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Abstract. A compactly supported radially symmetric function Φ : R
d → R is said to have

Sobolev regularity k if there exist constants B ≥ A > 0 such that the Fourier transform of Φ

satisfies
A(1 + ‖ω‖2)−k ≤ bΦ(ω) ≤ B(1 + ‖ω‖2)−k, ω ∈ R

d.

Such functions are useful in radial basis function methods because the resulting native space
will correspond to the Sobolev space W k

2
(Rd). For even dimensions d and integers k ≥ d/4, we

construct piecewise polyharmonic radial functions with Sobolev regularity k. Two families are

actually constructed. In the first, the functions have k nontrivial pieces while in the second,
exactly one nontrivial piece. We also explain, in terms of regularity, the effect of restricting

Φ to a lower dimensional space R
d−2ℓ of the same parity.

1. Introduction

At the heart of radial basis function methods (see [5] and [21]), lies a radially symmetric
function Φ : R

d → R whose Fourier transform defines an inner-product space of functions
NΦ, called the native space (see [14]), with norm (or seminorm) ‖ · ‖Φ. In case Φ ∈ L1(R

d),
which is the case of interest here, the above definitions and resulting theory are almost
entirely accessible within the framework of intermediate real analysis (eg. [11] or [12]).
The Fourier transform of a function g ∈ L1(R

d) is defined by

ĝ(ω) = (2π)−d/2

∫

Rd

g(ω)e−ıω·x dx,

and it is well known that ĝ ∈ C(Rd), with lim‖ω‖→∞ |ĝ(ω)| = 0. In case ĝ ∈ L1(R
d), it

follows that g is continuous and can be recovered via the inversion formula

g(x) = (2π)−d/2

∫

Rd

ĝ(ω)eıx·ω dω, x ∈ R
d.
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If Φ̂ ≥ 0 on R
d, then NΦ is defined to be the space of all functions g ∈ L2(R

d) satisfying

‖g‖2
Φ :=

∫

Rd

|ĝ(ω)|2 /Φ̂(ω) dω < ∞ (see [13] for the definition of the Fourier transform on

L2(R
d)). Schaback and his students Wu and Wendland saw a need for such functions Φ

which are compactly supported and easy to evaluate. Wu considered functions of the form
φ ◦ ρd, where ρd(x) :=

√
x2

1 + x2
2 + · · ·+ x2

d and φ(t) = p(t)χ
[0,1]

(t), p being a polyno-

mial. He constructed (see [23]) a family of such functions having prescribed smoothness
and nonnegative Fourier transform. Suspecting that the degree of his polynomials were
unnecessarily large, he posed the problem of finding polynomials p(t), of minimal degree,
such that φ ◦ ρd has a prescribed smoothness and a non-negative Fourier transform. As
a solution of this problem, Wendland (see [18]) constructed functions φd,ℓ = pd,ℓχ[0,1]

, for

integers d ≥ 1 and ℓ ≥ 0, such that φd,ℓ ◦ ρd has a nonnegative Fourier transform and
belongs to C2ℓ(Rd), the degree of the polynomial pd,ℓ being minimal. Other noteworthy
constructions are those of Buhmann [4], who constructed “single-piece” piecewise functions
of the form φ ◦ ρd, where φ = qχ

[0,1]
with q analytic on (0, 1], as well as several families

constructed by Gneiting (see [8] and the references therein). Recently, Al-Rashdan and
the author (see [2]) showed that the B-spline ψk, having simple knots at {±1,±2, . . . ,±k}
and a double knot at 0, has a positive Fourier transform (d = 1).

In applications, it is often desired that Φ be chosen so that the native space will equal
(with equivalent norms) the Sobolev space W k

2 (Rd) (see [1]). When this happens, we will
say that Φ has Sobolev regularity k; in case Φ = φ◦ρd, we say that φ (which is a univariate
function) has regularity (d, k). It follows from the definition of ‖ · ‖Φ, that Φ has Sobolev
regularity k if and only if there exist constants B ≥ A > 0 such that

(1.1) A(1 + ‖ω‖2)−k ≤ Φ̂(ω) ≤ B(1 + ‖ω‖2)−k, ω ∈ R
d.

In most applications, k is greater than d/2 (so that W k
2 (Rd) is a subspace of C(Rd)),

but the case 0 < k ≤ d/2 is also valid, provided one accesses functions g ∈ W k
2 (Rd)

by local averages, rather than point evaluations. Although Buhmann showed that his
functions have a positive Fourier transform, it is not known whether they satisfy (1.1).
But Wendland (see [19]) did subsequently prove that his function Φ = φd,ℓ ◦ ρd satisfies
(1.1) with k = ℓ+ (d+ 1)/2 (the case d = 1, ℓ = 0 is excluded as A = 0). It is unfortunate
that k = ℓ+ (d+ 1)/2 is not an integer when d is even, and this motivated Schaback [15]
to construct “single-piece” piecewise functions which, in even dimensions, satisfy (1.1) for
integers k > d/2. As for the B-spline ψk, it was shown that it has regularity (1, k) for
k = 1, 2, 3, . . . .

Having established several “dimension-walk” identities (see [22] and [23]), Wu has shown
that if one has in hand a base family of functions φk, having regularity (1, k) (respectively
(2, k)) then, provided certain conditions are satisfied, one can easily obtain functions hav-
ing regularity (1 + 2j, k) (respectively (2 + 2j, k)) for j = 1, 2, 3, . . . . The following is a
consequence of [23, Th. 3.3] (see also [20, Lemma 6]).

Theorem 1.1. Suppose ψ ∈ C1[0,∞) has compact support and regularity (d, k).

If lim
r→0+

1

r
ψ′(r) exists, then Dψ has regularity (d+ 2, k), where the operator D is defined by

(Df)(r) = −
1

r
f ′(r), r > 0.
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As an illustrative example, consider ψ(t) = (1 − 10t2 + 20t3 − 15t4 + 4t5)χ
(0,1]

(this is

Wendland’s function φ3,1) which has regularity (1, 2). Since ψ(1) = ψ′(1) = ψ′(0) = 0,
it follows that the hypothesis of Theorem 1.1 is satisfied and therefore Dψ = 20(1 − 3t +
3t2 − t3)χ

(0,1]
(this is φ5,0) has regularity (3, 2). But we cannot apply Theorem 1.1 again

since (Dψ)′(0) = −60 6= 0. One of the tasks taken up in the present contribution is that of
proving Wu’s dimension-walk identities under less restrictive assumptions. Using the ex-
tended version of Theorem 1.1 (see Corollary 5.5 or Theorem 6.1), it follows that D2ψ(t) =
60(t−1 − 2 + t)χ

(0,1]
, D3ψ(t) = 60(t−3 − t−1)χ

(0,1]
and D4ψ(t) = 60(3t−5 − t−3)χ

(0,1]
have

regularity (5, 2), (7, 2) and (9, 2), respectively. Although ψ and Dψ are piecewise polyno-
mials, the others are not. However, if we look instead at the multivariate radial function,
then we recognize that ψ ◦ ρ1, Dψ ◦ ρ3, D2ψ ◦ ρ5, D3ψ ◦ ρ7 and D4ψ ◦ ρ9 are all piecewise
polyharmonic radial functions. This observation suggests the following modification to Wu
and Wendland’s framework: rather than search amongst radial functions Φ = φ◦ρd whose
profile, φ, is piecewise polynomial, search instead amongst radial functions which are piece-
wise polyharmonic. When d is odd, this change of framework enlarges the search space
because if φ is a piecewise polynomial, then φ ◦ ρd is piecewise polyharmonic; however,
when d is even the search space has been substantially changed.

Definition 1.2. A compactly supported radially symmetric function Φ : R
d → R is called

piecewise polyharmonic if there exists a system of nodes 0 = r0 < r1 < r2 < · · · < rN <∞
and a positive integer n such that Φ(x) = 0 when ‖x‖ > rN and ∆nΦ = 0 on the annulus
{x ∈ R

d : rj−1 < ‖x‖ < rj} for j = 1, 2, . . . , N , where ∆ denotes the Laplacian operator.

It is known, see eg [9 p.435], that piecewise polyharmonic functions can be written as
Φ = φ ◦ ρd, where φ : (0,∞) → R is piecewise in a space Zd, defined (with t denoting a
positive real variable) as follows:

Z1 = span{1, t, t2, t3, . . .}, Z2 = span{1, log t, t2, t2 log t, . . .},
Z3 = span{t−1, 1, t, t2, t3, . . .}, Z4 = span{t−2, 1, log t, t2, t2 log t, . . .},

Z5 = span{t−3, t−1, 1, t, t2, t3, . . .}, Z6 = span{t−4, t−2, 1, log t, t2, t2 log t, . . . },

and in general Zd+2 = span{t−d}+Zd. Since a radial function f ◦ ρd belongs to L1(R
d) if

and only if
∫∞

0
td−1 |f(t)| dt <∞, it is straightforward to verify that compactly supported

piecewise polyharmonic functions always belong to L1(R
d).

The primary goal of the present contribution (sections 3,4) is to construct two families
of L-splines {ηk} and {γk} such that ηk ◦ρ2 and γk ◦ρ2 are compactly supported piecewise
polyharmonic radial functions with Sobolev regularity k. While ηk has k nontrivial pieces,
γk has one. Following these constructions we extend Wu’s dimension-walk identities (sec-
tion 5) and then apply them (section 6) to the base families {ηk} and {γk} to obtain larger
families {ηd,k} and {γd,k}, with d even, such that ηd,k ◦ρd and γd,k ◦ρd are piecewise poly-
harmonic radial functions with Sobolev regularity k. We also apply these dimension-walk
identities to the base family {φ1,k−1} for odd dimensions d.

A secondary goal is to give an interesting answer to the following question. Suppose we
have a radial function Φd = φ ◦ ρd having Sobolev regularity k. If d ≥ 3, what can be said
about the radial function Φd−2 = φ ◦ ρd−2? We will show (section 7) that if Φd−2 belongs
to L1(R

d−2), then Φd−2 has a stronger form of Sobolev regularity. This argument can be
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applied recursively and applies to the families addressed in section 6. Using this stronger
notion of Sobolev regularity, we are then able (section 8) to discuss the regularity of the
family of B-splines {ψk} mentioned above.

Throughout the sequel, the natural numbers are denoted by N = {1, 2, 3, . . .}, the
nonnegative integers by N0, and the integers by Z. When convenient, we employ variables
to define functions. Mathematically, a variable is simply the identity function defined on
some set. For example, in the definition of Zd given above, functions were defined using the
positive real variable t. Sometimes the domain of a variable is clear from the context, and
so it is not necessary to explicitly state its domain. When working within the Lebesgue
theory of functions defined almost everywhere, we adopt the usual convention that when

such a function f is equivalent (ie equal a.e.) to a continuous function f̃ , then we assume,

without mention, that f = f̃ everywhere.

2. Operators on profiles of radial functions

A radially symmetric function Φ : R
d → R can always be written as Φ = φ ◦ ρd, where

ρd(x) =
√
x2

1 + x2
2 + · · ·+ x2

d. We will refer to the function φ : (0,∞) → R as the profile
of Φ. Let Uloc be the space of locally integrable functions f : (0,∞) → R and for d ∈ N,
let Ud be the subspace of Uloc given by

Ud = {f ∈ Uloc :

∫ ∞

0

td−1 |f(t)| dt <∞}.

It is easy to see that a radially symmetric function Φ belongs to L1(R
d) if and only if

its profile belongs to Ud. It is known (see [17] p.155) that if Φ = φ ◦ ρd ∈ L1(R
d),

then the profile of its Fourier transform is the function Fdφ, where the linear operator
Fd : Ud → C(0,∞) is defined by

(2.1) (Fdφ)(r) = r1−
d
2

∫ ∞

0

φ(t)td/2J d
2
−1(rt) dt, r > 0.

Here Jν(t) =
∑∞

m=0
(−1)m

m!Γ(m+ν+1)
( 1
2
t)2m+ν denotes the Bessel function of the first kind. For

ν > −1, Jν ∈ C∞(0,∞) and satisfies |Jν(t)| = O(tν) as t → 0+ and |Jν(t)| = O(t−1/2) as
t → ∞. It follows from these that if ν ≥ −1

2 , then there exists a constant Cν such that
|Jν(t)| ≤ Cνt

ν , t ∈ (0,∞), and hence the integrand in (2.1) is integrable when φ ∈ Ud.

Although (Fdφ)(r) is only defined for r > 0, since Fdφ is the profile of Φ̂ ∈ C(Rd), it

follows that (Fdf)(0+) := limr→0+(Fdf)(r) = Φ̂(0). Other useful properties of the Bessel
functions are:

(2.2)

∂

∂t
Jν(rt) = −rJν+1(rt) +

ν

t
Jν(rt), ν > −1,

∂

∂t
(t−νJν(rt)) = −rt−νJν+1(rt), ν > −1

∂

∂t
Jν(rt) = rJν−1(rt) −

ν

t
Jν(rt), ν > 0,

∂

∂t
(tνJν(rt)) = rtνJν−1(rt), ν > 0.
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Our definition of Sobolev regularity (1.1), for a radial function Φ = φ◦ρd, can be formulated
in terms of its profile φ as follows.

Definition 2.1. Let d, k ∈ N. A function φ : (0,∞) → R has regularity (d, k) if φ ∈ Ud

and there exist constants B ≥ A > 0 such that

A(1 + r2)−k ≤ (Fdφ)(r) ≤ B(1 + r2)−k, r ∈ (0,∞).

Let U be the subspace of Uloc given by U = {f ∈ Uloc :
∫∞

1
t |f(t)| dt < ∞}, and let

ACloc be the space of functions f : (0,∞) → R which are locally absolutely continuous (ie
f is absolutely continuous on [a, b] whenever 0 < a < b < ∞). The reader is referred to
[11, chap. 5] or [12, chap. 7] for the concept of absolute continuity which is needed for
a proper statement of integration by parts: If f and g are absolutely continuous on [a, b],

then
∫ b

a
f(t)g′(t) dt = f(b)g(b)− f(a)g(a)−

∫ b

a
g(t)f ′(t) dt. For the functions encountered

in this article, it suffices to know that if f ∈ C(0,∞) is piecewise C1 (finitely many pieces),
then f ∈ ACloc.

The linear operators I : U → ACloc and D : ACloc → Uloc are defined by

(If)(r) =

∫ ∞

r

tf(t) dt and (Df)(r) = −
1

r
f ′(r).

We note that if d ≥ 2, then Ud is a subspace of U , and hence I is define on Ud.

Remark 2.2. The operators I and D appear, with a normalizing factor, in [10] where they
are called the montée and the descente.

For j ∈ Z, let vj , wj ∈ C∞(0,∞) be defined by

vj(t) =

{
tj if j ≥ 0

t2j+1 if j < 0
and wj(t) =





tj if j ≥ 0 is even

tj−1 log t if j > 0 is odd

t2j if j < 0

Note that the space Zd, defined in the introduction, can be expressed as Zd = span{vj :
j ≥ (1− d)/2}, when d is odd, and as Zd = span{wj : j ≥ (2− d)/2}, when d is even. The
action of the operator D on these functions is as follows:

Dvj =





−j vj−2 if j > 0

0 if j = 0

−(2j + 1)vj−1 if j < 0

, Dwj =





−w−1 if j = 1

−j wj−2 if j ≥ 2 is even

−(j − 1)wj−2 − wj−3 if j ≥ 3 is odd

−2j wj−1 if j ≤ 0

Remark 2.3. Let d ∈ N. It follows from the above that DZd = Zd+2. Moreover, if
φ ∈ C(0,∞) is piecewise in Zd (finitely many pieces) and has bounded support, then
φ ∈ ACloc and Dφ is piecewise in Zd+2. Conversely, if ψ : (0,∞) → R is piecewise in Zd+2

(finitely many pieces) and has bounded support, then ψ ∈ U and Iψ is piecewise in Zd

and is continuous on (0,∞).



6 PIECEWISE POLYHARMONIC RADIAL FUNCTIONS

3. A family of L-splines with k nontrivial pieces

In this section we construct the functions {ηk}, mentioned in the introduction, which
are piecewise in Z2 and have Sobolev regularity (2, k). To get a sense of where things are
headed, we display η1, η2, η3, which are defined on their support by: η1(t) = −(log t)χ

(0,1]
(t)

η2(t) =
1

3

{
4 log 2 + (log 2 − 3)t2 + 3t2 log t, t ∈ (0, 1]

(4 log 2 − 4) − 4 log t+ (log 2 + 1)t2 − t2 log t, t ∈ (1, 2]

η3(t) =
1

10





b1,0 + b1,2t
2 + b1,4t

4 − 10t4 log t, t ∈ (0, 1]

b2,0 + b2,1 log t+ b2,2t
2 + b2,3t

2 log t+ b2,4t
4 + b2,5t

4 log t, t ∈ (1, 2]

b3,0 + b3,1 log t+ b3,2t
2 + b3,3t

2 log t+ b3,4t
4 + b3,5t

4 log t, t ∈ (2, 3]

where b1,0 = −96 log 2 + 81 log 3, b1,2 = −96 log 2 + 36 log 3, b1,4 = 15 − 6 log 2 + log 3 and
{b2,j} = {45/2 − 96 log 2 + 81 log 3, 15,−96 log 2 + 36 log 3, 60,−15/2− 6 log 2 + log 3, 5},
{b3,j} = {−243/2 + 81 log 3,−81, 36 log 3,−36, 3/2 + log 3,−1}.
It is a correct impression that ηk is piecewise in span{w0, w1, . . . , w2k−1} and has k non-
trivial pieces with nodes 0, 1, 2, . . . , k. Note that the first piece in η2 does not employ
w1(t) = log t and the first piece in η3 employs neither w1 nor w3(t) = t2 log t. This too is
a correct impression. Defining, for m odd,

Xm = span{wj : j = 0, 1, , . . . , m} and X̃m = span{wj : j = 0, 2, 4, . . . , m− 1;m},

we can say that the first piece of ηk belongs to X̃2k−1 while the other pieces belong to
X2k−1.

Definition 3.1. For n, k ∈ N, let Wn,k be the space of piecewise functions f : (0,∞) → R,
with nodes 0, 1, 2, . . . , k, such that the first piece of f (supported on (0, 1]) belongs to

X̃2n−1 and the remaining pieces belong to X2n−1, with f = 0 on (k,∞). The coefficient
of w2n−1 in the first piece of f is called the singular coefficient of f .

For example, η1 belongs to W1,1 with singular coefficient −1, η2 belongs to W2,2 with
singular coefficient 1 and η3 belongs to W3,3 with singular coefficient −1. It is easy to
verify that dimWn,k = (n+1)1+2n(k−1) and, in particular, that dimWk,k = 2k2−k+1.
We will be interested in the subspace Wk,k ∩ C2k−2(0,∞). Since it is obtained from Wk,k

by imposing k(2k − 1) = 2k2 − k continuity conditions, it follows from standard linear
algebraic considerations that its dimensions is at least 1. We will show, somewhat down
the road, that this dimension in fact equals 1, but for the time being we leave open the
possibility that the dimension exceeds 1.

For a function f ∈ C1(0,∞), with f ′ ∈ ACloc, we define the operator L by

(Lf)(r) = f ′′(r) +
1

r
f ′(r), r > 0.

The operator L is related to the Laplacian operator, in R
2, in that ∆(f ◦ ρ2) = (Lf) ◦ ρ2.

We leave the proof of the following as an exercise in integration by parts.
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Theorem 3.2. Let f ∈ C1[0,∞) vanish outside [0,M) and assume that f ′ is absolutely

continuous on [0,M ]. Then (F2f)(r) = −
1

r2
(F2Lf)(r), r > 0.

Corollary 3.3. Let k ≥ n ≥ 2 and let f ∈Wn,k ∩C
2(n−1)(0,∞), with singular coefficient

α. Then Ln−1f ∈W1,k ∩ C(0,∞), with singular coefficient α4n−1[(n− 1)!]2, and

(3.1) (F2f)(r) =
(−1)n−1

r2(n−1)
(F2L

n−1f)(r), r > 0.

Proof. We first mention that the effect of L on {wj}j≥0 is as follows:
Lw0 = Lw1 = 0, and if j ∈ N, then Lw2j = 4j2w2j−2 and Lw2j+1 = 4j2w2j−1 + 4j w2j−2.
Fix k ≥ 2 and consider the case n = 2. Then f ∈ C2(0,∞) and vanishes on [k,∞).
The first piece of f can be written as f|(0,1]

= αr2 log r + p(r2) for some polynomial p

of degree at most 1. Since the function r2 log r belongs to C1[0, 1] and its first derivative
is absolutely continuous on [0, 1], it follows that the hypothesis of the above Theorem is
satisfied and hence (3.1) holds. The above described effect of L on {wj} ensures that Lf
belongs to W1,k and that Lf has singular coefficient 4α, and therefore the corollary is true
when n = 2. The proof is then completed by induction on n, where the induction step is
similar to the case n = 2. �

Our proof of the following lemma makes use of Corollary 5.5, which is proved (indepen-
dently) in section 5.

Lemma 3.4. Let k ∈ N and let f ∈W1,k ∩ C(0,∞), say f|(j−1,j]
= aj + bj log t. Then

(F2f)(r) = −
1

r2



b1 +

k∑

j=1

(bj+1 − bj)J0(jr)



 , r > 0.

Proof. It follows from Corollary 5.5 that F2f = F4Df . Noting that Df |(j−1,j]
= −bjt

−2,

we have

(F2f)(r) = (F4Df)(r) =
1

r

∫ k

0

(Df)(t)t2J1(rt) dt = −
1

r

k∑

j=1

∫ j

j−1

bjJ1(rt) dt

= −
1

r

k∑

j=1

bj [−r
−1J0(rt)]

∣∣t=j

t=j−1
=

1

r2

k∑

j=1

bj(J0(rj) − J0(r(j − 1))),

and the desired conclusion now follows since J0(0) = 1. �

Combining the above lemma and corollary yields the following.
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Theorem 3.5. Let k ∈ N and let f ∈ Wk,k ∩ C2k−2(0,∞), with singular coefficient α.
Put β = α4k−1[(k − 1)!]2. Then there exist c1, c2, . . . , ck ∈ R such that

(F2f)(r) =
(−1)k

r2k


β +

k∑

j=1

cjJ0(jr)


 , r > 0.

Now, let f be as in Theorem 3.5. Since limr→0+(F2f)(r) exists (it equals 1
2π

∫
R2 f(‖x‖) dx),

it must be the case that
∣∣∣β +

∑k
j=1 cjJ0(jr)

∣∣∣ = O(r2k) as r → 0+. In order to pursue this,

we generalize the picture as follows. Let H(z) = 1 +
∑∞

j=1 bjz
2j be an even entire func-

tion, with H(0) = 1, such that bj 6= 0, j ∈ N, and consider the problem of finding scalars
c1, c2, . . . , ck such that

(3.2)

∣∣∣∣∣β +

k∑

ℓ=1

cℓH(ℓz)

∣∣∣∣∣ = O(|z|2k
) as z → 0.

It is easy to see that (3.2) is equivalent to β +
∑k

ℓ=1 cℓ[1 +
∑k−1

j=1 bj(ℓz)
2j ] = 0, and after

expanding the left side as (β +
∑k

ℓ=1 cℓ) +
∑k−1

j=1 (
∑k

ℓ=1 cℓℓ
2j)bjz

2j , we conclude that (3.2)
is equivalent to the equations

k∑

ℓ=1

cℓℓ
2j =

{
−β, j = 0

0, j = 1, 2, . . . , k − 1

Note that this linear system is independent of the values {bj} and can be expressed in
matrix form as

V c :=




1 1 · · · 1
12 22 · · · k2

...
...

...
...

12(k−1) 22(k−1) · · · k2(k−1)







c1
c2
c3
...
ck




=




−β
0
0
...
0



.

Since V is (the transpose of) a nonsingular Vandermonde matrix (ie V (i, j) = (j2)i−1), it
follows that (3.2) holds if and only if c = βa, where

(3.3) a := [ a1 a2 a3 · · · ak ]
T

= V −1 [−1 0 0 · · · 0 ]
T

The upshot of all this is that Theorem 3.5 now read as follows.

Theorem 3.6. Let k ∈ N and let f ∈ Wk,k ∩ C2k−2(0,∞), with singular coefficient α.
Put β = α4k−1[(k − 1)!]2. Then

(F2f)(r) =
(−1)kβ

r2k


1 +

k∑

j=1

ajJ0(jr)


 , r > 0,

where a1, a2, . . . , ak are as given in (3.3).
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Corollary 3.7. Under the hypothesis of Theorem 3.6, if f is nontrivial, then α 6= 0.

Proof. Suppose α = 0. Then it follows from Theorem 3.6 that F2f = 0. But F2 : U2 →
C(0,∞) is injective; hence f = 0. �

Corollary 3.8. For all k ∈ N, the subspace Wk,k ∩ C2k−2(0,∞) has dimension 1.

Proof. Suppose not. Then since the dimension is at least 1 (as observed at the beginning of
this section), it must be the case that the dimension is greater than 1. But this implies the
existence of a nontrivial function f ∈ Wk,k ∩ C2k−2(0,∞) with α = 0, which contradicts
the above Corollary. �

With the above corollaries in view, we make the following definition.

Definition 3.9. For k ∈ N, let ηk be the unique function in
Wk,k ∩ C2k−2(0,∞) which has singular coefficient (−1)k

(ie ηk|(0,1]
= (−1)kt2(k−1) log t+ p(t2) for some polynomial p of degree ≤ k − 1).

Remark 3.10. The action of L on wj (for j ≥ 0) was described in the proof of 3.1 and it
follows that each piece of ηk is annihilated by Lk; hence ηk is an L-spline.

We now proceed to show that ηk has regularity (2, k). It follows from Theorem 3.6 that

(3.4) (F2ηk)(r) =
4k−1[(k − 1)!]2

r2k



1 +

k∑

j=1

ajJ0(jr)



 , r > 0,

where a1, a2, . . . , ak are as given in (3.3). In [2], (3.2) was encountered with H(z) = cos z,

and it was shown that 1 +
∑k

j=1 aj cos(jt) = αk(1 − cos t)k, where αk > 0 is defined by
1

αk
= 1

π

∫ π

0
(1 − cos t)k dt. Applying the integral representation J0(r) = 1

π

∫ π

0
cos(r sin t) dt

to the bracketed factor in (3.4) we obtain

1 +
k∑

j=1

ajJ0(jr) = 1 +
k∑

j=1

aj
1

π

∫ π

0

cos(jr sin t) dt

=
1

π

∫ π

0

(1 +
k∑

j=1

aj cos(jr sin t)) dt =
αk

π

∫ π

0

(1 − cos(r sin t))k dt,

and hence conclude that

(3.5) (F2ηk)(r) =
αk4k−1[(k − 1)!]2

πr2k

∫ π

0

(1 − cos(r sin t))k dt > 0, r > 0.

Theorem 3.11. For k ∈ N, ηk has regularity (2, k). That is, there exist constants B ≥
A > 0 such that

A(1 + r2)−k ≤ (F2ηk)(r) ≤ B(1 + r2)−k, r > 0.
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Proof. Since |J0(r)| = O(r−1/2) as r → ∞, it follows that there exists M > 0 such that

1

2
≤ 1 +

k∑

j=1

ajJ0(jr) ≤ 3/2 for all r ≥ M , and therefore, with (3.4) in view, there exist

B ≥ A > 0 such that the desired inequality holds for r ≥M . Since F2ηk is continuous and
positive on (0,∞), in order to complete the proof, it suffices to show that (F2ηk)(r) has a

positive limit as r → 0+. For r > 0, define gr(t) =
1 − cos(r sin t)

r2
, t ∈ (0, π), and note, by

(3.5), that (F2ηk)(r) = ck

∫ π

0

[gr(t)]
k dt for some positive constant ck. Writing

gr(t) =
2

r2
sin2

(
1

2
r sin t

)
=

1

2
sin2 t

(
sin
(

1
2
r sin t

)

1
2
r sin t

)2

,

we see that lim
r→0+

gr(t) =
1

2
sin2 t, t ∈ (0, π), and furthermore that 0 ≤ gr(t) ≤ 1

2 , for all

t ∈ (0, π), r > 0. It therefore follows from the Bounded Convergence Theorem that

(F2ηk)(r) = ck

∫ π

0

[gr(t)]
k dt −→

ck
2k

∫ π

0

sin2k t dt as r → 0+,

and we note that the limiting value ck2−k
∫ π

0
sin2k t dt is positive. �

4. A family of L-splines with 1 nontrivial piece

In this section, we construct a family of L-splines {γk}, k ∈ N, which have regularity
(2, k). The function γk is piecewise in Z2 and has exactly one nontrivial piece, supported
on (0, 1]. We display a few of these, showing only the nontrivial piece: γ1(t) = − log t,

4γ2(t) = 1 − t4 + 4t2 log t, 36γ3(t) = 1 − 9t2 − 9t4 + 17t6 − 12t4(3 + t2) log t

240γ4(t) = 1 − 10t2 + 60t4 + 80t6 − 125t8 − 6t10 + 120t6(2 + t2) log t

1800γ5(t) = 1 − 12t2 + 75t4 − 400t6 − 825t8 + 924t10 + 237t12 − 120t8(15 + 12t2 + t4) log t

For k ≥ 2, our definition of γk (Definition 4.3), which depends on the parity of k, employs
an intermediate function Γk, defined by

Γ2j(t) = (t−2 − 1)j
+ and Γ2j+1(t) = t−2(t−2 − 1)j

+, t > 0, j ∈ N,

where x+ = x if x > 0 and x+ = 0 if x ≤ 0. Note that the nontrivial piece in Γ2j belongs
to Z2j+2 and that of Γ2j+1 belongs to Z2j+4.
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Theorem 4.1. For k ≥ 2, Γk has regularity (d, k), where d = 6j if k = 2j, and d = 6j+4
if k = 2j + 1.

Our proof of this is broken into three claims:
Claim 1. (FdΓk)(0+) := limr→0+(FdΓk)(r) > 0.
Claim 2. (FdΓk)(r) = βkr

−2k + o(r−2k) as r → ∞, for some positive constant βk.
Claim 3. (FdΓk)(r) > 0 for all r > 0.

We first address Claim 1 and Claim 2 in the case k = 2j, where d = 6j and

(FdΓk)(r) = r1−3j

∫ 1

0

(t−2 − 1)jt3jJ3j−1(rt) dt = r1−3j

∫ 1

0

(1 − t2)jtjJ3j−1(rt) dt, r > 0.

The function fr(t) = r1−3jJ3j−1(rt), t ∈ [0, 1], converges uniformly to f(t) = t3j−1

(3j−1)! 23j−1

as r → 0+, and therefore (FdΓk)(0+) = ((3j − 1)! 23j−1)−1
∫ 1

0
(1 − t2)jt4j−1 dt > 0, which

establishes Claim 1. Our proof of Claim 2 employs the following.

Lemma 4.2. Let p be a polynomial and let α ∈ N0. Then

∫ 1

0

p(t2)rt−αJα+1(rt) dt =
p(0)

α! 2α
rα − p(1)Jα(r) +

2

r

∫ 1

0

p′(t2)rt1−αJα(rt) dt, r > 0.

Proof. Let v be the entire function v(t) = −t−αJα(rt) = −
∑∞

m=0
(−1)mr2m+α

m! (m+α)! 22m+α t
2m and

put u(t) = p(t2). The desired equality is then a straightforward application of integration

by parts:
∫ 1

0
u(t)v′(t) dt = u(1)v(1) − u(0)v(0)−

∫ 1

0
u′(t)v(t) dt. �

With qj(τ) = (1 − τ)jτ2j−1, we write (FdΓk)(r) = r−3j
∫ 1

0
qj(t

2)rt−(3j−2)J3j−1(rt) dt,
and applying Lemma 4.2 repeatedly then yields

(FdΓk)(r) = r−3j

3j−2∑

k=0

2ℓ

rℓ

(
q
(ℓ)
j (0)

(3j − ℓ− 2)! 23j−ℓ−2
r3j−ℓ−2 − q

(ℓ)
j (1)J3j−ℓ−2(r)

)

+
23j−1

r6j−1

∫ 1

0

q
(3j−1)
j (t)rtJ0(rt) dt.

Noting that qj is a polynomial of degree 3j − 1 with a zero of order 2j − 1 at τ = 0 and

a zero of order j at τ = 1, we see that q
(3j−1)
j is a constant and that q

(ℓ)
j (0) = 0 for

ℓ = 0, 1, . . . , 2j − 2 and q
(ℓ)
j (1) = 0 for ℓ = 0, 1, . . . , j − 1. And employing

∫ 1

0
rtJ0(rt) dt =

J1(r), we conclude that

(FdΓk)(r) =

3j−2∑

ℓ=2j−1

22ℓ−3j+2

(3j − ℓ− 2)!
q
(ℓ)
j (0)r−(2ℓ+2) −

3j−2∑

ℓ=j

2ℓq
(ℓ)
j (1)r−(3j+ℓ)J3j−ℓ−2(r)

+ 23j−1q
(3j−1)
j (0)r−(6j−1)J1(r), r > 0.

Since |Jα(r)| = O(r−1/2) as r → ∞, and noting that q
(2j−1)
j (0) = (2j − 1)!, we see that

Claim 2 follows from the above with βk = (2j−1)! 2j

(j−1)!
.



12 PIECEWISE POLYHARMONIC RADIAL FUNCTIONS

The proof of Claim 1 and 2 in case k = 2j + 1, where d = 6j + 4, is similar to

the above: First one obtains (FdΓk)(r) = r−(3j+1)
∫ 1

0
(1 − t2)jtjJ3j+1(rt) dt and deduces

that (FdΓk)(0+) = ((3j+1)! 23j+1)−1
∫ 1

0
(1− t2)jt4j+1 dt > 0, which proves Claim 1. With

pj(τ) = (1−τ)jτ2j , we have (FdΓk)(r) = r−(3j+2)
∫ 1

0
pj(t

2)rt−3jJ3j+1 dt and then applying
Lemma 4.2 and simplifying yields

(FdΓk)(r) =

3j∑

ℓ=2j

22ℓ−3jp
(ℓ)
j (0)

(3j − ℓ)!
r−(2ℓ+2) −

3j∑

ℓ=j

2ℓp
(ℓ)
j (1)r−(3j+ℓ+2)J3j−ℓ(r), r > 0

From this one then obtains Claim 2 with βk = (2j)! 2j

j! .

Turning now to Claim 3, we again consider first the case k = 2j. Following Wendland
[19], we express (FdΓk)(r) in the form

(FdΓk)(r) = r1−3j

∫ 1

0

(t−2 − 1)jt3jJ3j−1(rt) dt = r−6j

∫ r

0

(r2 − t2)jtjJ3j−1(t) dt.

With λ = j − 1
2
, µ = j and α = 3j − 1, Gasper [6, p.874,875] has shown that

∫ r

0
(r2 −

t2)λtµJα(t) dt > 0 for all r > 0, and then with γ = 1
2
, δ = ε = 0, it follows [6, p.878] that

∫ r

0

(r2 − t2)jtjJ3j−1(t) dt =

∫ r

0

(r2 − t2)λ+γ+εtµ−2ε−δJα+δ(t) dt > 0, r > 0,

which establishes Claim 3 for the case k = 2j. The proof of Claim 3 in case k = 2j + 1 is
the same except that (FdΓk)(r) = r−(6j+2)

∫ r

0
(r2 − t2)jtjJ3j+1(t) dt and α = 3j + 1. This

completes the proof of Theorem 4.1.

Definition 4.3. Let γ1 = η1 and for j ∈ N, we define

γ2j = c2jI
3j−1Γ2j and γ2j+1 = c2j+1I

3j+1Γ2j+1,

where c2j = 23j−2 (2j − 1)! (j − 1)! and c2j+1 = 23j (2j)! j! (this choice of ck ensures that
the coefficient of t2k−2 log t, in γk(t), equals (−1)k).

Our proof of the following result employs Theorem 5.3 which is proved (independently)
in section 5.

Theorem 4.4. For k ∈ N, the following hold.
(i) γk is piecewise in Z2.
(ii) γk ∈ C2k−2(0,∞).
(iii) γk has regularity (2, k).

Proof. The case k = 1 is proved in section 3, since γ1 = η1. Let j ∈ N. Then, as noted
above, Γ2j is piecewise in Z2j+2 ⊂ Z6j , and it follows by Remark 2.3 that γ2j is piecewise
in Z6j−2(3j−1) = Z2. Since Γ2j ∈ Cj−1(0,∞), if follows that γ2j ∈ C4j−2. This proves
(i) and (ii) for the case k = 2j, and the proof in case k = 2j + 1 is similar. We turn
now to (iii). Let d be as defined in Theorem 4.1. Since Γk ∈ Ud, it follows by repeated
application of Theorem 5.3 that γk ∈ U2 and (F2γk)(r) = ck(FdΓk)(r), r > 0. And since
Γk has regularity (d, k), it now follows that γk has regularity (2, k). �
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5. Extended dimension-walk identities

In this section, we prove two fundamental identities involving the operators D, I and
Fd. These “dimension walk” identities were first proved by Wu [23] (see also [20, Lemma
6]), under overly restrictive conditions.

Lemma 5.1. Let f ∈ ACloc be such that limt→∞ f(t) = 0 and Df ∈ U . Then f = IDf .

Proof. Since Df ∈ U , it follows that limt→∞(IDf)(t) = 0 and that

(IDf)(r) − (IDf)(t) =

∫ t

r

s(Df)(s) ds = −

∫ t

r

f ′(s) ds = f(r)− f(t), 0 < r < t.

Taking the limit as t→ ∞ then yields (IDf)(r) = f(r). �

Lemma 5.2. For d ≥ 3 and f ∈ Ud, the following hold:
(i) lim

r→0+
rd−2(If)(r) = 0, (ii) lim

r→∞
rd−2(If)(r) = 0, (iii) If ∈ Ud−2.

Proof. Let ε > 0. There exists a > 0 such that
∫ a

0
td−1 |f(t)| dt < ε. For 0 < r < a, we

have rd−2 |(If)(r)| ≤ rd−2
∫ a

r
t |f(t)| dt + rd−2

∫∞

a
t |f(t)| dt. Since a is fixed, it is clear

that the latter term on the right tends to 0 as r → 0+, while for the first term, we have

rd−2

∫ a

r

t |f(t)| dt =

∫ a

r

(r/t)d−2td−1 |f(t)| dt ≤

∫ a

r

td−1 |f(t)| < ε,

whence follows (i). For (ii), we have

|(If)(r)| ≤

∫ ∞

r

t |f(t)| dt =

∫ ∞

r

td−1

td−2
|f(t)| dt ≤

1

rd−2

∫ ∞

r

td−1 |f(t)| dt.

Hence, rd−2 |(If)(r)| ≤
∫∞

r
td−1 |f(t)| dt→ 0 as r → ∞, which proves (ii). And finally,

∫ ∞

0

rd−3 |(If)(r)| dr ≤

∫ ∞

0

rd−3

(∫ ∞

r

t |f(t)| dt

)
dr

=

∫ ∞

0

(∫ t

0

rd−3 dr

)
t |f(t)| dt =

1

d− 2

∫ ∞

0

td−1 |f(t)| dt <∞,

which proves (iii). �

Theorem 5.3. Let d ≥ 3 and f ∈ Ud. Then If ∈ Ud−2 and Fd−2If = Fdf .

Proof. By Lemma 5.2, If ∈ Ud−2 and hence Fd−2If is defined. Fix r > 0. We first write
(Fdf)(r) as

(Fdf)(r) = r1−
d
2

∫ ∞

0

f(t)td/2Jd/2−1(rt) dt = r1−
d
2 lim

(δ,T )→(0+,∞)

∫ T

δ

td/2−1Jd/2−1(rt)tf(t) dt.
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Noting that −(If)(t) is an antiderivative of tf(t), and with (2.2) in view, we apply inte-
gration by parts to obtain

∫ T

δ

td/2−1Jd/2−1(rt)tf(t) dt = −(If)(T )T d/2−1Jd/2−1(rT ) + (If)(δ)δd/2−1Jd/2−1(rδ)

+

∫ T

δ

(If)(t)[rt(d−2)/2J(d−2)/2−1(rt)] dt.

Since
∣∣Jd/2−1(t)

∣∣ ≤ Cd/2−1t
d/2−1, it follows from (i) and (ii) of Lemma 5.2 that the first

two terms have limit 0 as (δ, T ) → (0+,∞). As for the remaining term, since If ∈
Ud−2, it follows that the integrand is integrable over (0,∞), and hence it converges, as
(δ, T ) → (0+,∞), to the full integral over (0,∞). It follows therefore that (Fdf)(r) =

r1−
d
2

∫∞

0
(If)(t)[rt(d−2)/2J(d−2)/2−1(rt)] dt = (Fd−2If)(r). �

Remark 5.4. The conclusion Fd−2Iφ = Fdφ was obtained by Wu (see [23, Th. 3.3])
assuming that φ ∈ C[0,∞) is compactly supported.

Corollary 5.5. Let d ≥ 1 and let f ∈ ACloc be such that limt→∞ f(t) = 0 and Df ∈ Ud+2.
Then f ∈ Ud and Fd+2Df = Fdf .

Proof. Put g = Df . Since g ∈ Ud+2, it follows from Theorem 5.3 that Ig ∈ Ud and
FdIg = Fd+2g. But Ig = IDf = f , by Lemma 5.1, and therefore, Fdf = FdIg = Fd+2g =
Fd+2Df . �

Remark 5.6. As noted in the introduction, the conclusion Fd+2Dψ = Fdψ was obtained
by Wu (see [23, Th. 3.3]) assuming that ψ ∈ C1[0,∞) is compactly supported with
Dψ ∈ C[0,∞).

6. Walking piecewise polyharmonic radial functions into higher dimensions

In the following theorem we specialize Corollary 5.5 to the particular case when the
function φ : (0,∞) → R is piecewise in Zd (finitely many pieces) with bounded support.
Recall that such functions necessarily belong to Ud, so Fdφ is defined.

Theorem 6.1. Let d ∈ N and suppose φ : (0,∞) → R is piecewise in Zd (finitely many
pieces) with bounded support. If φ is continuous on (0,∞), then the following hold:
(i) φ ∈ ACloc.
(ii) Dφ is piecewise in Zd+2 with bounded support.
(iii) Fd+2Dφ = Fdφ.
(iv) If φ has Sobolev regularity (d, k), then Dφ has Sobolev regularity (d+ 2, k).

Proof. Suppose φ ∈ C(0,∞). Since Zd is a subspace of C∞(0,∞), it follows that φ is
absolutely continuous on [a, b] whenever 0 < a < b <∞; this establishes (i). Condition (ii)
now follows from the observation (made in section 2) that DZd = DZd+2. It is now clear
that (iii) is a consequence of Corollary 5.5, and now (iv) is an immediate consequence of
(iii). �

Theorem 6.1 can be applied recursively to obtain the following.
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Corollary 6.2. Let d ∈ N and suppose φ : (0,∞) → R is piecewise in Zd (finitely many
pieces), with bounded support. If, for some k, n ∈ N, φ has Sobolev regularity k and belongs
to Cn−1(0,∞), then Djφ is piecewise in Zd+2j and has Sobolev regularity (d+ 2j, k), for
j = 1, 2, . . . , n.

We now apply this corollary to the base families {ηk}, {γk} and {φ1,k−1}. For k ∈ N,
recall that both ηk and γk are piecewise in Z2, have Sobolev regularity (2, k) and belong
to C2k−2(0,∞). It follows from Corollary 6.2 that for j = 1, 2, . . . , 2k− 1, Djηk and Djγk

are piecewise in Z2+2j and have Sobolev regularity (2 + 2j, k). We can therefore define

ηd,k := D(d−2)/2ηk and γd,k := D(d−2)/2γk, for d ∈ {2, 4, 6, . . .} and k ∈ N with k ≥ d/4,

and conclude that ηd,k and γd,k are piecewise in Zd and have Sobolev regularity (d, k).
For k = 2, 3, 4, . . . , define ωk = φ1,k−1, where φ1,k−1 is Wendland’s function for d = 1.

Then ωk is piecewise in Z1, belongs to C2k−2(0,∞) and has Sobolev regularity (1, k). It
follows from Corollary 6.2 that Djωk is piecewise in Z1+2j and has Sobolev regularity k
for j = 1, 2, . . . , 2k − 1. We can therefore define,

ωd,k := D(d−1)/2ωk, for d ∈ {1, 3, 5, . . .} and k ∈ {2, 3, 4, . . .} with k ≥ (d+ 1)/4,

and conclude that ωd,k is piecewise in Zd and has Sobolev regularity (d, k). When k ≥ (d+
1)/2, the function ωd,k corresponds to Wendland’s function φd,k−(d+1)/2, so the functions
ωd,k are only ‘new’ when (d+ 1)/4 ≤ k < (d+ 1)/2.

7. Restriction to lower dimensions

Let d, k ∈ N, with d ≥ 3, k ≥ 2, and suppose that Φd := φ ◦ ρd has regularity k. In this
section, we show that if φ ∈ Ud−2, then Φd−2 := φ◦ρd−2 has Sobolev regularity k−1 (see [7,
section 4] for a relation between Φd and Φd−2 in terms of unimodal distributions). Of course
this result applies recursively to the effect that if ℓ ∈ N satisfies ℓ ≤ min{(d− 1)/2, k− 1}
and if φ ∈ Ud−2ℓ, then φ◦ρd−2ℓ has Sobolev regularity k−ℓ. Our method of proof employs
an extended notion of regularity, defined as follows.

Definition 7.1. Let d, k ∈ N, m ∈ N0. We say that φ ∈ Ud has regularity (d, k,m) if
there exist constants Bj ≥ Aj > 0, j = 0, 1, . . . , m, such that

Aj(1 + r2)−(k+j) ≤ (DjFdφ)(r) ≤ Bj(1 + r2)−(k+j), r > 0, j = 0, 1, . . . , m.

Note that regularity (d, k, 0) is the same as regularity (d, k), and regularity (d, k,m′)
implies regularity (d, k,m) if m′ ≥ m.

Lemma 7.2. Let f ∈ C1(0,∞) satisfy limr→∞ f(r) = 0. Let j ∈ N and suppose that
there exist constants B ≥ A > 0 such that

A(1 + r2)−(j+1) ≤ (Df)(r) ≤ B(1 + r2)−(j+1), r > 0.
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Then
A

2j
(1 + r2)−j ≤ f(r) ≤

B

2j
(1 + r2)−j , r > 0.

Proof. It follows from the hypothesis that Df ∈ U and hence, by Lemma 5.1, that f =
IDf . Since h ≤ g implies Ih ≤ Ig, it follows that A Ig ≤ IDf ≤ B Ig, where g(r) =
(1 + r2)−(j+1). The desired conclusion now follows since (Ig)(r) = 1

2j
(1 + r2)−j and

IDf = f . �

Our proof also employs the following identity, which appears (in much greater generality)
in [16, section 4]. For the sake of completeness, we provide an elementary proof of the
particular case of present interest.

Theorem 7.3. Let d ∈ N and let f ∈ Ud ∩ Ud+2. Then Fdf ∈ C1(0,∞) and DFdf =
Fd+2f .

Proof. Since Fd+2f is continuous, it suffices to show that limr→r0

(Fdf)(r)−(Fdf)(r0)
r−r0

=

−r0(Fd+2f)(r0) for all r0 > 0. Fix r0 > 0 and define G(r, t) := r1−d/2Jd/2−1(rt), r, t > 0.

Then, with (2.2) in view, Gr(r, t) = ∂
∂rG(r, t) = −tr1−d/2Jd/2(rt) and

(7.1)
(Fdf)(r) − (Fdf)(r0)

r − r0
=

∫ ∞

0

f(t)td/2G(r, t) −G(r0, t)

r − r0
dt.

Note that the integrand on the right side of (7.1) converges pointwise to f(t)td/2Gr(r0, t)
as r → r0. In preparation for Lebesgue’s Dominated Convergence Theorem, we first recall
that there exists a constant Cd/2 such that

∣∣Jd/2(t)
∣∣ ≤ Cd/2t

d/2, t > 0. It follows that if

r ∈ [ 12r0, 2r0], then |Gr(r, t)| ≤ C̃t1+d/2 for all t > 0, where C̃ is a constant depending only

on d and r0. By the Mean Value Theorem, for each t > 0 and r ∈ [ 12r0, 2r0]\{r0}, there

exists rt between r0 and r such that G(r,t)−G(r0,t)
r−r0

= Gr(rt, t). Hence, the integrand on

the right side of (7.1) is dominated by g(t) := |f(t)| td/2C̃t1+d/2 = C̃ |f(t)| t(d+2)−1. Since
f ∈ Ud+2, g is integrable and therefore by Lebesgue’s Dominated Convergence Theorem,

limr→r0

(Fdf)(r)−(Fdf)(r0)
r−r0

=
∫∞

0
f(t)td/2Gr(r0, t) dt = −r0(Fd+2f)(r0). �

Theorem 7.4. Let d, k ∈ N, with d ≥ 3, k ≥ 2, and suppose that φ ∈ Ud has regularity
(d, k,m) for some m ∈ N0. Let ℓ ∈ N satisfy ℓ ≤ min{(d− 1)/2, k− 1}. If φ ∈ Ud−2ℓ, then
φ has regularity (d− 2ℓ, k− ℓ,m+ ℓ).

Proof. Let ℓ = 1 and assume φ ∈ Ud−2. It follows from Theorem 7.3 that Fd−2φ ∈ C1(0,∞)
and DFd−2φ = Fdφ. Replacing Fdφ with DFd−2φ, in Definition 7.1 yields

Aj(1 + r2)−(k+j) ≤ (Dj+1Fd−2φ)(r) ≤ Bj(1 + r2)−(k+j), r > 0, j = 0, 1, . . . , m.

With the case j = 0 of the above in view, we apply Lemma 7.2 to obtain

A0

2(k − 1)
(1 + r2)k−1 ≤ (Fd−2φ)(r) ≤

B0

2(k − 1)
(1 + r2)k−1, r > 0,
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and we conclude that φ has regularity (d−2, k−1, m+1). The proof is then completed by
induction, where the induction step is very similar to the case ℓ = 1, provided one notes
that Ud ∩ Ud−2ℓ ⊂ Ud−2(ℓ−1). �

As a quick illustration, consider the function η3 which is given at the beginning of
section 3. The function η4,3 = Dη3 has regularity (4, 3, 0) and the first piece of η4,3 equals
1
5 (−b12 +(5−2b14)t

2 +20t2 log t). It follows that η4,3 ∈ U2 and therefore, by Theorem 7.4,
η4,3 has regularity (2, 2, 1).

In order to give a complete explanation of how Theorem 7.4 can be applied to the
families {ηd,k}, {γd,k} and {ωd,k}, we need to pay closer attention to the first piece in
these piecewise functions. Let us extend the definition of Zd (currently defined for d ∈ N)
to integers d ≤ 0 as follows.

Z−1 = span{1; t2, t3, t4, . . .}, Z0 = span{1; t2, t2 log t, t4, t4 log t, . . .},
Z−3 = span{1, t2; t4, t5, t6, . . .}, Z−2 = span{1, t2; t4, t4 log t, t6, t6 log t, . . .},
Z−5 = span{1, t2, t4; t6, t7, t8, . . .}, Z−4 = span{1, t2, t4; t6, t6 log t, t8, t8 log t, . . .},

and in general, Zd−2 = span{1} + t2Zd, d ≤ 2. We note that the properties mentioned in
Remark 2.3 remain valid for all d ∈ Z. With the hypothesis of Theorem 7.4 in mind, con-
sider the case when φ is a piecewise function in Zd having bounded support and regularity
(d, k,m). Then the condition φ ∈ Ud−2ℓ holds if and only if the first piece of φ belongs to
Zd−2ℓ. Regarding the family {ηk}, we recall that the first piece of ηk belongs to Z4−2k and
consequently the first piece of ηd,k = D(d−2)/2ηk belongs to Zd−2k+2. Now suppose ℓ ∈ N

satisfies ℓ ≤ min{(d−1)/2, k−1}. Since ℓ ≤ k−1, we have Zd−2k+2 ⊂ Zd−2ℓ and it follows
that ηd,k ∈ Ud−2ℓ. We can now apply Theorem 7.4 to conclude that ηd,k has regularity
(d− 2ℓ, k− ℓ, ℓ). Combining the restrictions on d and k in the definition of {ηd,k} with the
above restriction on ℓ leads to the following.

Corollary 7.5. Let d ∈ 2N, k ∈ N and m ∈ N0, with m ≥ d
2 − 2k. Then

ηd,k,m := ηd+2m,k+m = D(d−2)/2+mηk+m

has regularity (d, k,m).

Regarding the family {γd,k}, we recall, for j ∈ N, that Γ2j is piecewise in Z2j+2 and
Γ2j+1 is piecewise in Z2j+4. From this it follows that γ2j is piecewise in Z2j+2−2(3j−1) =
Z−4j+4 and γ2j+1 is piecewise in Z2j+4−2(3j+1) = Z−4j+2, and so in either case, γk is
piecewise in Z4−2k. Following exactly the same line of reasoning as above, we conclude
that γd,k,m := γd+2m,k+m = D(d−2)/2+mγk+m has regularity (d, k,m), where d, k,m are as
specified in the above corollary.

Wendland’s family {ωd,k} can be treated in a similar fashion. In brief, the first piece

of ωk belongs to Z3−2k, and consequently the first piece of ωd,k = D(d−1)/2ωk belongs to
Zd−2(k−1). Applying Theorem 7.4 then yields the following.

Corollary 7.6. Let d ∈ 2N0 + 1, k ∈ N and m ∈ N0, with m ≥ d+1
2 − 2k and k +m ≥ 2.

Then
ωd,k,m := ωd+2m,k+m = D(d−1)/2+mωk+m
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has regularity (d, k,m).

Remark 7.7. Although there does not appear to be any direct relationship between the
parameter m in Definition 7.1 and the smoothness of φ on (0,∞), it is striking that there is
such a relationship in the families {ηd,k,m}, {γd,k,m}, {ωd,k,m} (and also {ψd,k,m} appearing
in the next section). For any function φ, in one of these families, having regularity (d, k,m),
we also have φ ∈ Cs(0,∞), where s = 2k+m− 1− d/2 if d is even, and s = 2k+m− 1−
(d+ 1)/2 if d is odd.

8. The regularity of Djψk

For k ∈ N, let ψk be the restriction to (0,∞) of the B-spline (see [3]) having knots
0, 0,±1,±2, . . . ,±k. It is shown in [2] that ψk has regularity (1, k), which is regularity
(1, k, 0) in the language of the previous section. In this section, we first prove that ψk has
regularity (1, k, 1), and then we define and discuss the regularity of the families {ψd,k} and
{ψd,k,m}.

It is shown in [2] that F1ψk can be written in the form

(F1ψk)(r) =
dk

r2k+1

∫ r

0

(1 − cos t)k dt, r > 0,

where dk > 0 is a constant. Differentiating the above yields

(8.1) (DF1ψk)(r) =
dk

r2k+2

(
2k + 1

r

∫ r

0

(1 − cos t)k dt− (1 − cos r)k

)
.

Lemma 8.1. For k ∈ N, the following hold.
(i)
∫ π

0
(1 − cos t)k dt = 1

2
3
4 · · ·

2k−1
2k π2k. (ii) (2k + 1)

∫ π

0
(1 − cos t)k dt ≥ 3

2π2k.

Proof. Item (i) holds for k = 1 since
∫ π

0
(1−cos t) dt = π. Proceeding by induction, assume

that (i) holds for k and consider k + 1. Employing the identity 2 sin2 t
2

= 1 − cos t, and

making a change of variable yields
∫ π

0
(1−cos t)k dt = 2k

∫ π

0
sin2k t

2 dt = 2k+1
∫ π/2

0
sin2k t dt.

Applying the well-known reduction formula for
∫

sinn t dt (and noting that cos π
2

= sin 0 =
0), we have

2k+2

∫ π/2

0

sin2k+2 t dt = 2k+2 2k + 1

2k + 2

∫ π/2

0

sin2k t dt = 2
2k + 1

2k + 2

(
1

2

3

4
· · ·

2k − 1

2k
π2k

)
,

which proves (i) for k + 1 and completes the induction. Now it follows from (i) that
(2k + 1)

∫ π

0
(1 − cos t)k dt = 3

2
4
3 · · ·

2k+1
2k π2k ≥ 3

2π2k, hence (ii). �

Lemma 8.2. Let k ∈ N and define

G(r) =
2k + 1

r

∫ r

0

(1 − cos t)k dt− (1 − cos r)k.
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Then G(r) > 0 for r ∈ (0, 2π] and 2k−2 ≤ G(r) ≤ (2k + 1)2k for r > 2π.

Proof. We first establish the inequality

(8.2)
t

2
sin t < 1 − cos t, 0 < t < 2π.

That (8.2) holds for π ≤ t < 2π is clear since then t
2

sin t ≤ 0 < 1 − cos t; so assume
0 < t < π, and put θ = t/2. Employing the well known inequality θ < tan θ, we obtain
t
2 sin t = θ sin 2θ < tan θ sin 2θ = 2 sin2 θ = 1 − cos t, which proves (8.2). We next prove

that G(r) > 0 for 0 < r < 2π. Applying integration by parts and (8.2), we have
∫ r

0
(1 −

cos t)k dt = r(1− cos r)k − k
∫ r

0
t sin t(1− cos t)k−1 dt > r(1− cos r)k − 2k

∫ r

0
(1− cos t)k dt,

whence G(r) > 0 readily follows. Note also that G(2π) > 0, by inspection. Thus we
have established G(r) > 0 for 0 < r ≤ 2π. Now let r > 2π, say r = 2πℓ + r′ where
ℓ ∈ N and r′ ∈ (0, 2π]. That G(r) ≤ (2k + 1)2k is a simple consequence of the inequality

0 ≤ 1−cos t ≤ 2. Note that (2k+1)
∫ 2πℓ

0
(1−cos t)k dt = 2ℓ(2k+1)

∫ π

0
(1−cos t)k dt ≥ 3ℓπ2k,

by Lemma 8.1 (ii). Hence, 2k+1
r

∫ r

0
(1−cos t)k dt ≥ 1

r

(
3ℓπ2k + (2k + 1)

∫ r′

0
(1 − cos t)k dt

)
.

Since G(r′) > 0, it follows that (2k+ 1)
∫ r′

0
(1− cos t)k dt > r′(1− cos r′)k = r′(1− cos r)k,

and writing 3ℓπ2k = ℓπ2k + 2πℓ2k ≥ ℓπ2k + 2πℓ(1− cos r)k, we obtain

2k + 1

r

∫ r

0

(1−cos t)k dt ≥
1

r

(
ℓπ2k + 2πℓ(1 − cos r)k + r′(1 − cos r)k

)
=
ℓπ2k

r
+(1−cos r)k.

Hence, G(r) ≥ ℓπ2k

r
= 2πℓ

2πℓ+r′
2k−1 ≥ 2k−2. �

Theorem 8.3. For k ∈ N, ψk has regularity (1, k, 1).

Proof. Since ψk has regularity (1, k), it suffices to show that there exist constants B1 ≥
A1 > 0 such that

(8.3) A1(1 + r2)−(k+1) ≤ (DF1ψk)(r) ≤ B1(1 + r2)−(k+1), r > 0.

Since ψk is positive on (0, k) and 0 elsewhere, and with Theorem 7.3 in view, it follows that
(DF1ψk)(0+) = (F3ψk)(0+) = (2π)−3/2

∫
R3 ψk(‖x‖) dx > 0. Consequently, (8.3) follows

from (8.1) and Lemma 8.2. �

For k ∈ N, the function ψk is piecewise in Z1 and belongs to C2k−1(0,∞) (see [2]). It
follows from Corollary 6.2 that for j = 1, 2, . . . , 2k, Djψk is piecewise in Z1+2j and has
regularity (1 + 2j, k, 1). We can therefore define

ψd,k := D(d−1)/2ψk, for d ∈ {1, 3, 5, . . .} and k ∈ N with k ≥ (d− 1)/4,

and conclude that ψd,k is piecewise in Zd and has regularity (d, k, 1). As with ωk, the first
piece of ψk belongs to Z3−2k and consequently the first piece of ψd,k belongs to Zd−2(k−1).
Applying Theorem 7.4 then yields the following.
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Corollary 8.4. Let d ∈ 2N0 + 1, k ∈ N and m ∈ N0, with m ≥ d−1
2 − 2k. Then

ψd,k,m+1 := ψd+2m,k+m = D(d−1)/2+mψk+m

has regularity (d, k,m+ 1).
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