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The least solution for the polynomial interpolation problem
Carl de Boor & Amos Ron

1. Introduction

We consider the following problem: Given a subspace Λ of the algebraic dual Π′ of the space Π
of s-variate polynomials, find a space P ⊂ Π which is correct for Λ. By this we mean that every
continuous linear functional F on Λ can be interpolated by exactly one p ∈ P in the sense that
Fλ = λp for all λ ∈ Λ. Among the many solutions, we choose a particular one, which we call the
least solution and denote by Λ↓, and which is obtained by a certain map Λ 7→ Λ↓ from subspaces
of Π′ to (homogeneous) subspaces of Π. We call this map the least map and give (in Section 4) a
comprehensive discussion of its properties. With these properties in hand, we provide (in Section
3) and verify (in Sections 5 and 6) a rather striking list of properties that single out Λ↓ from the
collection IP(Λ) of all possible solutions. We pay special attention to Lagrange interpolation, i.e.,
to Λ spanned by point-evaluations, as this is the case of most practical interest. It is also what
started our interest in this topic (cf. [BR1]).

We use (standard) multivariate notation throughout, in the following disciplined way. We use
x, y, z, θ, ϑ for points in IRs (or Cs), with x(j) the jth component of x ∈ IRs, and use t (resp. ξ)
throughout for real (resp. complex) scalars. The letters α, β, γ, κ denote multi-integers, while the
letters j, k, . . . , n denote (simple) integers. For α ∈ ZZs

+, the power function

x 7→ xα =
s∏

j=1

x(j)α(j)

is denoted by ()α. As usual, D is the differentiation symbol, hence a space closed under differen-
tiation is termed D-invariant, and for a polynomial or power series q, q(D) is its evaluation at D.
The scalar product

∑s
j=1 x(j)y(j) for x, y ∈ IRs is simply denoted by xy. In addition, for θ ∈ IRs,

eθ stands for the exponential function

(1.1) eθ : x 7→ eθx.

Finally, for k ∈ ZZ+, Πk (resp., Π<k) is the subspace of Π of polynomials of total degree at most
(resp., less than) k.

Our approach makes essential use of the well-known identification of Π′ with the space IR[[X]]
of formal power series, via a pairing of the form

IR[[X]] × Π → IR : (f, p) 7→
∑

α∈ZZs
+

w(α)α(f)Dαp(0),

in which (α(f))α denotes the sequence of coefficients in the power series f , and (w(α))α are some
(positive) weights. We choose here w(α) := 1/α!, since then the pairing 〈·, ·〉 satisfies

〈f, p〉 = p(D)f(0),
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for any polynomial p and any analytic power series f . The pairing (f, p) 7→ p(D)f(0) was earlier
exploited in section 7 of [DR], where the theory of exponential box splines was employed to solve
a certain class of polynomial interpolation problems, and was also the pairing used in [BR1]. For
completeness, we include in section 2 a short discussion of the space IR[[X]] of formal power series
and its identification with the dual Π′ of the space of polynomials. We also give in that section a
precise statement of the interpolation problem, and define Λ↓ to be the linear span of all λ↓, with
λ↓ the unique homogeneous polynomial for which λ − λ↓ is of higher order than is λ, and λ ∈ Λ.
Here is an outline of the rest of the paper.

Section 3 starts off with three guiding examples: The first is Lagrange interpolation, i.e.,
interpolation at some finite set Θ ⊂ IRs, whose least solution we denote correspondingly by ΠΘ.
The second example extends this to a setup which includes Hermite interpolation and even Birkhoff
interpolation. These two examples correspond to the material on polynomial interpolation in our
paper [BR1]. The third example concerns Radon interpolation, i.e., the use of line integrals as
interpolation conditions, as used in tomography and suggested to us by Nira Dyn, a suggestion
which led us to the study of arbitrary interpolation conditions from Π′ pursued in the present paper.
Chief tool for the analysis of Lagrange and Hermite interpolation problems is the fact (already much
exploited in [DR] and [BR1]) that, in terms of the above-mentioned pairing (and for p, q ∈ Π),
〈qeθ, p〉 = q(D)p(θ), and therefore evaluation at θ ∈ IRs is represented by the simple exponential
eθ. These examples are meant to help with the appreciation of the list of eight particular properties
of the ‘least solution’ Λ↓ ∈ IP(Λ), whose discussion fills out the rest of the section. The properties
concern: (A) generality, (B) monotonicity, (C) constructibility, (D) minimal degree, (E) interaction
with convolution, (F) interaction with homogeneous maps, (G) annihilation/differentiation, (H)
tensor products. For example, the minimal degree property states that, among all P ∈ IP(Λ), Λ↓
is of least degree in the strong sense that dim(P ∩ Πk) ≤ dim(Λ↓ ∩ Πk) for every k. As another
example, the annihilation property concerns associated differential operators and states, for the
special case of Lagrange interpolation at the points of Θ, that, for any polynomial p vanishing on
Θ, necessarily p↑(D)ΠΘ = 0 (with p↑ the leading term of p). It further states that if p(D)ΠΘ = 0,
then necessarily some q with the same leading term as p must vanish on Θ.

Section 4 commences the verification of all these properties. The section starts with the
observation that, even when the space Λ of interpolation conditions is infinite-dimensional, the in-
terpolation problem is essentially finite-dimensional since the only w∗-continuous linear functionals
on Λ are of the form λ 7→ λp for some polynomial p. There are two main results in this section:
one is a proof of the assertion that (Λ↓)⊥ = span{p↑ : p ∈ Λ⊥}, with Λ⊥ the annihilator of Λ in
Π, i.e., the joint kernel of λ ∈ Λ. The other is a proof that, for a D-invariant Λ, the vanishing of
the constant-coefficient differential operator p(D) on Λ↓ implies that q(D)Λ = 0 for some q with
the same leading term as p, while the vanishing of p(D) on Λ implies the vanishing of the leading
term of p(D) on Λ↓.

Section 5 concentrates on the minimal-degree property of the least solution. It contains proofs
of the facts that all minimal-degree solutions and all homogeneous solutions to the interpolation
problem can already be determined by Λ↓ (without knowledge of Λ). We also take up there the
question under what conditions a polynomial space P might be dual to a polynomial space Q in
the sense that the map p 7→ 〈·, p〉|Q provides a w∗-dense embedding of P in the algebraic dual Q′
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of Q.
Section 6 relates the special case (to which Lagrange and Hermite interpolation belong, while

Birkhoff and Radon interpolation do not) of a (finite-dimensional) D-invariant Λ to earlier results
of ours (in [BR2] and [BDR]) concerning the connection of polynomial interpolation to polyno-
mial ideals with finite variety, hence to box spline theory: for a finite collection of homogeneous
differential operators with constant coefficients, we discuss an approach for estimating from below
the dimension of their joint kernel (in IR[[X]]) and, at times, identifying this kernel with ΠΘ for a
certain Θ ⊂ Cs.

In the seventh, and final, section we show how Λ↓, for particular cases of Radon interpolation,
can be determined as a certain subspace of ΠΘ for a carefully chosen Θ. The discussion there
illustrates the difficulties one may have to overcome when Λ is not D-invariant.

The present paper only deals with the theoretical aspects of the least solution to the polynomial
interpolation problem. Questions of construction are taken up in the companion paper [BR3], in
which an algorithm for obtaining Λ↓ from a spanning sequence for Λ is presented and computational
details are discussed.

For reasons of convenience, the discussion here is limited by and large to real polynomials.
Most results extend to the complex case by the appropriate use of complex conjugates, i.e., by
changing the pairing to 〈f, p〉 :=

∑
α α(f)α(p)/α!, and by replacing Λ↓ in some places by Λ↓.

2. The interpolation problem

We are interested in interpolation. By this we mean the construction of a function f (the
interpolant) which matches given information of the form

λf = F (λ)

for all linear functionals λ in some set Λ. Having assumed the λ to be linear functionals, it is no
loss of generality to assume that Λ is a linear space of linear functionals. On the other hand, this
requires that the information F be consistent, i.e., F is necessarily a linear functional on Λ.

We intend to choose the interpolants from the space Π of polynomials in s variables (over IR),
and put no restriction on λ ∈ Λ other than that they should be defined (at least) on Π. Thus

Λ ⊆ Π′.

We heavily use the (standard) representation of Π′ as the space IR[[X]] of formal power series
(of non-negative powers). This representation is based on the pairing

(2.1) IR[[X]] × Π → IR : (f, p) 7→ 〈f, p〉 :=
∑

α∈ZZs
+

α(f)α(p)
α!

=
∑

α∈ZZs
+

α(f)Dαp(0)
α!

,

in which α(f) denotes the αth (normalized) coefficient in the formal power series (for) f , i.e.,

f =
∑

α∈ZZs
+

Xα α(f)
α!

, f ∈ IR[[X]],
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where Xα is the formal power symbol:

Xα :=
s∏

j=1

X(j)α(j).

Choosing p in (2.1) to be the power function ()α, we get from (2.1) that

(2.2) α(f) = 〈f, ()α〉,

hence the representation of Π′ by IR[[X]] is given by the invertible linear map

Π′ → IR[[X]] : λ 7→
∑
α

Xα λ()α

α!
.

In these terms, formal differentiation of f ∈ IR[[X]] is, in effect, a shift, i.e., Dβf is defined by

α(Dβf) := (α + β)(f), α, β ∈ ZZs
+.

Thus, for α, β in ZZs
+ and f ∈ IR[[X]],

〈Dβf, ()α〉 = α(Dβf) = (α + β)(f) = 〈f, ()α+β〉,

and, hence,

(2.3) 〈q(D)f, p〉 = 〈f, qp〉 = 〈p(D)f, q〉, f ∈ IR[[X]], p, q ∈ Π.

In the sequel, we identify Π′ and IR[[X]], and thus we can think of the elements of Π′ si-
multaneously as sequences indexed by α ∈ ZZs

+, or else as linear functionals on Π. We choose to
topologize IR[[X]] with the topology of pointwise convergence, or equivalently equip Π′ with the
w∗-topology, making thereby Π′ into a Fréchet space, and making Π the w∗-continuous dual of Π′:

(2.4) Fact. F is a w∗-continuous linear functional on Π′ if and only if F = 〈·, q〉 for some q ∈ Π.

With this identification of Π′ with IR[[X]], Π is naturally embedded in Π′. Thus, p ∈ Π can be
(and is) treated as an element of Π, as a linear functional (power series) in Π′, and as an analytic
function on IRs. Furthermore, many non-polynomial λ ∈ Π′ of interest to us can also be reasonably
interpreted as a function analytic at 0, viz. the function to which the power series converges
uniformly. If it is important to distinguish between λ and its analytic limit, we write λ∨ for the
latter, and refer to it as the generating function of λ. We denote by

A0

the collection of all λ ∈ Π′ analytic at the origin.
For us, the most important example of λ ∈ Π is point evaluation at θ, i.e., the linear functional

(2.5) δθ : p 7→ p(θ).
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Since δθ()α = θα, the formal power series corresponding to δθ is
∑

α∈ZZs
+

Xα θα

α! . Hence

δθ
∨ = eθ.

If λ = µ|Π for some distribution µ, then it is often possible to determine λ∨ directly from the
identity

(2.6) λ∨(z) = 〈µ, ez〉.

For example, 〈δθ, ez〉 = eθz = eθ(z) = (δθ
∨)(z). The identity (2.6) is particularly useful when it is

hard to determine directly the action of λ on the monomials ()α.
Finally, we note the identity

(2.7) 〈λ, p〉 = p(D)λ∨(0)

valid for any λ ∈ A0 and any p ∈ Π.

In these terms, the interpolation problem to be studied in this paper is the following. For a
given linear subspace Λ of Π′, determine a linear subspace P of Π so that the pair 〈Λ, P 〉 is correct
in the sense that

P → Λ∗ : p 7→ 〈·, p〉|Λ
is 1-1 and onto. We denote by IP(Λ) the interpolation problem induced by Λ as well as the collection
of solutions P to this problem.

Here, Λ∗ denotes the continuous dual of Λ ⊂ Π′ with respect to the induced topology. This is
an appropriate choice since any F ∈ Λ∗ is extendible to Π′∗ (Hahn-Banach), hence is representable
as 〈·, q〉|Λ for some q ∈ Π ((2.4)Fact), and also, conversely, the restriction to Λ of every p ∈ Π = Π′∗

is continuous in this topology of Λ, namely, 〈·, p〉|Λ ∈ Λ∗.
As we will see, IP(Λ) is never empty and is infinite unless Λ is dense in Π′. Among the possibly

infinitely many solutions, we single out a particular solution which, in addition to many other nice
features to be described, is of the least possible degree (in a strong sense to be made precise). The
description of this particular solution makes use of a particular map (which we call the least map),
from subspaces of Π′ to homogeneous subspaces of Π, and which we introduce now.

We use Πk to denote all polynomials of (total) degree at most k, and

Π0
k

to denote the space of all homogeneous polynomials of degree k (with the 0 polynomial included
as usual). Recall that the order of the power series λ ∈ Π′, denoted by ordλ, is defined by

(2.8) ordλ := min{|α| : α(λ) 6= 0}.

For a formal power series λ 6= 0, its initial form (also least term) λ↓ is the unique homogeneous
polynomial λ↓ ∈ Π0

ordλ that satisfies ord(λ − λ↓) > ordλ. For completeness, we set 0↓ := 0. This
definition can be written in terms of the power series coefficients as follows:

5



(2.9) α(λ↓) =
{

α(λ), if β(λ) = 0 for every |β| < |α|;
0, otherwise.

(5.8) Theorem. Let Λ be a subspace of Π′, and define

Λ↓ := span{λ↓ : λ ∈ Λ}.

Then, for every F ∈ Λ∗, there exists a unique p ∈ Λ↓ such that F = 〈·, p〉|Λ . Hence, Λ↓ ∈ IP(Λ).

For a finite-dimensional Λ, (5.8)Theorem implies the following result, which is recorded for
subsequent use:

(2.10) Proposition. For any finite-dimensional subspace Λ of Π′, dimΛ = dimΛ↓.

We refer hereafter to the space Λ↓ as “the least solution of the interpolation problem”. A
discussion of the various aspects of the least map Λ 7→ Λ↓ as well as the proof of (5.8)Theorem can
be found in section 5.

3. Properties and examples of the least solution

In this section, we present some typical examples of linear functional spaces Λ (i.e., interpola-
tion conditions), and then discuss in detail several attractive properties that the least solution Λ↓
possesses, with the initial examples being used to illustrate these properties. Some of the claims
made in this section will be proved only in subsequent sections. Our primary aim here is to provide
the reader with a reasonable overview and a better insight, which may be helpful in reading the
other parts of the paper.

(3.1) Example. The basic and most important example in our discussion is the Lagrange in-
terpolation problem, i.e., the particular choice Λ := span{δθ}θ∈Θ, for some finite Θ ⊂ IRs,
with δθ point evaluation at θ (see (2.5)). The corresponding space of generating functions is the
exponential space

(3.2) ExpΘ := span{eθ : θ ∈ Θ}.

For this Lagrange interpolation problem, we use IP(Θ) rather than IP(Λ) to denote the set of
solutions. Also, we use

ΠΘ := (ExpΘ)↓

to denote its least solution. Note that, regardless of the choice of Θ, the space ExpΘ is always
translation-invariant, hence also D-invariant. Also, it is easy to characterize here IP(Θ) alge-
braically: P ∈ IP(Θ) if and only if Π = P ⊕ IΘ, with IΘ ⊂ Π the ideal of all polynomials that
vanish on Θ. However, this characterization does not readily provide solutions to problems of
interest, e.g., to find the maximal Πd which is included in some solution P ∈ IP(Θ).
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Although the linear functional space Λ is defined here (and in other examples to come) with
the aid of a basis (namely, {δθ}θ∈Θ), one cannot deal in the context of the least map with the basis
elements alone, but must treat the whole linear functional space. Indeed, although the set {eθ}θ∈Θ

forms a basis for ExpΘ, we have {eθ↓}θ∈Θ = {1} (while ΠΘ, as any other solution of IP(Θ), must
have dimension equal to #Θ = dim ExpΘ).

(3.3) Example. This example extends the Lagrange interpolation problem above, and also contains
the Hermite interpolation problem and the Hermite-Birkhoff interpolation problem (cf. [BR1]). Λ
is again finite-dimensional, and a basis for Λ is given by (the restriction to Π of) distributions with
one-point support. That is, a typical basis element λ ∈ Λ is of the form

λ : p 7→ q(D)p(θ),

where q ∈ Π and θ ∈ IRs are λ-dependent. With the aid of (2.6), we compute that

λ∨(z) = 〈λ, ez〉 = q(z)ez(θ) = q(z)eθ(z),

and therefore the generating function space is now a finite-dimensional subspace of
∑

θ∈Θ eθΠ for
some finite Θ ⊂ IRs. In contrast to the previous example, there is no guarantee here that Λ is
D-invariant.

(3.4) Example. Λ is finite-dimensional and is spanned by (say, compactly supported) measures.
E.g., each basis element ` is a line integral of the form

` : p 7→
∫ 1

0

p(a + (b − a)t) dt,

where a, b ∈ IRs are `-dependent. Again, the generating function is easily computed from (2.6):

`∨(z) = 〈`, ez〉 =
eb(z) − ea(z)

(b − a)z
.

Note that now, in contrast to the Lagrange case, the generating function space is never D-invariant
(since the derivatives of the univariate function t 7→ (et − 1)/t are linearly independent). From the
standpoint of this paper, the lack of D-invariance here makes this interpolation problem harder
than others like the Lagrange interpolation problem.

With these examples in mind, we start now the discussion of the properties of the least solution
Λ↓ of the interpolation problem IP(Λ).

Property A: Generality.

The space Λ of interpolation conditions might be taken to be any subspace of the dual of
Π. Even when restricting our attention to the Lagrange interpolation problems (in more than
one variable), a general method for obtaining a solution does not seem to be a trivial task: given
n ≥ 2, one cannot make up one subspace P ⊂ Π of dimension n that solves all Lagrange problems
associated with some Θ ⊂ IRs of cardinality n. Therefore, the choice of the solution space must
depend on the geometry of Θ. However, trying to determine a suitable P by studying these
geometrical considerations seems to be painful, and usually results in restrictive assumptions on
Θ.
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Property B: Monotonicity.

For subspaces Λ and M of Π′,

(3.5) Λ ⊂ M =⇒ Λ↓ ⊂ M↓.

This (obvious) property is crucial if one wants to construct Λ↓ inductively. It also makes it possible
to provide a Newton form for the interpolant.

Property C: Constructibility.

From a practical point of view, this is probably the most important property. We proposed
in [BR1] an algorithm which constructs, in finitely many arithmetic operations, from a given basis
for the finite-dimensional Λ, another basis, say {λj}n

j=1, such that {λj↓}n
j=1 is bi-orthogonal to

{λj}n
j=1, hence forms a basis for Λ↓. The construction of the interpolant If to a function f then

proceeds in the usual way, i.e.,

f 7→ If :=
n∑

j=1

λj↓ 〈λj , f〉,

which uses only the data {〈λj , f〉}n
j=1 on f . A modified version of the above-mentioned algorithm,

its relation to Gauß elimination, algorithmic details and some Lagrange interpolation examples
are discussed in [BR3]. These two algorithms can, in turn, be used to construct a basis for the
polynomial subspace of a box spline space; cf. section 6.

Property D: Minimal degree.

In general, it is desirable to keep the polynomials in the solution space P of the interpolation
problem Λ of as small a degree as possible, and, in particular, to make the d for which Πd ⊂ P

as large as possible. There are limits to this, since P must exclude polynomials on which all the
interpolation conditions vanish. In the discussion here, we use the “minimal-degree” notion in the
following sense.

(3.6) Definition. We say that the polynomial space P is minimally correct for Λ (or, is a
minimal-degree solution) if P ∈ IP(Λ) and

dim(Q ∩ Πk) ≤ dim(P ∩ Πk), ∀Q ∈ IP(Λ), k ∈ ZZ+.

We denote by MIP(Λ) the collection of all minimal-degree solutions for Λ. The following
theorem implies that MIP(Λ) is never empty.

(5.10) Theorem. The space Λ↓ is minimally correct for Λ.

Thus, P ∈ MIP(Λ) if and only if P ∈ IP(Λ) and

dim(P ∩ Πk) = dim(Λ↓ ∩ Πk), ∀k ∈ ZZ+.

We show later (in section 5) that MIP(Λ) can be characterized directly by Λ↓ (without recourse
to Λ), and that, further, Λ↓ is the only homogeneous polynomial space that can be used in this
characterization.

There are various efforts in the literature to find (primarily Lagrange and Hermite) interpola-
tion conditions which are correct for Πk (for some k ∈ ZZ+). It is therefore reassuring to conclude,
in view of (5.10)Theorem, the following.
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(3.7) Corollary. Let Λ be a subspace of Π′. If Πk ∈ IP(Λ) for some k ∈ ZZ+, then Λ↓ = Πk.

Finally, we note that, generally speaking, the minimal degree property conflicts with generality
and constructibility. E.g., in the Lagrange case, there are “easy-to-implement” schemes which can
be used to find spaces in IP(Θ) (cf. [GM]), yet these spaces are, in general, far from being of
minimal degree, nor are they canonical, for the solution space depends on ordering Θ, as well as
on the choice of certain free parameters.

The remaining properties below concern the interaction between the least map and some
basic operations on Π′, such as convolution, differentiation, homogeneous maps and taking tensor
products.

Property E: Interaction with convolution; the translation-invariance of Θ 7→ ΠΘ.

In order to distinguish between the multiplication of µ ∈ IR[[X]] = Π′ with λ ∈ IR[[X]] = Π′

and the application of µ ∈ Π′ = IR[[X]] to λ ∈ Π ⊂ Π′, we write

µ∗λ

for the former, as {α(µ∗λ)}α is indeed the convolution product of {α(µ)}α and {α(λ)}α. Since, for
any λ, µ ∈ Π′,

(3.8) (µ∗λ)↓ = λ↓µ↓,

we reach the following conclusion:

(3.9) Proposition. Let Λ be a subspace and µ an element of Π′. Then

(3.10) (µ∗Λ)↓ = µ↓Λ↓.

In particular, if µ↓ is a nonzero constant, then

(µ∗Λ)↓ = Λ↓.

(3.11) Example. For the Lagrange interpolation problem IP(Θ), Λ∨ is the exponential space ExpΘ.
If we take µ∨ to be any exponential eτ (τ ∈ IRs), then µ↓ = 1, hence (by (3.9)Proposition)

(eτExpΘ)↓ = (ExpΘ)↓ = ΠΘ.

On the other hand, eτExpΘ = Exp(τ+Θ), and we thus obtain that the least solution of the Lagrange

problem is invariant under translations of Θ: for every τ ∈ IRs and Θ ⊂ IRs,

(3.12) Π(τ+Θ) = ΠΘ.

As a matter of fact, the main property of IP(Θ) used for (3.12) is the fact that the basis
{δθ}θ∈Θ for Λ is obtained by shifting a single linear functional (viz., δ0). For this reason, we have
the following extension of (3.12):
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(3.13) Corollary. For λ ∈ Π′ and finite Θ ⊂ IRs, define Λ := span{Eθλ : θ ∈ Θ}, where

〈Eθλ, p〉 := 〈λ, p(· + θ)〉. Then

Λ↓ = λ↓ΠΘ.

We exploit this observation in the next example.

(3.14) Example. Suppose that X is a matrix in IRs×n with non-zero columns, and let X stand
also for the collection (more precisely, the multiset) of the columns of X. Each x ∈ X (considered
as a vector in IRs\0) induces a line integral `x:

`x : p 7→ 1
2

∫ 1

−1

p(tx) dt.

We define `X to be the convolution product of all the line integrals `x, x ∈ X. The density measure
of X is known as a (centered) box spline [BH]. The generating function of `X can easily be
computed (compare with (3.4)Example):

(3.15) `X
∨(z) =

∏
x∈X

sinh(xz)
xz

.

Since the box spline is a unit measure centered at the origin, 〈`X , p〉 provides an average value of p

around the origin. We now generate a family of linear functionals from `X by translation, and by
changing the magnitude (but not the direction) of each x ∈ X. A typical functional ` obtained by
such a modification is of the form

`∨(z) = eθ

∏
x∈X

sinh(txxz)
xz

,

where {tx}x∈X are some `-dependent non-zero scalars and θ ∈ IRs is `-dependent as well. Suppose
that Λ is the span of (say, finitely many) linear functionals, all obtained by modifying the same
original box spline. In this case the functionals in Λ provide average values in balls of possibly
different diameters around different points.

Note now that the homogeneous polynomial q(z) :=
∏

x∈X(xz) (of degree n) appears in the
denominator of (the generating function of) every functional in Λ. In view of (3.9)Proposition, we
may obtain Λ↓ in the form M↓/q, with the exponential space M∨ spanned by the exponentials of
the form

µ∨(z) = eθ

∏
x∈X

sinh(txxz). ♠

More specific examples of this nature are discussed in section 7.

Property F: Homogeneous maps.

A linear map A : Π′ → Π′ is homogeneous of degree k if A(Π0
j ) ⊂ Π0

j+k for every j ≥ 0. If
A is such a map, it satisfies

(Aλ)↓ = A(λ↓),

unless A(λ↓) = 0. This implies that, for any space Λ ⊂ Π′,

(3.16) A(Λ↓) ⊂ (AΛ)↓.

Since, in particular, any directional differentiation is a homogeneous map, this provides the following
result of much use later.
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(3.17) Proposition. If a subspace Λ of Π′ is D-invariant, then so is Λ↓.

Since ExpΘ is D-invariant, we have the following.

(3.18) Corollary. The least space ΠΘ associated with the Lagrange interpolation problem IP(Θ)
is D-invariant.

In particular, there are no “jumps” in the homogeneous grades of ΠΘ, i.e.,

ΠΘ ∩ Π0
k = 0 =⇒ ΠΘ ∩ Π0

k+j = 0, ∀j > 0.

Also, the homogeneous dimensions of ΠΘ constitute the Hilbert function of some (homogeneous)
ideal.

(3.19) Remark. It should be clear that Λ↓ might be D-invariant even though Λ is not (take a
one-dimensional Λ which does not vanish on the constants and is not an exponential space). On the
other hand, not every space of the form Λ↓ is D-invariant: on multiplying any Λ by any polynomial
that vanishes at the origin, we obtain a space M whose least space M↓ does not contain constants
(cf. (3.9)Proposition), hence is not D-invariant. ♠

If A, in addition to being homogeneous, is also injective, then equality must hold in (3.16). A
particular case of interest is a linear change of variables, (i.e., a linear invertible map A : IRs → IRs,
which is lifted to Π by the definition Ap(x) := p(Ax)).

(3.20) Proposition. Let A be a linear change of variables. Then, (AΛ)↓ = A(Λ↓) for every

subspace Λ ⊂ Π′.

With At being the transposed map of A, this implies that

A(ΠΘ) = ΠAtΘ,

since A(ExpΘ) = ExpAtΘ. In particular, rotation and reflection of Θ result in a similar action on
ΠΘ, so that symmetries of this type in Θ are preserved in ΠΘ.

(3.21) Example. With s = 2, let Θ consist of the four intersection points of the ellipse a1()2,0 +
a2()0,2 = 1 with the coordinate axes. Then Π1(IR2) ⊂ ΠΘ, by the minimal degree property of ΠΘ,
since no linear p ∈ Π(IR2) vanishes on Θ. Furthermore, Θ is invariant under reflection across each
of the axes, which means that ΠΘ ∩ Π0

2 may contain only polynomials of the form c1()2,0 + c2()0,2

(polynomials of the form c()1,1, which are also invariant under the above reflections, are excluded
since they vanish on Θ). If the ellipse is circular, then Θ is invariant under rotation by 90 degrees,
hence so is ΠΘ, which implies that c1 + c2 = 0 (the other possibility c1 = c2 is excluded since
then the quadratic polynomial assumes a constant value on Θ). If the ellipse is not circular, then
c1()2,0 + c2()0,2 ∈ ΠΘ ∩ Π0

2 if and only if (c1, c2) is perpendicular to the vector (a1, a2). This will
follow as well from the general discussion concerning annihilation (see Property G below). ♠

In case we choose the linear map A to be the scaling operator

σhλ 7→ λ(·/h),
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we may use the fact that Λ↓ is scale-invariant (as is every homogeneous space) to conclude that

(σhΛ)↓ = σh(Λ↓) = Λ↓,

which implies in the Lagrange case that

ΠΘ/h = ΠΘ.

Property G: Annihilation.

For a D-invariant Λ, i.e., a Λ closed under (formal) differentiation, the study of the relation
between the actions of differential operators on Λ and Λ↓ is very useful. The next theorem sum-
marizes our main results in this direction. We use here the notation q↑ for the leading term of
the polynomial q, i.e., q↑ is the unique homogeneous polynomial that satisfies

(3.22) deg(q − q↑) < deg q.

We also use q(D) for the (formal) differential operator with constant coefficients obtained by eval-
uating q at D. Note that in general q(D) is neither injective (unlike convolution operators) nor a
homogeneous map. However, if q is homogeneous, then q(D) is homogeneous, of order −deg q.

(4.11) Theorem. Let Λ be a D-invariant subspace of Π′, and let p be a polynomial.

(a) If p(D)Λ↓ = 0, then q(D)Λ = 0, for some q ∈ Π with q↑ = p↑.
(b) If p(D)Λ = 0, then p↑(D)Λ↓ = 0.

This theorem is of particular interest for the Lagrange interpolation problem, to which it
applies since ExpΘ is D-invariant: One has p(D)eθ = p(θ)eθ (for p ∈ Π and θ ∈ IRs). This also
implies that

(3.23) p(D)(eθ) = 0 ⇐⇒ p(θ) = 0.

Thus, (4.11)Theorem reads in the Lagrange case as follows.

(3.24) Corollary. For a finite Θ ⊂ IRs, and p ∈ Π:

(a) If p(D)(ΠΘ) = 0, then q vanishes on Θ for some q ∈ Π with q↑ = p↑.
(b) If p vanishes on Θ, then p↑(D)(ΠΘ) = 0.

(3.25) Example: Harmonic polynomials. Suppose that we want to approximate functions which
are harmonic in the open unit disk U ⊂ IR2 and continuous on its closure U−, by interpolating
their values on the unit circle (say, at the roots of unity). It is obvious (and well-known) that this
can be done by using harmonic polynomials of sufficiently high degree. It is therefore very pleasing
to see that the least solution provides exactly these harmonic polynomials:

12



(3.26) Theorem. Let s = 2. Then ΠΘ consists of harmonic polynomials if and only if Θ lies on

some circle in the plane.

Proof. Assume that Θ lies on the circle given by the quadratic equation p = 0. In this
case, the leading term p↑(D) of p(D) is the Laplacian, and, by (3.24)Corollary(b), p↑(D)(ΠΘ) = 0,
hence ΠΘ is a harmonic space.

Conversely, assume that ΠΘ is annihilated by the Laplacian L(D). Since L(D) is homogeneous,
we may apply (3.24)Corollary(a) to find a polynomial p such that p↑ = L and p vanishes on Θ.
Since L = ()2,0 + ()0,2, the equation p = 0 defines a circle. ♠

(4.11)Theorem might also be helpful for some types of non-Lagrange interpolation problems.
An example is discussed in section 7.

Whether or not Λ is D-invariant can often be decided by the following criterion.

(6.1) Proposition. A closed subspace Λ of Π′ is D-invariant if and only if Λ⊥ is a polynomial

ideal (in Π).

Here, the annihilator or kernel Λ⊥ ⊂ Π of Λ ⊂ Π′ is defined as usual by

(3.27) Λ⊥ := {p ∈ Π : 〈λ, p〉 = 0, ∀λ ∈ Λ}.

Because of its importance for us, and in preparation for the proof of (4.11)Theorem, we verify
directly the following

(3.28) Corollary. If the subspace Λ of Π′ is D-invariant, then p(D)Λ = 0 for all p ∈ Λ⊥.

Proof. For λ ∈ Λ, p ∈ Λ⊥ and α ∈ ZZs
+,

α(p(D)λ) = 〈p(D)λ, ()α〉 = 〈Dαλ, p〉 = 0,

by (2.2), (2.3), and the D-invariance of Λ, respectively. ♠
Property H: Tensor product.

The tensor product of two power series spaces commutes with the least map:

(3.29) Proposition. Let M, N be subspaces of Π′(IRm), Π′(IRn) respectively. Then, M ⊗ N,

regarded as a subspace of Π′(IRm+n), satisfies

(3.30) (M ⊗ N)↓ = M↓ ⊗ N↓.

Proof. For µ ∈ M and ν ∈ N, (µ ⊗ ν)↓ = µ↓ ⊗ ν↓, hence (M ⊗ N)↓ ⊃ M↓ ⊗ N↓. This
completes the proof for finite-dimensional M and N, since in this case both sides of (3.30) are of
dimension dim M dimN (by (2.10)Proposition applied to M, N and M⊗ N). The general case now
follows by expressing M ⊗ N as the union of an increasing sequence (M(j) ⊗ N(j))∞j=1 of subspaces,
where each M(j) and N(j) is a finite-dimensional subspace of M and N, respectively. ♠

This proposition applies to a “rectangular array” of interpolation conditions: assume that we
are given finite-dimensional M1, . . . ,Ms ⊂ Π′(IR) and define

M := M1 ⊗ M2 ⊗ ... ⊗ Ms.
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Then, with (µj,k)κj

k=0 in Π(IR) a basis for (Mj)↓, j = 1, ..., s,

(3.31) M↓ = span{µ1,α1 ⊗ µ2,α2 ⊗ ... ⊗ µs,αs : α ∈ Γ},

where

(3.32) Γ := J(κ) := {α ∈ ZZs
+ : α ≤ κ}.

In particular, we get the following result:

(3.33) Corollary. Let {Mj}s
j=1 and M be as above, and assume that, for each j, (Mj)↓ = Πκj (IR).

Then

(3.34) M↓ = ΠΓ := span{()α : α ∈ Γ}.

In case Θ ⊂ IRs consists of the vertices of a rectangular grid, this corollary shows that ΠΘ

coincides with the “natural” solution, i.e., the polynomial space of coordinate degree κ.

(3.33)Corollary can be extended from rectangular arrays to order-closed arrays (or, lower
sets in the terminology of [LL]), i.e., to subsets Γ′ of Γ which satisfy

ZZs
+ 3 α ≤ β ∈ Γ′ =⇒ α ∈ Γ′.

For this, we equip each Mj in the corollary with a basis {µj,0, ..., µj,κj} for which

(3.35) (Mj,k)↓ = Πk, ∀0 ≤ k ≤ κj , 1 ≤ j ≤ s,

with Mj,k := span{µj,0, ..., µj,k}. For each α ∈ Γ (with Γ as in (3.32)), define

Λα := M1,α1 ⊗ M2,α2 ⊗ ... ⊗ Ms,αs .

Finally, for a given Γ′ ⊂ Γ, we set
ΛΓ′ :=

∑
α∈Γ′

Λα

and conclude the following.

(3.36) Corollary. For every order-closed Γ′ ⊂ Γ,

(3.37) (ΛΓ′)↓ = ΠΓ′ := span{()α : α ∈ Γ′}.

Proof. The map

()α 7→ m1,α1 ⊗ m2,α2 ⊗ ... ⊗ ms,αs , α ∈ Γ′

induces a linear isomorphism between ΠΓ′ and ΛΓ′ , hence their dimensions agree. On the other
hand, by (3.33)Corollary and the monotonicity property (Property B),

ΠJ(α) = (Λα)↓ ⊂ (ΛΓ′)↓ ∀α ∈ Γ′,
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therefore ΠΓ′ ⊂ (ΛΓ′)↓, and the desired result then follows, since by the above and (2.10)Proposi-
tion, dim ΠΓ′ = dimΛΓ′ = (dimΛΓ′)↓. ♠

A particular example is obtained by choosing each mj,k to be the point-evaluation δθj,k
(with

θj,k ∈ IR and θj,k 6= θj,k′ for k 6= k′). In this case IP(ΛΓ′) is a Lagrange interpolation problem
with respect to an order-closed Θ and the least solution turns out to coincide again with the
“natural” monomial space ΠΓ′ . It is not the (known) fact that ΠΓ′ does solve IP(ΛΓ′) that should
be emphasized, but the fact that the least solution coincides with this preferred solution. We note
that actually the only facts used to derive this result (aside from the correctness of total degree
spaces for Lagrange interpolation at arbitrary subsets of IR) are the monotonicity, the tensor
product property, and the minimal degree property, of the least map. Any other map satisfying
these three properties would provide here ΠΓ′ as the solution space.

4. Homogenization

The least map

(4.1) Λ 7→ Λ↓ := span{λ↓ : λ ∈ Λ},
defined on subspaces of Π′, is a typical example of an internal homogenization map (cf. [NV]).
Such maps make use of the graded structure of Π′. The least map is complemented by the
homogenization map

(4.2) P 7→ P ↑ := span{p↑ : p ∈ P}
defined on subspaces P ⊂ Π, where p↑ denotes the leading term (cf. (3.22)) of the polynomial p.
We discuss in this section some properties concerning these maps and their interrelation.

The spaces P ↑ and Λ↓ are both homogeneous (or graded), i.e., are spanned by homogeneous
polynomials. The map p 7→ p↑ (resp. λ 7→ λ↓) is non-linear, and is neither injective nor surjective
when considered as a map from P to P ↑ (resp. Λ to Λ↓). We already noted the monotonicity of
the least map; the leading map P 7→ P ↑ is just as obviously monotone.

For any P ⊂ Π, the action of Λ ⊂ Π′ on

(4.3) Pk := P ∩ Πk

is entirely determined by TkΛ, with Tk the Taylor map, i.e., the map on Π′ which associates
with each λ ∈ Π′ = IR[[X]] its Taylor polynomial Tkλ of degree k. In terms of the power series
coefficients,

α(Tkλ) =
{

α(λ), |α| ≤ k;
0 otherwise.

In particular, for any subspace Λ ⊆ Π′,

(Λ⊥)k = ((TkΛ)⊥)k.

Here and below, we use the subscript k to indicate the collection of all polynomials of degree
≤ k in a set (cf. (4.3)), and continue to use the subscript ⊥ to indicate the kernel of a set of linear
functionals on Π (cf. (3.27)).

The next result shows that the two homogenization processes preserve dimensions in the fol-
lowing strong sense.
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(4.4) Proposition.
(a) For any subspace Λ ⊂ Π′ and any k ∈ ZZ+, dim(Λ↓)k = dimTkΛ. In particular, dim Λ↓ =

dimΛ.

(b) For any subspace P ⊂ Π and any k ∈ ZZ+, dim(P ↑)k = dimPk. In particular, dimP ↑ = dim P .

Proof. (b): Set Sj := (id−Tj)|P (id being the identity map). Note that deg p = j iff
Sjp = 0 and Sj−1p 6= 0, and so

dim(P ↑ ∩ Π0
j ) = dimSj−1(kerSj) = dim kerSj − dim kerSj−1,

using the fact that kerSj−1 ⊂ ker Sj . Summing this equality over j = 0, 1, ..., k, we obtain

dimP ↑k = dimkerSk − dim kerS−1.

Yet, S−1 = id, and therefore dimkerS−1 = 0, while kerSk = Pk, hence dimPk = dim(P ↑)k.
Letting k → ∞, we obtain also that dimP = dimP ↑.

The proof of (a) is very similar to that of (b) (see [BR1] for details). ♠
We will also need the following observations regarding homogeneous bases for Λ↓. While Λ↓

is a homogeneous polynomial space, hence has homogeneous algebraic bases, an algebraic basis
for Λ is of little interest when Λ is not finite-dimensional. But any subspace Λ of Π′ has a weak
basis, i.e., there are sequences (λi)i in Λ so that, for every λ ∈ Λ, there is a unique a so that
λ =

∑
i a(i)λi, with the sum taken pointwise, i.e., 〈λ, p〉 =

∑
ordλi≤deg p a(i)〈λi, p〉 for all p ∈ Π.

(4.5) Lemma. Let Λ be a subspace of Π′. Any homogeneous (algebraic) basis for Λ↓ is of the

form (λi↓)i for some (weak) basis (λi)i for Λ. In particular, Λ⊥ = ∩i kerλi, for each homogeneous

basis (λi↓)i for Λ↓.

Proof. Since any homogeneous element of Λ↓ is necessarily of the form λ↓ for some λ ∈ Λ,
we may assume that our homogeneous algebraic basis for Λ↓ is of the form (λi↓)i for some sequence
(λi)i in Λ.

We now prove that such a sequence (λi)i is necessarily a (weak) basis for Λ. The proof
is by induction: Let λ ∈ Λ. Assume that we have already determined a(i) for ordλi < k so that
λ =

∑
ordλi<k a(i)λi on Π<k, with the sum being finite, since (λi↓)ordλi<k are linearly independent.

Then
µ := λ −

∑
ordλi<k

a(i)λi

is in Λ and has order at least k (since it vanishes on Π<k). If ordµ = k, then µ↓ =
∑

ordλi=k a(i)λi↓
for some numbers a(i). Else, choose a(i) = 0 for ordλi = k. In either case, λ =

∑
ordλi≤k a(i)λi on

Πk, with the new coefficients uniquely determined since {λi↓ : ordλi = k} are linearly independent,
by assumption. This advances the induction hypothesis.

If now p ∈ ⋂
i kerλi, then 〈λ, p〉 =

∑
i a(i)〈λi, p〉 = 0 for any λ ∈ Λ, hence p ∈ Λ⊥. This proves

that
⋂

i ker λi ⊂ Λ⊥, while the converse inclusion is trivial. ♠
Here is a simple, yet useful, observation.
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(4.6) Lemma. Let λ ∈ Π′ and p ∈ Π. If 〈λ, p〉 = 0, then 〈λ↓, p↑〉 = 0 as well.

Proof. If ordλ 6= deg p, then p↑ and λ↓ are two homogeneous polynomials of different
degrees and hence 〈λ↓, p↑〉 = 0 trivially. Otherwise, deg p = ordλ, a case in which 〈λ, p〉 = 〈λ↓, p↑〉.♠

In analogy to Λ⊥, we define

P⊥ := {λ ∈ Π′ : P ⊂ kerλ},
the annihilator in Π′ of P ⊆ Π. We note that, with the identification Π′ = IR[[X]], any subspace P

of Π is also a subspace of Π′ and that, for a homogeneous subspace P of Π, the essential difference
between P⊥ and P⊥ lies in the fact that the latter contains also infinite linear combinations.
Further,

P = P⊥⊥

for any subspace P of Π, and also

(4.7) P = P⊥⊥

for any homogeneous subspace P of Π.
We now come to the main result of this section. It concerns the interaction among the maps

↓, ↑, ⊥ and ⊥.

(4.8) Theorem. Let P and Λ be subspaces of Π and Π′ respectively. Then

(a) (Λ↓)⊥ = (Λ⊥)↑;
(b) (P⊥)↓ = (P ↑)⊥.

Proof. (a): We first show that (Λ↓)⊥ ⊃ (Λ⊥)↑. Let q ∈ (Λ⊥)↑. To prove that q ∈ (Λ↓)⊥,
we need to show that 〈µ, q〉 = 0 for µ ∈ Λ↓. Since both Λ↓ and (Λ⊥)↑ are homogeneous, we may
assume without loss that µ and q are homogeneous. This in turn implies the existence of p ∈ Λ⊥
and λ ∈ Λ such that p↑ = q and λ↓ = µ, so that we have to prove that 〈λ↓, p↑〉 = 0. But this
follows from (4.6)Lemma, since, by the choice of λ and p, one has 〈λ, p〉 = 0.

For the converse inclusion, it is now sufficient to show that, for every k ∈ ZZ+,

(4.9) dim(Λ↓)⊥k = dim(Λ⊥)↑k

(with Qk := Q ∩ Πk for any Q ⊂ Π, as before). We have M⊥k = (TkM)⊥k for any M ⊂ Π′,
since 〈λ, p〉 = 〈Tkλ, p〉 for every λ ∈ Π′ and every p ∈ Πk. Further, by (4.4)Proposition(b) (with
P = Λ⊥), we have dim(Λ⊥)↑k = dimΛ⊥k. Therefore, (4.9) is equivalent to

(4.10) dim(TkΛ↓)⊥k = dim(TkΛ)⊥k.

For any M ⊂ Πk, M⊥k is the orthogonal complement of M in Πk with respect to the inner product

〈·, ·〉. Since both TkΛ↓ = Λ↓k and TkΛ are subspaces of Πk, (4.10) is therefore equivalent to

dimΛ↓k = dimTkΛ,

and this is (4.4)Proposition(a).
As for (b), it is obtained by choosing Λ = P⊥ in (a), hence (P⊥↓)⊥ = Λ⊥↑ = P⊥⊥↑ = P ↑,

which implies (P⊥↓)⊥⊥ = P ↑⊥, and this gives (b), by (4.7). ♠
For the D-invariant case, the last theorem implies the following.
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(4.11) Theorem. Let Λ be a D-invariant subspace of Π′, and let p be a polynomial.

(a) If p(D)Λ↓ = 0, then q(D)Λ = 0, for some q ∈ Π with q↑ = p↑.
(b) If p(D)Λ = 0, then p↑(D)Λ↓ = 0.

Proof. (a): Since Λ↓ is homogeneous, p(D)Λ↓ = 0 implies that p↑(D)Λ↓ = 0, and therefore
p↑ ∈ Λ↓⊥, hence also p↑ ∈ Λ⊥↑, by (4.8)Theorem. This implies the existence of some q ∈ Λ⊥ with
q↑ = p↑. Since Λ is D-invariant, it follows from (3.28)Corollary that q(D)Λ = 0.

(b): If p(D)Λ = 0, then p ∈ Λ⊥, hence p↑ ∈ Λ⊥↑ = Λ↓⊥, by (4.8)Theorem. Since Λ is
D-invariant, so is Λ↓ (by (3.17)Proposition), therefore p↑(D)Λ↓ = 0 by (3.28)Corollary. ♠

5. The least solution and its minimal degree property

Since any F ∈ Λ∗ is necessarily of the form 〈·, q〉|Λ for some q ∈ Π, our interpolation problem
(of finding p ∈ P with F = 〈·, p〉|Λ ) is essentially finite-dimensional, even if Λ is not. For, if such q

has degree k, then it is sufficient to find

p ∈ Pk = P ∩ Πk

such that

(5.1) 〈Tkλ, p〉 = 〈Tkλ, q〉 ∀λ ∈ Λ,

since

(5.2) 〈Tkλ, r〉 = 〈λ, Tkr〉 = 〈λ, r〉 ∀r ∈ Πk,

hence (5.1) implies that 〈λ, p〉 = 〈λ, q〉 = F (λ) for all λ ∈ Λ. Further, the solution p is unique (in
P ) if and only if Λ⊥ ∩ P = 0, while (with (5.2))

(5.3) Λ⊥ ∩ P = 0 ⇐⇒ (TkΛ)⊥ ∩ Pk = 0 ∀k.

Finally, the correctness of the (finite-dimensional) pair 〈TkΛ, Pk〉 is well-known to be equivalent to
the conditions

(5.4) dimTkΛ ≤ dimPk, (TkΛ)⊥ ∩ Pk = 0.

Thus, having (5.4) hold for every k is a sufficient condition for the correctness of 〈Λ, P 〉, and we
have proved the following lemma.

(5.5) Lemma. Let P and Λ be subspaces of Π and Π′, respectively, which satisfy

(5.6) dim TkΛ ≤ dimPk, ∀k,

with Pk := P ∩ Πk. Then the following are equivalent:

(a) 〈Λ, P 〉 is correct;

(b) Λ⊥ ∩ P = 0;

(c) For all k, (TkΛ)⊥ ∩ Pk = 0;

(d) For all k, 〈TkΛ, Pk〉 is correct.
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(5.7) Corollary. If P and Λ are homogeneous subspaces of Π and Π′, respectively, then the

following conditions are equivalent (even without the explicit assumption (5.6)).

(a) 〈Λ, P 〉 is correct;

(b) For all k, 〈Λk, Pk〉 is correct;

(c) For all k, 〈Λ ∩ Π0
k, P ∩ Π0

k〉 is correct.

Proof. Note that TkΛ = Λk for a homogeneous Λ, hence (b) here is (d) of (5.5)Lemma.
We already observed that (d) of (5.5)Lemma implies (a) for arbitrary Λ and P . For the converse,
it is sufficient to prove that (a) implies (5.6). So assume that dimΛk > dimPk for some k. Then
it follows that Λk contains some nontrivial λ which vanishes on Pk. By the homogeneity of P ,
it therefore vanishes on all of P , yet belongs to Λ by the homogeneity of Λ. Thus 〈Λ, P 〉 is not
correct.

For the equivalence of (b) and (c), note that the correctness of 〈Λk, Pk〉 is equivalent to the
invertibility of the Gramian matrix (〈λi, pj〉)i,j for some (hence, any) bases (λi)i and (pj)j for
Λk and Pk, respectively. By taking, in particular, homogeneous bases, ordered by degree, such a
Gramian becomes block-diagonal, hence invertible if and only if these diagonal blocks are invertible.

♠
(5.8) Theorem. For any subspace Λ of Π′, Λ↓ ∈ IP(Λ).

Proof. By (4.4)Proposition, P := Λ↓ satisfies (5.6). Hence, by (5.5)Lemma, it suffices to
prove that Λ⊥ ∩ Λ↓ = 0. Let p ∈ Λ⊥ ∩ Λ↓. Since Λ↓ is homogeneous, p↑ ∈ Λ↓, hence there exists
λ ∈ Λ such that λ↓ = p↑. By assumption 〈λ, p〉 = 0, hence, by (4.6)Lemma, 〈p↑, p↑〉 = 〈λ↓, p↑〉 = 0,
which implies that p = 0. ♠

If

dimTkΛ < dimPk

for some k, then Pk contains some nontrivial p ∈ (TkΛ)⊥, and, since p ∈ Πk, it follows (from (5.2))
that p ∈ Λ⊥, therefore p ∈ (Λ⊥∩P )\0, showing that 〈Λ, P 〉 is not correct in this case. Consequently,
having

(5.9) dim TkΛ ≥ dimPk

hold for every k is a necessary condition for the correctness of 〈Λ, P 〉. Since P = Λ↓ is a solution
(by (5.8)Theorem) for which equality holds in (5.9) for all k (by (4.4)Proposition), we conclude
that Λ↓ is minimally correct for Λ in the sense of (3.6)Definition.

(5.10) Theorem. For every subspace Λ of Π′, Λ↓ is a minimal-degree solution.

Further, P ∈ IP(Λ) is in MIP(Λ) if and only if

(5.11) dim Pk = dim(Λ↓)k, ∀k.

We now show that all minimal-degree solutions can be characterized entirely in terms of Λ↓.
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(5.12) Theorem. Let Λ be a subspace of Π′, and P be a subspace of Π that satisfies the minimal-

degree conditions (5.11). Then the following conditions are equivalent:

(a) P ∈ IP(Λ);
(b) Λ⊥ ∩ P = 0;

(c) Λ↓⊥ ∩ P = 0.

Proof. The equivalence (a)⇐⇒(b) was already established in (5.5)Lemma.
(b)=⇒(c): If Λ↓⊥ ∩ P 6= 0, then it would contain some p of degree k ≥ 0. Choose (λi)i ⊂ Λ

such that (λi↓)i is a basis for Λ↓. By (5.5)Lemma, (b) implies that 〈Tk−1Λ, Pk−1〉 is correct, while,
by (4.5)Lemma (with Λ and Λ↓ replaced by Tk−1Λ and (Λ↓)k−1 respectively), (Tk−1λi)ordλi<k are
linearly independent. hence, we can find q ∈ Pk−1 such that

〈λi, q〉 = 〈Tk−1λi, q〉 = 〈λi, p〉 ∀ ordλi < k,

the first equality since deg q < k. Further, if ordλi ≥ k, then 〈λi, q〉 = 0 (since deg q < k), while
〈λi, p〉 = 〈λi↓, p〉 = 0 (since deg p = k and by choice of p, respectively), thus 〈λi, q〉 = 〈λi, p〉 also in
this case. We thus conclude that p− q ∈ ⋂

i kerλi, which implies, by (4.5)Lemma, that p− q ∈ Λ⊥.
This contradicts assumption (b), since deg p > deg q, and therefore p − q ∈ P\0.

(c)=⇒(b): This is proved analogously, but with λi and λi↓ interchanged. In particular,
(4.5)Lemma is not needed for this implication. ♠

We note for completeness that any of the possible four conditions of the form M ∩ Q = 0,
with M one of Λ or Λ↓, and Q one of P or P ↑, is equivalent to the correctness of 〈Λ, P 〉 under the
minimal-degree conditions (5.11).

(5.13)Corollary. Let Λ and P be subspaces of Π′ and Π respectively, satisfying the minimal-

degree conditions (5.11). Then Λ⊥ ∩ P = 0 ⇐⇒ Λ↓⊥ ∩ P = 0 ⇐⇒ Λ⊥ ∩ P ↑ = 0 ⇐⇒
Λ↓⊥ ∩ P ↑ = 0.

Proof. The first and last equivalence are special cases of (5.12)Theorem. Further, Λ↓⊥ ∩
P ↑ = 0 implies Λ⊥∩P = 0 by (4.6)Lemma. It is therefore sufficient to prove that Λ↓⊥∩P = 0 implies
that Λ↓⊥ ∩P ↑ = 0, and this we do by an argument similar to that for the equivalence (b)⇐⇒(c) of
(5.12)Theorem. For this, let (λi)i be a homogeneous basis for Λ↓ and let p ∈ Λ↓⊥ ∩ P ↑. If p 6= 0,
then, since Λ↓⊥∩P ↑ is homogeneous, we may assume without loss that p is homogeneous, hence that
p = r↑ for some r ∈ P with deg r =: k ≥ 0. By (5.5)Lemma, our assumption would then provide
some q ∈ Pk−1 so that 〈λi, q〉 = 〈λi, r〉 for all ordλi < k, while 〈λi, q〉 = 0 = 〈λi, r↑〉 = 〈λi, r〉 for
all ordλi ≥ k. Consequently, r − q would be a nontrivial element of Λ↓⊥ ∩ P . ♠

In the remainder of this section, we examine certain relations among the various elements of
IP(Λ). In particular, we take advantage of the fact that a polynomial space Q is also a subspace
of Π′ to consider conditions under which P ∈ IP(Q) for P, Q ∈ IP(Λ). This also gives us an
opportunity to examine the related question of whether the algebraic dual Q′ of a polynomial
space Q is representable by a polynomial space. Since Q′ is much richer than its w∗-dual in case
dimQ 6< ∞, we actually cannot hope to represent such Q′ by some P ⊂ Π. But, since the algebraic
dual of a polynomial space is not as rich as the algebraic dual of an arbitrary subspace Λ if Π′, we
can hope that some subspace P of Π is w∗-densely imbedded into Q′ by the map

(5.14) P → Q′ : p 7→ p|Q
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which carries p ∈ P to the linear functional p|Q on Q given by

(5.15) p|Q : Q → IR : q 7→ 〈q, p〉.

If this is the case, then we say that P is dual to Q. Our results concerning polynomial interpolation
readily yield conditions on P to be dual to a given Q. In addition, such considerations throw further
light on the special role played by the least solution in the set of all minimal solutions and in the
set of all homogeneous solutions.

(5.16) Lemma. Let P and Q be subspaces of Π. If P ∈ IP(Q), then P is dual to Q.

Proof. Since P ∈ IP(Q), we have Q⊥∩P = 0, hence the map p 7→ p|Q is 1-1 on P . Further,
to show that P|Q is w∗-dense in Q′, observe that, since Q is polynomial, there exists, for any λ ∈ Q′,
some rk ∈ Πk so that rk|Q = λ on Qk, k = 1, 2, . . ., hence λ is the w∗-limit of rk|Q as k → ∞. Since
P ∈ IP(Q), there exists a corresponding sequence (pk)k in P with pk|Q = rk|Q for all k. ♠

The converse does not hold in general since the w∗-closure of P|Q may well contain polynomials
not in P . For example, with P the linear span of the univariate polynomials pk := 1 + ()k,
k = 1, 2, . . ., and Q = Π, the linear functional δ0 (represented by p = 1) is in the w∗-limit of
P ⊂ Π′, hence so is all of Π, the latter being obviously dense in Π′, and therefore P is dual to Π
in the above sense. On the other hand, 〈Π, P 〉 fails to be correct, since there is no p ∈ P for which
〈p, ·〉 = δ0 even though δ0 ∈ Π′.

In the next two results, we study in greater detail the above duality notion, as well as the
interpolation problem IP(Q) for a polynomial Q.

(5.17) Proposition. Let P and Q be polynomial spaces satisfying the conditions

(5.18) dimTkQ ≤ dimPk, ∀k ∈ ZZ+.

Then the following conditions are equivalent:

(a) 〈Q, P 〉 is correct (i.e., P ∈ IP(Q));

(b) P is dual to Q;

(c) 〈TkQ, Pk〉 is correct for every k ∈ ZZ+.

Proof. The equivalence of (a) and (c) is obtained by substituting Λ = Q in (5.5)Lemma,
and using the equivalence of (a) and (d) there. Also, assuming (b), we get Q⊥ ∩ P = 0, and this
implies (a) here because of the implication (b) =⇒ (a) in (5.5)Lemma. Finally, the implication
(a) =⇒ (b) holds even without the aid of (5.18), as is proved in (5.16)Lemma. ♠

More can be said in case P and Q are homogeneous:

(5.19) Corollary. Let P and Q be homogeneous subspaces of Π. Then conditions (a), (b), and

(c) of (5.17)Proposition are equivalent. Furthermore, P is dual to Q if and only if Q is dual to P .

Also, P ∈ IP(Q) if and only if Q ∈ IP(P ).
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Proof. The equivalence of (a) and (c) was already established in (5.7)Corollary. Further,
(c) implies (5.18), hence implies (b), by (5.17)Proposition. Thus, by the same proposition, it suffices
to prove that (b) implies (5.18). For this, assume by way of contradiction that dimTkQ > dimPk

for some k. Then it follows that TkQ contains some nontrivial q perpendicular to Pk, hence to all
of P , by the homogeneity of P . Further, this q is in Q by the homogeneity of Q. Since q is not
zero, there exists F ∈ Q′ with Fq = 1, and no such F can be in the w∗-closure of P|Q , hence P

cannot be dual to Q.

Finally, since Q is homogeneous, TkQ = Qk, and hence condition (c) of (5.17)Proposition is
symmetric in P and Q, and we may change the roles of P and Q in this condition. Thus, from the
equivalence of the three conditions in (5.17)Proposition, we get the rest of the claim. ♠

We showed in (5.12)Theorem that Λ↓ can be used to single out MIP(Λ) in the collection of all
polynomial spaces satisfying the minimal degree conditions (5.11). The next corollary shows that
Λ↓ also singles out all homogeneous elements of MIP(Λ) among all polynomial spaces.

(5.20) Corollary. Assume that P is a homogeneous subspace of Π and Λ is a subspace of Π′.
Then the following conditions are equivalent:

(a) P ∈ MIP(Λ);

(b) P ∈ IP(Λ↓) (⇐⇒ Λ↓ ∈ IP(P ));

(c) P is dual to Λ↓ (⇐⇒ Λ↓ is dual to P ).

Proof. The equivalence of (b) and (c) is obtained by substituting Q = Λ↓ in (5.19)Corollary.

Assume (b). First, the implication (a) =⇒ (c) of (5.19)Corollary (with Q := Λ↓ and with
TkQ = Qk by the homogeneity of Q) shows that 〈Λ↓k, Pk〉 is correct for every k, in particular
dimΛ↓k = dimPk for every k. Second, the assumption here guarantees that Λ↓⊥ ∩ P = 0. Em-
ploying the implication (c) =⇒ (a) in (5.12)Theorem, we obtain that P ∈ MIP(Λ), which is (a)
here.

Finally, assume (a). The implication (a) =⇒ (c) in (5.12)Theorem shows that Λ↓⊥ ∩ P = 0,
but then the implication (b) =⇒ (a) there (with Λ replaced by Λ↓) shows that P ∈ IP(Λ↓), which
is (b) here. ♠

The above corollary states that MIP(Λ) and IP(Λ↓) contain the same homogeneous spaces.
It should be clear that, for any homogeneous Q other than Λ↓, it is never true that MIP(Λ) and
IP(Q) contain the same homogeneous spaces, since this would mean that IP(Λ↓) and IP(Q) contain
the same homogeneous spaces, and this is false, by (5.7)Corollary: Indeed, (5.7)Corollary implies
that, for a homogeneous Q, for any k and any algebraic complement C (in Π0

k) of the orthogonal
complement of Q ∩ Π0

k (in Π0
k), we obtain a homogeneous P ∈ IP(Q) by taking any homogeneous

space in IP(Q) but replacing its kth homogeneous part by C. Thus, any algebraic complement of
the orthogonal complement of Q ∩ Π0

k occurs as P ∩ Π0
k for some homogeneous P ∈ IP(Q). This

shows that the homogeneous spaces in IP(Q) determine the orthogonal complement of Q ∩ Π0
k (in

Π0
k), hence determine Q ∩ Π0

k for every k, therefore determine Q.
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6. The D-invariance case

In the case of the Lagrange interpolation problem IP(Θ), the linear functional space is the
exponential space ExpΘ, hence is always D-invariant. The D-invariance of the linear functional
space is equivalent to Λ⊥ being an ideal, and thus allows us to employ some elements of ideal theory
for the analysis of Λ⊥. This point is pursued in the present section.

We begin with some general remarks about D-invariant subspaces of Π′.

(6.1) Proposition. Let Λ be a subspace of Π′. Consider the following:

(a) Λ is D-invariant;

(b) Λ⊥ is an ideal (in Π).

Then (a) =⇒ (b), and, if Λ is closed, then (b) =⇒ (a) as well.

Proof. For α ∈ ZZs
+, we consider the map

(6.2) χα : Π → Π : p 7→ ()αp.

Since 〈λ, ()αp〉 = 〈Dαλ, p〉 for every p ∈ Π and λ ∈ Π′, by (2.3), the map χα is the transpose of
the map Dα : Π′ → Π′. This implies that Λ is an invariant subspace of Dα if and only if Λ⊥ is an
invariant subspace of χα (with the “if” implication making use of the fact that Λ = Λ⊥⊥, namely
that Λ is closed). In particular, Λ is D-invariant, (i.e., invariant under all possible Dα) if and only
if Λ⊥ is invariant under all possible χα , i.e., is an ideal. ♠

In general the annihilator Λ⊥ of a given linear functional space Λ is infinite-dimensional, hence
a characterization of Λ in terms of its annihilator requires infinitely many conditions. The D-
invariance assumption changes the situation: since Λ⊥ is a polynomial ideal, it is finitely generated,
say by G ⊂ Π. The finitely many polynomials in G characterize the (closure of the) original space
Λ, if we regard them as differential operators rather than linear functionals. Precisely, for G ⊂ Π,
defining

kerG := {λ ∈ Π′ : g(D)λ = 0, ∀g ∈ G},
we have

(6.3) Proposition. For a subset G of Π, let IG be the ideal (in Π) generated by G. Then

(6.4) kerG = IG
⊥.

In addition, p ∈ IG if and only if the differential operator p(D) vanishes on kerG.

Proof. For λ ∈ Π′ and with Ip := pΠ,

(6.5)

p(D)λ = 0

⇐⇒ 〈p(D)λ, ()α〉 = 0, ∀α ∈ ZZs
+

⇐⇒ 〈λ, ()αp〉 = 0, ∀α ∈ ZZs
+

⇐⇒ λ ∈ Ip
⊥,

where the equivalence of the second and third statements is a consequence of (2.3). Thus (6.4)
follows from the fact that λ ∈ IG

⊥ if and only if λ ∈ Ip
⊥ for all p ∈ G.
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The other statement follows from (3.28)Corollary, since kerG is D-invariant. ♠
The linkage between kernels of differential operators and annihilators of linear functionals that

was obtained in (6.3)Proposition allows us to convert some of the results of section 4 to the present
context.

The following is a rewrite of (4.11)Theorem in the language of this section.

(6.6) Corollary. Let G be a polynomial set, and p a polynomial.

(a) If p(D)(kerG↓) = 0, then q(D)(kerG) = 0, for some q ∈ Π with q↑ = p↑;
(b) If p(D)(kerG) = 0, then p↑(D)(kerG↓) = 0.

Next, substituting P = IG into (4.8)Theorem (and using (6.4)), the following corollary is
obtained from (6.3)Proposition.

(6.7) Corollary. Let IG be the ideal generated by the subset G of Π. Then

(6.8) (kerG)↓ = (IG)↑⊥.

The above corollaries (which were first established in [BR2]) are useful tools in the analysis
of certain interpolation problems, and, moreover, admit important applications in other areas of
Approximation Theory (e.g., box splines). We first comment on the connection of (6.6)Corollary
to polynomial interpolation.

Suppose that our original polynomial interpolation problem is reversed. Rather than having the
linear functional space Λ as given, we hold a (D-invariant and, say, finite-dimensional) polynomial
space P , and seek (say, Lagrange) interpolation problems IP(Θ) whose least solution ΠΘ coincides
with the given P . Since IP(Θ) is always homogeneous, we must assume that so is P . Assume
that, further, a collection F of polynomials for which kerF = P has been identified (the case
might be that P is not known explicitly and is a priori defined as kerF for some F ⊂ Π). Since
P⊥ is homogeneous, we may assume without loss that all the polynomials in F are homogeneous
(otherwise, each one of them can be replaced by its homogeneous components). Now, we perturb
F in following way: with each h ∈ F we associate g ∈ Π that satisfies g↑ = h, thus obtaining a
new set G of (possibly) non-homogeneous polynomials. By construction, F ⊂ (IG)↑, hence also
IF ⊂ (IG)↑, and hence

(kerF = ) IF ⊥ ⊃ (IG)↑⊥.

Combining this with (6.3)Proposition and (4.8)Theorem, we arrive at the following.

(6.9) Corollary. Let F be a set of homogeneous polynomials, and let G ⊂ Π be such that

F ⊂ {g↑ : g ∈ G}. Then

(6.10) kerF ⊃ (kerG)↓.

Since we are assuming that P = ker F is finite-dimensional, so is (kerG)↓. Moreover, in order
to get equality in (6.10), it suffices, in view of (4.4)Proposition (for the choice Λ := kerG), to show
that dimker F ≤ dimker G.
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If only F and G are known (i.e., if the original polynomial space P is known only implicitly,
i.e., is defined as kerF ), it may be hard to estimate either dimkerF or dimker G. On the other
hand, it might be easier to find (at least some of) the exponentials eθ in kerG. This is so, since
eθ ∈ kerG if and only if θ is a common zero for the polynomials in G, (equivalently, the point θ

lies in the (affine) algebraic variety of the ideal IG.) If G vanishes on some Θ ⊂ IRs, then each of
the exponentials eθ, θ ∈ Θ, lies in kerG, and we get the simple estimate dim kerG ≥ #Θ. These
observations lead to

(6.11) Corollary. Let F be a homogeneous polynomial set, and G a polynomial set satisfying

F ⊂ {g↑ : g ∈ G}. Let Θ be a finite set of common zeros of G. Then

(a) kerF ⊃ ΠΘ; in particular dimker F ≥ #Θ(= dimΠΘ).
(b) If dim kerF = #Θ, then

(b1) kerG = ExpΘ := span{eθ}θ∈Θ;

(b2) kerF is the least solution for the Lagrange interpolation problem IP(Θ), i.e., kerF = ΠΘ.

The last corollary admits various applications. As a first setting, assume that a (finite-
dimensional) polynomial space is defined as the joint kernel kerF of some homogeneous differential
operators. The first part of (6.11)Corollary provides a way to obtain a lower bound for the dimen-
sion of kerF in terms of the cardinality of the variety of the ideal IG. This results ([BR2]) in a
painless derivation of the lower bound for the dimension of the space Π(M) of all polynomials in
the span of the integer translates of a box spline M . If G is chosen in a way that also (b) is valid,
one obtains a way to construct a basis for kerF : if Θ is known and ker F = ΠΘ, then we only
have to apply one of the algorithms ([BR1], [BR3]) that compute ΠΘ from Θ. This leads ([BR2])
to an algorithmic way to construct a basis for the above-mentioned Π(M), by an application of
these “least map algorithms” to the (explicitly known) exponential space in the span of the integer
translates of a suitably chosen exponential box spline.

We mention in passing that, in [BDR], (6.11)Corollary is exploited in a different way. The
main result of [BDR] shows that a certain explicitly known polynomial space P (of significance
in box spline theory) is kerF for a set F of very simple polynomials (each of which is a power
of a directional derivative). Perturbing the polynomials in F in a suitable way, we obtain there
a polynomial set G whose common zero set Θ constitutes the integer points in the support of a
box spline. It then follows from (6.11)Corollary that P = ΠΘ. The various known properties of P

(e.g., its homogeneous dimensions) provide in this way a better understanding of the interpolation
problem IP(Θ) (which was previously considered in [DM]), leading thereby to some optimality
results for box splines.

When we want to adopt such an approach in general, we encounter at least two essential
difficulties. In the first place, for the given D-invariant homogeneous space P , we need to find a set
F of reasonably simple polynomials such that kerF = P . Then, we need to find a way to obtain a
perturbed set G with (at least) dimker F common zeros. Even then, there is no guarantee for the
resulting interpolation problem to be of any interest.
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7. Reduction to the Lagrange interpolation problem

Finding the space ΠΘ that solves the Lagrange interpolation problem associated with the finite
Θ may appear to be very hard in general. Nevertheless, the results of the previous section exhibit
the fact that certain tools and observations can be applied to facilitate the study of D-invariant
interpolation problems, and this is particularly true for the Lagrange interpolation problem because
of its explicit structure. It is therefore useful, especially for an interpolation problem IP(Λ) which
is not D-invariant, to identify the space Λ↓ with a certain ΠΘ space, or one of its subspaces.
We describe in this section a certain effort in this direction, and discuss some specific examples
corresponding to this setting.

We start with the following simple fact:

(7.1) Proposition. Assume that M↓ ∩ N↓ = 0 for some subspaces M, N ⊂ Π′. Then M + N is

direct, and

(7.2) (M + N)↓ = M↓ ⊕ N↓.

Proof. This is a consequence of (4.5)Lemma, but here is a direct proof. If λ ∈ M∩N, then
λ↓ ∈ M↓ ∩ N↓, hence λ↓ = 0, hence also λ = 0, and the sum M + N is indeed direct. Further, the
sum M↓ +N↓ is direct by assumption, and is included in (M+N)↓, by the monotonicity of the least
map (cf. (3.5)).

To prove the opposite inclusion, note that since M↓ ∩ N↓ = 0, we must have

ord(µ + ν) = min{ordµ, ordν}

for µ ∈ M and ν ∈ N, since otherwise µ↓ + ν↓ = 0 and hence µ↓ ∈ M↓ ∩ N↓. It follows then that
(µ + ν)↓ ∈ {µ↓, ν↓, µ↓ + ν↓} ⊂ M↓ + N↓. ♠

Next, we discuss the following instructive example.

(7.3) Example. Let s = 2 and assume that Θ is a finite set in the right half plane. We use here
(u, v) for the generic point in IR2. We associate with each θ ∈ Θ the line integral

`θ : p 7→
∫ θ1

−θ1

p(t, θ2) dt,

i.e., each integration segment is horizontal and symmetric across the v-axis. The corresponding
generating function is then (up to a multiplicative constant) `θ

∨(u, v) = eθ2v sinh(θ1u)
u . In view of

(3.9)Proposition, we may obtain Λ↓ in the form M↓/u, with M∨ the exponential space

(7.4) M∨ := span{(u, v) 7→ eθ2v sinh(θ1u)}θ∈Θ.

This space has dimension #Θ and is a subspace of ExpT, with T := Θ ∪ Θ′, and Θ′ being the
image of Θ under reflection across the v-axis. Furthermore, the monomials appearing in the power
expansion of each of the basis functions of M∨ in (7.4) contain exclusively odd powers of u. On
the other hand, defining N by

N∨ := span{(u, v) 7→ eθ2v cosh(θ1u)}θ∈Θ,
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we get another subspace of Λ, and all the monomials appearing in the power expansion of any
ν ∈ N have only even powers of u. Hence M↓ ∩ N↓ = 0. Since M + N = ExpT, we obtain from
(7.1)Proposition that ΠT = (ExpT)↓ = M↓ ⊕N↓, which implies that M↓ consists of all polynomials
in ΠT which are odd in u. Application of (3.9)Proposition then yields the following:

Λ↓ is the subspace of ΠT/u consisting of all polynomials which are even functions in u.

Assume further that Θ here lies on the right unit semicircle. Then T lies on the unit circle,
and (3.26)Theorem implies that ΠT consists of harmonic polynomials. Further, since #T is even
(=2#Θ =: 2n), ΠT contains all harmonic polynomials in Πn−1 and one homogeneous harmonic
polynomial of degree n. The description of Λ↓ given in the previous paragraph thus implies that
Λ↓ ∩ Πn−2 is spanned by the polynomials

Im(iu − v)k

u
, k = 1, 2, ..., n − 1.

Since dim Λ↓ = #Θ = n, we must have an additional polynomial in the space, necessarily of degree
n− 1, namely the polynomial Im(iu−v)n

u . Since the space of all homogeneous polynomials of degree
n in ΠT has dimension 1, it is necessarily spanned by Im(iu − v)n, regardless of the distribution
of Θ. Note that we have obtained a complete description of ΠT for T = Θ ∪ Θ′, and that ΠT

depends on #Θ, but not on the distribution of the original Θ. ♠
In the rest of the section, we consider spaces Λ which are the composition of a single univariate

power series with a collection of s-variate homogeneous polynomials. To avoid possible confusion
between the aforementioned univariate power series and elements of Π′(IRs), we use the letter ϕ

exclusively for the former. The setting is of interest, primarily since it includes every Lagrange
interpolation problem IP(Θ); there the univariate power series ϕ is the exponential function

e : t 7→ et,

and the homogeneous polynomials are the linear polynomials

x 7→ θx, θ ∈ Θ.

For a power series λ, we use Kλ to denote its support, i.e.,

(7.5) Kλ := {α ∈ ZZs
+ : α(λ) 6= 0},

with α(λ) the αth coefficient of λ; cf. (2.1). Thus, Kϕ ⊂ ZZ+, for any univariate ϕ. We assume
that the linear functional space Λ ⊂ Π′ is of the form

(7.6) Λ = span{ϕ ◦ g : g ∈ G},

where ϕ is some univariate power series and G ⊂ Π0
k for some k.

The basic observation concerning the setting (7.6) is recorded in the following proposition.
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(7.7) Proposition. Assume that Λ ⊂ Π′ is of the form (7.6). Then the space Λ↓ depends only on

G and Kϕ, hence is independent of the specific (non-zero) values {α(ϕ) : α ∈ Kϕ}.
Proof. Each homogeneous polynomial in Λ↓ has the form λ↓ for some λ :=

∑
g∈G cgϕ ◦ g.

Since the g’s are all homogeneous and of the same degree, say k, each ϕ ◦ g is graded in the form

(7.8) ϕ ◦ g =
∑

j∈Kϕ

j(ϕ)gj ,

where gj is homogeneous and of degree jk. This implies that the decomposition of λ into its
homogeneous terms takes the form

λ =
∑

j∈Kϕ

j(ϕ)rj ,

with rj being the homogeneous polynomial
∑

g∈G cgg
j , hence is independent of ϕ. Since, up to the

non-zero multiplicative constant j(ϕ), λ↓ is the nonzero rj of smallest j ∈ Kϕ, our claim follows.
♠

In view of this proposition, we make the following definition:

(7.9) Definition. Let G be a finite set of homogeneous polynomials, all of the same degree, and
let K be an arbitrary subset of ZZ+. We define

ΠK,G := (span{ϕ ◦ g : g ∈ G})↓,

with ϕ = ϕK some (any) univariate power series satisfying Kϕ = K. In case G = {θ·}θ∈Θ for some
Θ ⊂ IRs, we use

ΠK,Θ

rather than ΠK,G.
The space ΠK,G is well-defined by (7.7)Proposition, and ΠZZ+,Θ = ΠΘ. We record this in the

following corollary:

(7.10) Corollary. Let Θ ⊂ IRs be a finite set, and ϕ a univariate power series that satisfies

Kϕ = ZZ+. Then, for Λ := span{ϕ(θ·)}θ∈Θ, we have

(7.11) Λ↓ = ΠΘ.

The above corollary follows indeed from (7.7)Proposition, since Ke = ZZ+ for the univariate
exponential function e, and the functions {θ·}θ are all homogeneous and linear.

The next result provides information about the case when K forms an arithmetic progression,
i.e., the case when K = k +nZZ+ for some non-negative integers k, n. In this theorem we make use
of the polynomial space ΠΘ for a finite complex Θ ⊂ Cs, which is defined in the same way as in
the real case (the only difference being that ΠΘ, rather than ΠΘ itself, solves IP(Θ)). Also, for a
fixed positive integer n, we define on Cs the following equivalence relation

θ ∼ ϑ ⇐⇒ θ = ξϑ, for some ξ ∈ C with ξn = 1.

We denote by [θ] the equivalence class containing θ, and by Θ′ any subset of Θ ⊂ Cs which contains
exactly one representative from each equivalence class [θ], θ ∈ Θ.
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(7.12) Theorem. Let Θ be a finite subset of Cs, n be a positive integer and 0 ≤ k < n. Let ξ be

a primitive nth root of unity (say, ξ = e2πi/n). Set T := ∪n
j=1ξ

jΘ and K := Kk := k +nZZ+. Then

(a) ΠK,Θ = (Gk)↓, where Gk := span{gθ : θ ∈ Θ}, with

(7.13) gθ := gθ,k :=
n∑

j=1

ξ−kjeξjθ.

(b) If 0 6∈ Θ, then

(7.14) dimΠK,Θ = #Θ′ = #T/n.

In particular,

(b1) dimΠK,Θ = #Θ if and only if the sets {ξkΘ}n
k=1 are pairwise disjoint;

(b2) for real Θ, dimΠK,Θ = #Θ if and only if either n is odd, or else n is even and Θ∩(−Θ) =
∅.

(c) ΠK,Θ is spanned by all homogeneous polynomials in ΠT of degrees ∈ K.

Proof. Since ξ is primitive, {ξm}n
m=1 are the n different characters of the group ZZn, and

hence, for every non-negative m,

(7.15)
n∑

j=1

ξ−kjξmj 6= 0 ⇐⇒ k = m modn.

Since each of the homogeneous terms in the power expansion of gθ has the form

(θ·)l

l!

n∑
j=1

ξ−kjξlj ,

we conclude that
gθ =

∑
m∈ZZ+

c(m)(θ·)k+nm,

for some θ-independent non-zero coefficients c(m), and (a) follows from the definition of ΠK,Θ.
(b): The fact that #T = n#Θ′ readily follows from the observation that θ ∈ T iff [θ]∩Θ′ 6= ∅,

which implies that T = ∪θ∈Θ′ [θ]. Since, with gθ and Gk as above, gθ ∈ Exp[θ], we conclude that
{gθ}θ∈Θ′ are linearly independent. On the other hand, one checks that, for θ ∼ ϑ, the functions gθ

and gϑ are dependent (regardless of the underlying k). Therefore, dimGk = #Θ′, and hence, by
(4.4)Proposition, also dimΠK,Θ = #Θ′. This proves (7.14), which implies the rest of (b).

To prove (c), it suffices to show that ⊕n−1
k=0ΠKk,Θ = ΠT. By (a), Gk↓ = ΠKk,Θ. Also, it is clear

that gθ ∈ ExpT for every θ ∈ Θ, hence, Gk ⊂ ExpT, and, by the monotonicity of the least map,
ΠK,Θ ⊂ ΠT. On the other hand, the sum

n−1∑
k=0

ΠKk,Θ
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of subspaces of ΠT is direct, since each ΠKk,Θ is spanned by homogeneous polynomials of degrees
∈ Kk, and the sets K0, . . . , Kn−1 are pairwise disjoint, and, consequently,

(7.16) ⊕n−1
k=0ΠKk,Θ ⊂ ΠT.

If 0 6∈ T, then equality must hold in (7.16), since, by (b),

dimΠT = #T = n#Θ′ =
n−1∑
k=0

dimΠKk,Θ.

But this readily extends to the case when 0 ∈ T, since adding 0 to T adds constants to ExpT, hence
does not effect {Gk}n−1

k=1 , and increases dimG0 by 1, hence also increases dimΠK0,Θ by 1. ♠
Remark. The observation, just made at the end of the proof of (c) of (7.12)Theorem, implies that
also the exclusion of 0 from Θ in part (b) of (7.12)Theorem was for convenience. Addition of 0 to
the set Θ will increase dimΠK0,Θ by 1, and will leave all other ΠKk,Θ unchanged.

The following example provides some illustration for the last result.

(7.17) Example. Let Θ := {±θ} for some θ ∈ Cs\0 and let n = 2, k = 1. Then, by (7.12)Theorem,
dimΠ2ZZ+1,Θ = 1. Indeed, we find that the linear polynomial (θ·) is in Π2ZZ+1,Θ, yet no higher-
degree polynomial is in this space, since a dependence relation c1(θ·) + c2(−θ·) = 0 implies that
c1(θ·)j + c2(−θ·)j = 0 for every j ∈ 2ZZ + 1. ♠

We also note the following interaction of the spaces ΠnZZ+k,Θ with differentiation:

(7.18) Proposition. Let p be a homogeneous polynomial of degree m. Then, in the notations of

(7.12)Theorem,

p(D)ΠKk,Θ ⊂ ΠK(k−m)n ,Θ,

where jn ∈ {0, ..., n− 1} is the residue of j mod n.

Proof. It suffices to prove the result for p = ()α, |α| = m. Let gθ,k be as in (7.13). Then

Dαgθ,k = θα
n∑

j=1

ξ−(k−m)jeξjθ = θαgθ,(k−m)n
∈ G(k−m)n

.

Therefore, DαGk ⊂ G(k−m)n
, and thus combining (a) of (7.12)Theorem with (3.16) and (3.5), we

obtain
DαΠKk,Θ ⊂ (DαGk)↓ ⊂ (G(k−m)n

)↓ = ΠK(k−m)n ,Θ. ♠
We end this section with the following application of the above results.

(7.19) Example. Let {`θ}θ∈Θ be a finite set of line integrals of the form

`θ : p 7→
∫ b

a

p(η + tθ) dt,
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where θ ∈ Θ ⊂ IRs\0, η ∈ IRs, a, b ∈ IR , and η, a, b are θ-independent. In this case, the generating
function associated with `θ has the form

`θ
∨ = eη

ebθ − eaθ

(θ·) .

Set
Λ := span{`θ}θ∈Θ.

With ϕ the univariate function

ϕ : t 7→ ebt − eat

t
,

we observe that Λ∨ = eη span{ϕ(θ·) : θ ∈ Θ}. From (3.9)Proposition, we conclude that

Λ↓ = (span{ϕ(θ·) : θ ∈ Θ})↓,
and thus Λ↓ is of the form ΠKϕ,Θ. Since Kϕ = ZZ+ unless a = −b (we exclude the trivial case
a = b), in which case Kϕ = 2ZZ+, we thus conclude from (7.12)Theorem the following

(7.20) Corollary. In the terms just introduced,

Λ↓ =
{

ΠΘ, if a 6= −b;
(span{cosh(θ·) : θ ∈ Θ})↓, if a = −b.

The least space associated with the latter case consists of all even functions in Π(−Θ)∪Θ.
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