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The official definition of the foot of the continental slope seems to have been made
with univariate imagery in mind and without input from mathematicians.

Specifically, the image seems to be one of a profile, dropping from the flat of the
continental shelf steeply down the continental slope to meet, eventually, the rather flat rise
toward it. The point where they meet would be the foot, and it is, in this view, marked
by a rather fast change of the gradient, from steep to flat. In other words, the curvature
at that point (or, more precisely, small region) is maximally positive.

The resulting identification of these points with points of maximum positive normal
curvature in the surface which describes the sea bottom ignores the original imagery of a
profile. While the maximum normal curvature will be large at a well-defined foot, it can
also be large at other points.

Rather, to capture the original imagery, one might want to do the following. Let
z(x, y) be the depth (or height) of the sea bed at the point (x, y).
(i) Determine the direction in which the sea bed goes down at that point (x, y). This is

−Dz(x, y), with Dz the gradient, i.e.,

Dz := (Dxz,Dyz).

It is the direction perpendicular to the level line or contour line of the sea bed through
the point (x, y).

(ii) Determine the normalized second derivative of z in the direction of steepest descent
at (x, y). This is given by the number

(1) N := vt D2z v = v2

xDxxz + 2vxvyDxyz + v2

yDyyz,

with the second partials, Dxxz, Dxyz, Dyyz, of the function z all to be evaluated at
(x, y), and with

v = (vx, vy) := Dz/‖Dz‖

the normalized gradient of z at (x, y) (with ‖v‖2 := v2

x + v2

y).
The calculation of N is certainly easier than the calculation of the accepted surface

of maximum curvature (see below).
In addition, note that, for any v, the right-hand side of (1) gives the second directional

derivative of z in the direction v. Further, with v = Dz/‖Dz‖, we can rewrite (1) as

N =
(Dz)tHDz

(Dz)tDz
,

with

H :=

[
Dxxz Dxyz
Dyxz Dyyz

]
= D2z
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the Hessian of z. In other words, N is the Rayleigh Quotient

RH(v) :=
vtHv

vtv

for H, evaluated at v = Dz.
This gives an opportunity to compare use of this gradient-directed second deriva-

tive with that of the maximum curvature.
First, if by ‘curvature’ we mean nothing more than the second derivative in any par-

ticular normalized direction, then, by the argument just given, the maximum curvature
would be the maximum of the Rayleigh quotient of the Hessian, i.e., the maximum eigen-
value of H. In particular, if the gradient-directed second derivative is ‘large’, then so must
be this maximum ‘curvature’. On the other hand, this maximum ‘curvature’ may well be
‘large’ in places where the gradient-directed second derivative, i.e., the ‘curvature’ in the
gradient direction, is not large.

However, the surface of maximum curvature or SMC proposed in [VWH] as a
means for determining the foot of the continental slope is based on the actual curvature
of the surface

S : (x, y) 7→ (x, y, z(x, y)),

hence may be even further removed from the original intent of the definition of the foot of
the continental slope. Specifically, the SMC is obtained as

(x, y) 7→ (x, y,max{0,maxκ(x, y)}),

with maxκ(x, y) the maximum normal curvature of S at the point (x, y, z(x, y)). Ele-
mentary differential geometry applied to the particular surface S shows that the normal
curvature of S in the direction v equals the value at v of the Rayleigh quotient

K(v) := R
Ĥ,G

(v) :=
vtĤv

vtGv
=

vtHv

vtGv
/
√

(Dxz)2 + (Dyz)2 + 1,

with Ĥ the matrix of the second fundamental form for S, i.e.,

Ĥ = H/‖(−Dz, 1)‖,

and G the matrix of the first fundamental form for S, i.e.,

G = (DS)tDS =

[
1 + (Dxz)2 DxzDyz
DyzDxz 1 + (Dyz)2

]
.

For the specific choice v = Dz of the gradient direction, one computes

K(Dz) = N/‖(−Dz, 1)‖3,
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thus affording a simple comparison between the gradient-directed second derivative, N ,
and the SMC, maxv K(v). In particular, since ‖(−Dz, 1)‖ may vary widely, there may
be no connection between the maxima of N and those of the SMC, making the use of
the SMC even more doubtful (for the purpose of determining the foot of the continental
slope). In any case, since either way uses second-derivative information, only a carefully
smoothed version of the original data has any hope of leading to a correct identification of
the foot of the continental slope.

Since both Ĥ and G are real symmetric, the maximum normal curvature at a point is
the larger of the two principal curvatures at that point, i.e., the larger of the two eigenvalues
κ1, κ2 of the eigenvalue problem

Ĥ − κG.

Equivalently, maxκ is the larger of the two solutions of the quadratic equation

det(Ĥ − κG) = 0,

which, on expanding the determinant and collecting terms according to powers of κ, gives
exactly the equation (2) of [VWH] (as it should).

Finally, simple real examples show that the original definition of the foot of the con-
tinental slope does not always cover reality since the passage from steep decline to flattish
continental rise or sea bottom can also be quite gradual, with no particular area of sharp
change of gradient. For such a situation, an alternative definition seems needed.
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