by Curry
and Schoenberg [30]. By definition, a Pólya frequency distribution is any distribution function F (i.e., any
function of the form F (x) =

∫ x
−∞

f(s) ds with f nonnegative and F (∞) = 1) whose bilateral Laplace
transform is of the form ∫ ∞

−∞

e−sx dF (x) = 1/ψ(s)

with

ψ(s) = e−γs
2+δs

∞∏

1

(1 + δvs) e
−δvs

for some γ ≥ 0, δ real, and (δv) ∈ `2. If ψ(s) = eδs, then dF has its entire unit mass located at x = δ. If
ψ(s) 6= eδs, then ∫ ∞

−∞

e−sxΛ(x) dx = 1/ψ(s)

14



with Λ a Pólya frequency function, i.e., a nonnegative integrable function on IR (normalized to have
∫

Λ = 1)
for which the kernel

K(x, y) := Λ(x− y)

is totally positive of all orders.
Call Fk a spline distribution function of order k if Fk has a B-spline of order k as its density, i.e., if

Fk(x) = k

∫ x

−∞

[τ0, . . . , τk] ( · − s)k−1
+ ds

for some τ0 ≤ · · · ≤ τk with τ0 < τk. Note that Fk(x) = 0 for x ≤ τ0 and Fk(x) = 1 for x ≥ τk, by (4.2).
Further, say that Fk converges to a distribution function F in case limk→∞ Fk(x) = F (x) for all points x at
which F is continuous.

Theorem 7.6 [30]. The distribution function F is a Pólya frequency distribution iff F is the limit of a
sequence (Fk) of spline distributions, with Fk of order k, all k.

8. “Best” interpolation

In this section, I finally discuss an aspect of splines which many consider to be the primary characteristic
of splines, viz the fact that splines are solutions to interesting variational problems. This property of splines
is closely related to the fact that the B-spline Mi,k represents a k–th order divided difference. As mentioned
already in (4.1), if a ≤ ti < ti+k ≤ b, then

(8.1) [ti, . . . , ti+k] f =

∫ b

a

Mi,k(s) f
(k) (ds)/k!

for every f ∈ Mk[a, b] := {f ∈ Ck−2
p [a, b] : f (k−2) abs.const., f (k−1) ∈ BV }.

Details for the material in this section can be found in [14] and its references.
Consider the problem of minimizing ‖f (k)‖p over

(8.2) Fp := Fp(τττττ , α, k, [a, b]) :=
{
f ∈ ILkp[a, b] : f τττττ = α

}

for given τττττ := (τi)
n
1 in [a, b], nondecreasing with τi < ti+k, all i, and given α ∈ IRn, with [a, b] finite, positive

k ≤ n and p ∈ [1,∞]. Here, f τττττ is the sequence (fi)
n
1 given by the rule

f1 := f (j) (τi), with j := max {r : τi−r = τi}.

Fp is not empty. It contains, e.g., exactly one polynomial of degree < n. Therefore,

Fp =
{
f ∈ ILkp [a, b] : f τττττ = fα τττττ

}

for some fixed fα ∈ Fp. Favard [35] already knew and used the fact that

inf
f∈Fp

‖f (k)‖p = inf
g∈Gp

‖g‖p

with

(8.2′) Gp :=
{
f (k) : f ∈ Fp

}
=
{
g ∈ ILp :

∫
Mi,kg = k! [τi, . . . , τi+k]fα, i = 1, . . . , n− k

}
.

Let now 1 < p ≤ ∞ and 1/p+ 1/q = 1. Then, following Krein [54], we recognize that minimization of
‖gp‖ over Gp can be viewed, dually, as the construction of an extension λ ∈ ILp = IL∗

q of minimal norm to

all of ILq[a, b] of the linear functional λα, given on Sk,τττττ = span (Mi,k)
n−k
1 ⊆ ILq[a, b] by

λα : Sk,τττττ → IR :
∑

i

βiMi,k 7→
∑

i

βik! [τi, . . . , τi+k] fα.
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This is so since Gp, as a subset of IL∗
q , coincides with the set of all extensions of λα. Therefore

(8.3) inf
f∈Fp

‖f (k)‖p = min
{
‖λ‖ : λ ∈ IL∗

q , λ Sk,τττττ
= λα

}
= ‖λα‖,

by the Hahn-Banach theorem, settling existence of a minimal f in Fp as well. Further, a minimal f must
agree with fα at τ1, . . . , τk while its k–th derivative satifies

(8.4)

∫ b

a

f (k) (s)ψ(s) ds = ‖f (k)‖p‖ψ‖q

for any ILq–extremal ψ of λα, i.e., for any ψ with

(8.5) ψ ∈ Sk,τττττ and ‖ψ‖q = 1 and λαψ = ‖λα‖.

If λα = 0, then there is a polynomial of order k in Fp and it is the unique minimizer for all p. Otherwise
λα 6= 0. But then, for 1 < q <∞, λα has exactly one extremal and the equality (8.4) in Hölder’s inequality
then forces f (k) to satisfy

(8.6) f (k) = ‖λα‖ |ψ|q−1 signum ψ.

It follows that ‖f (k)‖p is uniquely minimized on Fp, and the minimizer is the unique element f̂p of the
nonlinear family

(8.7)
{
f ∈ ILk1 [a, b] : f (k) = |ψ|q−1signum ψ for some ψ ∈ Sk,τττττ

}
,

for which f̂p τττττ = fα τττττ . Such functions have been called ILp–splines by Golomb [42] who was apparently the
first to describe their structure.

For p = 2, the family (8.7) is linear and consists of all f ∈ ILk1 with f (k) ∈ Sk,τττττ . To describe the
corresponding minimizer, let t be the extension of τττττ to a nondecreasing sequence having both a and b
occurring exactly 2k times. Then the minimizer in F2 is the unique f̂2 in S2k,t which, in addition to the

condition f̂2 τττττ = fα τττττ , also satisfies

(8.8) (τi − a) f̂
(2k−i)
2 (a+) = (b− τn+1−i) f̂

(2k−i)
2 (b−) = 0, i = 1, . . . , k.

The minimizer has been called by Schoenberg [73] the natural spline interpolant, of order 2k with interior

knots τ1, . . . , τn for fα in case a < τ1 and τn < b, in which case all the constraints (8.8) on f̂2 are active.
At the other extreme, when none of the constraints (8.8) on f2 is active, i.e., when a = τ1 = · · · = τk
and τn−k+1 = · · · = τn = b, the minimizer has been called by Schoenberg (see, e.g., Lecture 7 of [76]) the
complete spline interpolant for fα of order 2k with interior knots τk+1, . . . , τn−k. The word “spline” itself
was chosen by Schoenberg [70] because in the case k = 2 the resulting interpolating cubic spline approximates
(for small slopes) the position of a mechanical or draftman’s spline forced to go through the given data points.
This connection between (2k − 1)st degree spline interpolation at knots and least-squares approximation to
the k–th derivative has remained for many the major reason for using splines.

For p = ∞, (8.4) fails to pin down the minimizer uniquely since it only implies that

(8.9) f (k) = ‖λα‖ signum ψ off Nψ :=
{
x ∈ [a, b] : ψ(x) = 0

}

for every IL1–extremal ψ of λα. Of course, if Nψ has measure zero, then it follows that the minimizer f̂ is
unique and its k–th derivative is absolutely constant, with < n− k break points, by Theorem 7.5, since ψ is
a nontrivial linear combination of n− k B-splines. In the language of Glaeser [40,41], f̂ is a perfect spline
of degree k, i.e., a pp function of order k + 1 in Ck−1 with absolutely constant k–th derivative.
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Whether or not Nψ has zero measure, supp ψ = [a, b]\Nψ must contain the support of some B-spline
of order k for the knot sequence τττττ , by Lemma 5.1, i.e., some interval (τi, τi+k) on which then, by (8.9), all
minimizers must agree. This is the “core interval of uniqueness” of Fisher and Jerome [36]. In particular,
the minimizer is uniquely determined in case n = k + 1. It is also uniquely determined in case n = 2k and

a = τ1 = · · · = τk, τk+1 = · · · = τ2k = b,

as was found by Glaeser [40,41], since now Sk,τττττ = IPk [a,b]. For the specific data fα(x) :=
∫ x
a

(s− a)k−1(b−
s)k−1ds, Louboutin [58] (see also Schoenberg [75,76]) found f̂ explicitly in this case: f

(k)
α is evidently

orthogonal to IPk−1 ⊆ Sk,τττττ on [a, b], therefore f̂ (k) must be a step function with < k jumps and orthogonal

to IPk−1 on [a, b]. But, since IPk−1 is a Chebyshev system, this pins down signum f̂ (k) uniquely up to
multiplication by a sign σ ∈ {−1, 1},

signum f̂ (k) = σ signum C
(1)
k

with Ck(x) = (−)k−1Ck(2
x−a
b−a − 1) and Ck the Chebyshev polynomial of degree k. It follows that f (1) is a

B-spline of order k with simple knots at the k+ 1 extrema of Ck on [a, b] (see (4.15)). But, in general, there
will be several distinct minimizers. Karlin [48] was the first to see that among these has to be at least one

perfect spline f̂ of degree k with < n− k interior knots. Its derivative f̂ (k) can be constructed [10] as a limit
point of the net (gε)ε>0, with gε the unique minimizer of ‖ ‖∞ in

G∞,ε :=
{
g ∈ IL∞[a, b] :

∫ b

a

ϕg =

∫ b

a

ϕf (k)
α , all ϕ ∈ Sε

}

where

Sε := Kε(Sk,τττττ ), (Kεϕ) (x) :=

∫ ∞

−∞

exp(−(y − x)2/(2ε2)ϕ (y) dy/(ε
√

2π).

The minimizer gε is in fact uniquely determined, absolutely constant and has < n− k jumps, since the total
positivity of (Nj,k(σi)) for increasing σσσσσ (see Theorem 7.5) implies [47] that (KεNj,k(σi)) is strictly totally
positive for strictly increasing σσσσσ; therefore any nonzero element ψ of Sε vanishes on < n− k points. Finally,
Favard [35] constructed a minimizer f̂ which is a spline of degree k with < n− k interior knots, all simple,

with the additional property that, for any f ∈ F∞, |f (k)| ≤ |f̂ (k)| implies that f = f̂ . This minimality of

“Favard’s solution” is further underlined by the fact that it is, for any r ∈ [1,∞), the ILkr–limit of f̂p as
p→ ∞ [25].

For p = 1, matters are least satisfactory since ILp now fails to be the dual for ILq. Therefore, although
(8.3) still holds for this case, it may happen that none of the norm preserving extensions of λα to all of IL∞

is representable as integration against an IL1–function, in which case the infimum over F1 is not attained.
In this situation, one may be satisfied to follow the lead of Fisher and Jerome [37] and consider the slightly
different problem of minimizing

‖f (k)‖ := Var f (k−1)

over
F1 :=

{
f ∈ Mk[a, b] : f τττττ = fα τττττ

}

instead, which always has solutions. If τi < τi+k−1, all i, then among these solutions is a spline of order k
with ≤ n− k interior knots, all simple.

We close this section with yet another B-spline property, this one connected with perfect splines, optimal
recovery (alias best class estimators) and IL1–approximation by splines.

Lemma 8.1 (Micchelli [64]). If τττττ = (τi)
n
1 is nondecreasing in (a, b) with n > k, then there exists (up to

multiplication by some σ ∈ {−1, 1}) exactly one sign function h with ≤ n− k jumps which is orthogonal to
Sk,τττττ on [a, b]. If a = ξ0 < · · · < ξr+1 = b, and, for this h, (−)ih = 1 on (ξi, ξi+1), i = 0, . . . , r, then r = n− k
and ξi ∈ (τi, τi+k), i = 1, . . . , r.

Micchelli’s lemma is not entirely unrelated to the following fact about B-splines useful, e.g., in the
characterization of best ILp– approximations by splines.

17



Lemma 8.2. If t = (ti)
n+k
1 is nondecreasing, in [a, b], with ti < ti+k, all i, and f ∈ IL1[a, b] is orthogonal

to Sk,t on [a, b], then there exists ξξξξξ = (ξi)
n+1
1 strictly increasing in [a, b] with ti ≤ ξi ≤ ti+k−1 (any equality

holding iff ti = ti+k−1), i = 1, . . . , n+ 1, so that f is also orthogonal to S1,ξξξξξ.

Indeed, since, for appropriately chosen p ∈ IPk, the function F := p +
∫ b
a
( · − y)k−1

+ f(y) dy/(k − 1)!

vanishes at t (counting multiplicities) by assumption, and F is in Ck−1[a, b], Rolle’s Theorem proves the

existence of strictly increasing (ξi)
n+1
1 in [a, b] with ti ≤ ξi ≤ ti+k−1, all i, at which F (k−1) = const +

∫ b
a
( · −

y)0+f(y) dy vanishes, which proves the lemma. In particular, if f is continuous, then it must vanish at the n
points of some strictly increasing sequence (µi)

n
1 with ti < µi < ti+k, all i.

9. Generalizations

The trend started by Schoenberg [71] and Greville [43] toward ever more generalized splines continues
unabated but has failed to bring with it a corresponding wealth of generalized B-splines. Schoenberg [71]
actually described trigonometric B-splines and later, Burchard [21] and Karlin [47] independently constructed
Chebyshevian B-splines with the aid of Popoviciu’s [67] generalization of the divided difference notion. Yet
another account can be found in Marsden’s thesis, eventually published in [61], in which the generalization of
Schoenberg’s variation diminishing spline approximation for Chebyshev splines is given, but without a proof
of its variation diminishing character. Such a scheme had already been described and proven to be variation
diminishing by Karlin and Karon [49], and their assertion in [50] that Marsden’s B-splines are essentially
different from Karlin’s is incorrect.

Here are some of the details of the construction.
Let Pf be the polynomial of degree < k which agrees with f at the distinct points τ1, . . . , τk. If

ϕj(x) = xj−1, all j, then

(9.1) f − Pf = det

(
τ1, . . . , τk, .

ϕ1, . . . , ϕk, f

)/
det

(
τ1, . . . , τk
ϕ1, . . . , ϕk

)
.

Therefore, since [τ1, . . . , τk, x] f is the leading coefficient in the polynomial of degree ≤ k which agrees with
f at τ1, . . . , τk, x, we have

(9.2) f − Pf =
(
[τ1, . . . , τk, · ] f

)
(ϕk+1 − Pϕk+1)

with
[τ1, . . . , τk, · ] f = (f − Pf)/(ϕk+1 − Pϕk+1)

= det

(
τ1, . . . , τk, ·
ϕ1, . . . , ϕk, f

)/
det

(
τ1, . . . , τk, ·
ϕ1, . . . , ϕk+1

)
.

If now, more generally, (ϕj)
k+1
1 is a Chebyshev system (on some interval I), then det

(
τ1,...,τk+1

ϕ1,...,ϕk+1

)
6= 0 for

distinct τ1, . . . , τk+1 in I and the following definition makes sense:The k–th divided difference of f at the
distinct points τ1, . . . , τk+1 in I with respect to the sequence ϕ := (ϕj)

k+1
1 is [67]

(9.3) [τ1, . . . , τk+1]ϕ f := det

(
τ1, . . . , τk+1

ϕ1, . . . , ϕk, f

)/
det

(
τ1, . . . , τk+1

ϕ1, . . . , ϕk+1

)
.

Then, with Pf denoting, more generally, the unique element in span (ϕj)
k
1 which agrees with f at τ1, . . . , τk+1,

we have
f − Pf =

(
[τ1, . . . , τk, · ]ϕf

) (
ϕk+1 − Pϕk+1

)

which is the formal analog of (9.2). The definition shows the generalized divided difference (9.3) to be a
symmetric function of the τi’s. The definition even allows for some confluence among the τi’s provided the
ϕj ’s are sufficiently smooth and one defines (for nondecreasing τττττ)

det

(
τ1, . . . , τk+1

ϕ1, . . . , ϕk+1

)
:= det

(
µ1, . . . , µk+1

ϕ1, . . . , ϕk+1

)
= det (µiϕj)
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with µif := f (j)(τi) and j := max {r : τi−r = τi}, in the manner of Theorem 7.3. More detail about these
generalized divided differences are provided by Popoviciu [67], and see also Mühlbach [65].

Assume that, in addition, (ϕj)
k
1 spans the kernel of a k–th order linear ordinary differential operator

(9.4) L∗ := Dk +
∑

j<k

ajD
j

with aj ∈ Cj(I), all j, so that the formal adjoint

(9.5) L := (−)kDk +
∑

j<k

(−)jDj(aj · ) = (−)k
(
Dk +

∑

j<k

bjD
j
)

is an operator of the same kind. Green’s function G(x, y) for the initial value problem L∗f = g, f (j)(a) = 0,
j = 0, . . . , k − 1, can then be constructed as

(9.6a) G(x, y) = (x− y)0+

k∑

j=1

ϕj(x)ψj(y)

with (ψj)
k
1 the basis for ker L adjunct to (ϕi)

k
1 , i.e.,

(9.6b)
k∑

j=1

ϕ
(i−1)
j (x)ψj(x) = δik, i = 1, . . . , k, x ∈ I.

With t = (ti)
n+k
1 nondecreasing and ti < ti+k, all i, the function

(9.7) Mi,L(y) := [ti, . . . , ti+k]ϕG( · , y)

is then piecewise in ker L with breakpoints ti, . . . , ti+k, and in Ck−2 in case ti < · · · < ti+k. In the language
of Greville [43], Mi,L is a generalized spline function with respect to ker L. Coincidences among the ti’s
reduce the smoothness of Mi,L across tj in the usual way. Further,

(9.8) Mi,L vanishes off (ti, ti+k)

since, for y > ti+k, G( · , y) (ti,ti+k) = 0 while, for y < ti, G( · , y) (ti,ti+k) ∈ kerL∗ by (9.6). One also has the
analog

(9.9) [ti, . . . , ti+k]ϕ f =

∫ ti+k

ti

Mi,L(y)L∗f(y) dy.

If, in addition, (ϕi)
k+1
1 is an extended complete Chebyshev (or, ECT) system, then Burchard [21] and

Karlin [47] have shown the analog of the Schoenberg-Whitney theorem 7.1 that, for strictly increasing t
and strictly increasing τττττ = (τi)

n
1 , det(Mj,L(τi)) ≥ 0 with strict inequality iff Mi,L(τi) 6= 0, all i. Further,

Karlin [47] showed that (Mj,L(τi)) is totally positive in this case, as was mentioned earlier. Few facts beyond
these are known for Chebyshev B-splines. While the analog of Marsden’s identity (5.7) can be found in [61],
the analog of the linear functional (5.4) has not been described, although that should be fairly easy. More
importantly for computations, a recurrence relation like (4.9) has been searched for in vain so far.

It is actually quite unnecessary to assume that (ϕj)
k
1 is a Chebyshev system in order to construct L–

splines (in the sense of Greville) of local support. Continue to assume that (ϕj)
k
1 is a basis for the kernel of

the differential operator L∗ of (9.4) with L of (9.5) its adjoint and G the Green’s function given by (9.6). If
t = (ti)

n
1 is strictly increasing, then, for each i, the span of ([tj ])

i+k
j=i contains a nontrivial µ⊥ kerL∗ since ker

L∗ has dimension k. But then

(9.10) Mµ,L(x) := µG( · , x)
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defines an L–spline with knots ti, . . . , ti+k and support in (ti, ti+k). Clearly, Mµ,L represents µ with respect
to the pairing 〈f, g〉 :=

∫
fL∗g. If now (ϕj)

k
1 fails to be a Chebyshev system on [ti, ti+k], then there exists

a nontrivial µ in the span of ([tj ])
i+r
i and orthogonal to ker L∗ for some r < k, i.e., the corresponding Mµ,L

has even smaller support. More explicitly, let (µi)
n+2k−2
1 be the sequence

[t1]D
k−1, . . . , [t1]D, [t1], [t2], . . . , [tn], [tn]D, . . . , [tn]D

k−1

of linear functionals and, for each i, let vi be the linear functional of the form vi = µi +
∑i+r
i+1 βjµj which

is orthogonal to ker L∗, with r as small as possible. The corresponding sequence (Mvi,L)n+k−2
1 of basic

L–splines is then a basis for the space of all L–splines on [t1, tn] with simple interior knots t2, . . . , tn−1.
A construction like this was used by Jerome [45] under the additional assumption that, for each i,

ti+k − ti is small enough so that (ϕj)
k
1 is a Chebyshev system on [ti, ti+k]. Earlier, Jerome and Schumaker

[46] had used such considerations in connection with Lg–splines, i.e., when the linear functionals (µi) above

are, more generally, of the form µi =
∑k

1 αij [ti]D
j−1. Related developments of great generality can be found

in Brown [20].
We close this section with yet another B-spline property discovered by Curry and Schoenberg [30].

Lemma 9.1 [30]. Let M0,k be the B-spline defined by (3.1), and let σ be any k–simplex in IRk of unit

volume with vertices v(i), i = 0, . . . , k and so that v
(i)
1 = ti, i = 0, . . . , k. Then, for all x,

M0,k(x) = |σ ∩ {v ∈ IRk : v1 = x}|,

i.e., M0,k(x) gives the (k − 1)–dimensional volume of the intersection of the simplex σ with the hyperplane

in IRk which intersects the v1–axis at v1 = x and is orthogonal to it.

In a letter [72] to P. Davis, Schoenberg recalls the Hermite-Genocchi formula

(9.11) [z0, . . . , zk] f =

∫
...
τn

∫
f (k) (v0z0 + v1z1 + · · · + vkzk) dv1 · · · dvk

with v0 = 1 − v1 − · · · − vk and where the integration is to be carried out over the complex

τn : v1 ≥ 0, . . . , vk ≥ 0,
k∑

1

vi ≤ 1,

and points out that Lemma 9.1 follows from this on comparison with (4.1). Schoenberg further recalls that
the Hermite-Genocchi formula remains valid if z0, . . . , zk are points in the complex plane not all on one line
and if f is a complex-valued function regular in the convex hull

∏
of z0, . . . , zk. The formula (4.1) now

becomes

(9.12) [z0, . . . , zk] f =

∫
∏M(x, y; z0, . . . , zk) f

(k) (x, y) dxdy/k! .

At the point z = (x, y), M(x, y; z0, . . . , zk) is therefore the (k − 2) –dimensional volume of the intersection

of the plane {v ∈ IRk : v1 = x, v2 = y} with a simplex of unit volume whose i–th vertex v(i) satisfies (v
(i)
1 ,

v
(i)
2 ) = zi. In particular, M is positive on

∏
and zero off

∏
and is a spline of order k− 1 along any straight

line, with knots only at the points where such a line intersects a segment [zi, zj ]. Schoenberg’s letter even
contains a drawing of such a B-spline in two variables for k = 4.

This suggests the following definition.

Definition. Let σ be a nontrivial simplex in IRs+k. On IRs, define the B-spline of order k from σ by

Mk,σ(x1, . . . , xs) := |σ ∩ {v ∈ IRs+k : vi = xi, i = 1, . . . , s}| all x ∈ IRs.
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Then Mk,σ is unimodal, nonnegative, piecewise polynomial of total order k, and in Ck−1 in general. Its

support is the projection of σ onto IRs, i.e., the convex hull of the projections ((v
(i)
j )sj=1)

k
i=0 of the vertices

of σ to IRs.
At this point, I have no idea how useful these B-splines might be, even only for the writing of papers.

It is easy to visualize how such B-splines can be made to give a partition of unity: One takes some suitable
convex set C in IRk of unit volume and then subdivides the cylinder IRs×C in IRs+k into nontrivial simplices.
The corresponding B-splines will then add up to one. But it is unlikely that these B-splines will become
very useful unless one finds some means of evaluating them such as a recurrence relation like (4.9).

In any event, I think these B-splines are very beautiful.
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[78] I. J. Schoenberg and A. Whitney, On Pólya frequency functions. III. The positivity of translation

determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math.
Soc. 74 (1953), 246–259.

[79] L. L. Schumaker, Constructive aspects of discrete polynomial spline functions, in Approximation Theory
(G. G. Lorentz et al., eds), Academic Press (New York), 1973, 469–476.

[80] G. Strang and J. Fix (1973), An analysis of the finite element method , Prentice-Hall (Englewood Cliffs,
NJ).

23


