MINIMAL DEGREE UNIVARIATE PIECEWISE POLYNOMIALS WITH PRESCRIBED SOBOLEV REGULARITY

Amal Al-Rashdan & Michael J. Johnson*

Department of Mathematics Kuwait University P.O. Box: 5969 Safat 13060 Kuwait yohnson1963@hotmail.com*

ABSTRACT. For $k \in \{1, 2, 3, ...\}$, we construct an even compactly supported piecewise polynomial ψ_k whose Fourier transform satisfies $A_k(1 + \omega^2)^{-k} \leq \widehat{\psi}_k(\omega) \leq B_k(1 + \omega^2)^{-k}$, $\omega \in \mathbb{R}$, for some constants $B_k \geq A_k > 0$. The degree of ψ_k is shown to be minimal, and is strictly less than that of Wendland's function $\phi_{1,k-1}$ when k > 2. This shows that, for k > 2, Wendland's piecewise polynomial $\phi_{1,k-1}$ is not of minimal degree if one places no restrictions on the number of pieces.

1. INTRODUCTION

A function $\Phi \in L_1(\mathbb{R}^d)$ is said to have Sobolev regularity k > 0 if its Fourier transform $\widehat{\Phi}(\omega) := (2\pi)^{-d/2} \int_{\mathbb{R}^d} \Phi(x) e^{-ix \cdot \omega} dx$ satisfies

$$A(1 + \|\omega\|^2)^{-k} \le \widehat{\Phi}(\omega) \le B(1 + \|\omega\|^2)^{-k}, \quad \omega \in \mathbb{R}^d,$$

for some constants $B \ge A > 0$. Such functions are useful in radial basis function methods since the generated native space will equal the Sobolev space $W_2^k(\mathbb{R}^d)$. The reader is referred to Schaback [3] for a description of the current state of the art in the construction of compactly supported functions Φ having prescribed Sobolev regularity. Wendland (see [4] and [5]) has constructed radial functions $\Phi_{d,\ell}(x) = \phi_{d,\ell}(||x||)$, where $\phi_{d,\ell}$ is a piecewise polynomial of the form $\phi_{d,\ell}(t) = \begin{cases} p(|t|), & |t| \le 1 \\ 0, & |t| > 1 \end{cases}$, p being a polynomial. For $d \in \{1, 2, 3, \ldots\}$ and $\ell \in \{0, 1, 2, \ldots\}$, with the case $d = 1, \ \ell = 0$ excluded, $\Phi_{d,\ell}$ has Sobolev regularity $k = \ell + (d+1)/2$ and the degree of the piecewise polynomial $\phi_{d,\ell}$, namely $\lfloor d/2 \rfloor + 3\ell + 1$, is minimal with respect to this property. A natural question to ask is whether the degree of $\phi_{d,\ell}$ would still be minimal if we considered functions of the form $\Phi(x) = \phi(||x||)$ where ϕ is a piecewise polynomial having bounded support. In this note, we answer this question in the univariate case d = 1. Specifically, we construct a compactly supported even piecewise

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Key words and phrases. positive definite function, compactly supported, B-spline.

polynomial ψ_k , with Sobolev regularity k (see Theorem 2.8), and we show that the degree of ψ_k , namely 2k, is minimal (see Theorem 2.10). In comparison with Wendland's function $\Phi_{1,k-1}$ (which has Sobolev regularity k when k > 1), we see that $\deg \psi_k = \deg \phi_{1,k-1}$, if k = 2, while $\deg \psi_k = 2k < 3k - 2 = \deg \phi_{1,k-1}$ when k > 2.

2. Results

Wendland's piecewise polynomial $\phi_{d,\ell}$ can be identified as a constant multiple of the B-spline having $\ell + 1$ knots at the nodes -1 and 1 and $\lfloor d/2 \rfloor + \ell + 1$ knots at 0. This can be verified simply by observing that $\phi_{d,\ell}$ and the above-mentioned B-spline have the same degree, $\lfloor d/2 \rfloor + 3\ell + 1$, and satisfy the same number of continuity conditions across each of the nodes -1, 0, 1, namely $\lfloor d/2 \rfloor + 2\ell + 1$ at -1, 1 and $2\ell + 1$ at 0. It is well understood in the theory of B-splines that multiple knots are to be avoided if one wishes to keep the degree low, and with this in mind, we define ψ_k as follows. For $k = 1, 2, 3, \ldots$, let ψ_k be the B-spline having knots $-k, \ldots, -2, -1, 0; 0, 1, 2, \ldots, k$ (note that 0 is the only double knot). For easy reference, we display $\psi_k(t)$ (normalized) for $t \in [0, k]$ and k = 1, 2, 3:

$$\psi_1(t) = (1-t)^2, \qquad \psi_2(t) = \begin{cases} 8 - 24t^2 + 24t^3 - 7t^4, & t \in [0,1] \\ (2-t)^4, & t \in (1,2] \end{cases}$$
$$\psi_3(t) = \begin{cases} 198 - 270t^2 + 270t^4 - 180t^5 + 37t^6, & t \in [0,1] \\ 153 + 270t - 945t^2 + 900t^3 - 405t^4 + 90t^5 - 8t^6, & t \in (1,2] \\ (3-t)^6, & t \in (2,3] \end{cases}$$

We begin by mentioning several salient facts about the B-spline ψ_k which can be found in [1, pp. 108–131]. The piecewise polynomial ψ_k is supported on [-k, k], positive on (-k, k), even and of degree 2k. Furthermore, it is 2k-1 times continuously differentiable on $\mathbb{R}\setminus\{0\}$ and 2k-2 times continuously differentiable on all of \mathbb{R} . It follows from this that the 2k-1 order derivative, $D^{2k-1}\psi_k$, is a piecewise linear function which is supported on [-k, k] and is continuous except at the origin where it has a jump discontinuity. Consequently, the 2k order derivative has the form

$$D^{2k}\psi_k = \sqrt{2\pi}a_0\delta_0 + \sum_{j=1}^k \sqrt{2\pi}a_j(\chi_{[j-1,j)} + \chi_{[-j,1-j)}),$$

for some constants $a_0, a_1, a_2, \ldots, a_k$ and where δ_0 is the Dirac δ -distribution defined by $\delta_0(f) = f(0)$. We can thus express the Fourier transform of $D^{2k}\psi_k$ as

$$(D^{2k}\psi_k) \,\widehat{}(\omega) = a_0 + 2\sum_{j=1}^k a_j \frac{\sin(j\omega) - \sin((j-1)\omega)}{\omega} = a_0 + \sum_{j=1}^k 2(a_j - a_{j+1}) \frac{\sin(j\omega)}{\omega},$$

with $a_{k+1} := 0$, whence it follows that

(2.1)
$$\widehat{\psi}_k(\omega) = (\imath\omega)^{-2k} \left(D^{2k} \psi_k \right) \widehat{}(\omega) = \frac{(-1)^k}{\omega^{2k+1}} \left(a_0 \omega + \sum_{j=1}^k 2(a_j - a_{j+1}) \sin(j\omega) \right).$$

Lemma 2.2. Let $\beta \in \mathbb{R}$. Then there exist unique scalars $c_1, c_2, \ldots, c_k \in \mathbb{R}$ such that

(2.3)
$$\left|\beta + \sum_{j=1}^{k} c_j \cos(j\omega)\right| = O(|\omega|^{2k}) \text{ as } \omega \to 0.$$

Proof. Define $g(w) = \beta + \sum_{i=1}^{k} c_i \cos(i\omega)$. Since $g \in C^{\infty}(\mathbb{R})$ is even, (2.3) holds if and only if $D^{2\ell}g(0) = 0$ for $\ell = 0, 1, 2, \ldots, k-1$. These conditions form the system of linear equations $[c_1, c_2, \ldots, c_k]A = [-\beta, 0, 0, \ldots, 0]$, where A is the $k \times k$ matrix given by $A(i, j) = (-1)^{j-1}i^{2j-2}$. Writing $A(i, j) = (-i^2)^{j-1}$, we recognize A as a nonsingular Vandermonde matrix, and therefore, (2.3) holds if and only if $[c_1, c_2, \ldots, c_k] = [-\beta, 0, 0, \ldots, 0]A^{-1}$. \Box

Theorem 2.4. Let $\beta, c_1, c_2, \ldots, c_k \in \mathbb{R}$ be such that (2.3) holds. Then

(2.5)
$$\beta + \sum_{j=1}^{k} c_j \cos(j\omega) = \beta \alpha_k (1 - \cos \omega)^k, \quad \omega \in \mathbb{R},$$

where $\alpha_k > 0$ is defined by $\frac{1}{\alpha_k} = \frac{1}{\pi} \int_0^{\pi} (1 - \cos \omega)^k d\omega$.

Proof. Since $\cos^j \omega \in \operatorname{span}\{1, \cos \omega, \cos 2\omega, \ldots, \cos k\omega\}$ for $j = 0, 1, \ldots, k$, it follows that there exist $b_j \in \mathbb{R}$ such that $(1 - \cos \omega)^k = b_0 + \sum_{j=1}^k b_j \cos(j\omega)$. Note that

$$0 < \frac{1}{\alpha_k} = \frac{1}{\pi} \int_0^{\pi} (1 - \cos \omega)^k \, d\omega = \frac{1}{\pi} \int_0^{\pi} b_0 \, d\omega + \sum_{j=1}^k b_j \frac{1}{\pi} \int_0^{\pi} \cos(j\omega) \, d\omega = b_0,$$

and hence $\beta \alpha_k (1 - \cos \omega)^k = \beta + \sum_{j=1}^k \beta \alpha_k b_j \cos(j\omega)$. Since $|\beta \alpha_k (1 - \cos \omega)^k| = O(|\omega|^{2k})$ as $\omega \to 0$, it follows from the lemma that $c_j = \beta \alpha_k b_j$ for $j = 1, 2, \ldots, k$, and therefore (2.5) holds. \Box

Corollary 2.6. Let a_0 be as in (2.1). Then $(-1)^k a_0 > 0$ and

(2.7)
$$\widehat{\psi}_k(\omega) = \frac{(-1)^k a_0 \alpha_k}{\omega^{2k+1}} \int_0^\omega (1 - \cos t)^k dt, \quad \omega \neq 0.$$

Proof. It follows from (2.1) that $\widehat{\psi}_k(\omega) = \frac{(-1)^k}{\omega^{2k+1}} f(\omega)$, where $f(\omega) := a_0\omega + \sum_{j=1}^k 2(a_j - a_{j+1})\sin(j\omega)$. Since ψ_k is supported on [-k, k] and positive on (-k, k), it follows that $\widehat{\psi}_k$ is continuous (in fact entire) and $\widehat{\psi}_k(0) > 0$. Consequently, $|f(\omega)| = O(|\omega|^{2k+1})$ as $\omega \to 0$. Since f is infinitely differentiable, it follows that $|f'(\omega)| = |a_0 + \sum_{j=1}^k 2j(a_j - a_{j+1})\cos(j\omega)| = O(|\omega|^{2k})$ as $\omega \to 0$, and so by Theorem 2.4, $f'(\omega) = a_0\alpha_k(1 - \cos\omega)^k$. Since f(0) = 0, we can write $f(\omega) = \int_0^\omega f'(t) dt = a_0\alpha_k \int_0^\omega (1 - \cos t)^k dt$, and hence obtain (2.7). That $(-1)^k a_0 > 0$ is now evident since $0 < \widehat{\psi}_k(0) = \lim_{\omega \to 0^+} \widehat{\psi}_k(\omega)$.

Remark. At this point, it is also easy to show that

$$\widehat{\psi}_k(\omega) = \frac{(-1)^k a_0}{\omega^{2k+1}} (\omega + \sum_{j=1}^k b_j \sin(j\omega)), \quad \omega \neq 0,$$

where the scalars $\{b_i\}$ are determined by the fact that $\hat{\psi}_k$ is continuous at 0.

Theorem 2.8. For $k \in \{1, 2, 3, ...\}$, ψ_k has Sobolev regularity k; that is, there exist constants $B_k \ge A_k > 0$ such that

(2.9)
$$A_k(1+|\omega|^2)^{-k} \le \widehat{\psi}_k(\omega) \le B_k(1+|\omega|^2)^{-k}, \quad \omega \in \mathbb{R}.$$

Proof. As in the proof of Corollary 2.6, let us write $\widehat{\psi}_k(\omega) = \frac{(-1)^k}{\omega^{2k+1}} f(\omega)$, where $f(\omega) := a_0\omega + \sum_{j=1}^k 2(a_j - a_{j+1}) \sin(j\omega)$. Since $\lim_{\omega \to \infty} \frac{f(\omega)}{\omega} = a_0$, it follows that $\lim_{w \to \infty} w^{2k}\psi_k(w) = (-1)^k a_0$. Since $(-1)^k a_0 > 0$ (by Corollary 2.6), it follows that there exists N > 0 such that (2.9) holds for $\omega \ge N$. That $\widehat{\psi}_k(\omega) > 0$ for all $\omega > 0$ follows easily from Corollary 2.6, and since $\widehat{\psi}_k$ is continuous and $\widehat{\psi}_k(0) > 0$, we see that (2.9) holds for $0 \le \omega \le N$. We finally conclude that (2.9) holds for all $\omega \in \mathbb{R}$ since $\widehat{\psi}_k$ is an even function. \Box

We now show that the degree of ψ_k is minimal.

Theorem 2.10. If ψ is an even, compactly supported, piecewise polynomial satisfying (2.9), then the degree of ψ is at least 2k.

Proof. Let ψ be an even, compactly supported piecewise polynomial satisfying (2.9) and let the ℓ -th derivative of ψ be the first discontinuous derivative of ψ (if ψ is itself discontinuous then $\ell = 0$). Then $D^{\ell+1}\psi$ can be written as

(2.11)
$$D^{\ell+1}\psi = g + \sum_{j=1}^{n} \sqrt{2\pi}c_j \delta_{x_j},$$

where $g \in L_1(\mathbb{R})$ and c_j is the height (possibly 0) of the jump discontinuity at x_j . We can then express the Fourier transform of ψ as

$$\widehat{\psi}(\omega) = (\imath\omega)^{-\ell-1} \left(D^{\ell+1}\psi \right) \widehat{}(\omega) = (\imath\omega)^{-\ell-1} (\widehat{g}(\omega) + \Theta(\omega)),$$

where $\Theta(\omega) = \sum_{j=1}^{n} c_j e^{-ix_j \omega}$. Since Θ is bounded and $|\hat{g}(\omega)|$ has limit 0 as $|\omega| \to \infty$ (by the Riemann-Lebesgue lemma), it follows that $|\hat{\psi}(\omega)| = O(|\omega|^{-\ell-1})$ as $|\omega| \to \infty$. With the left side of (2.9) in view, we conclude that $\ell + 1 \leq 2k$. Since Θ is a non-trivial almost periodic function (see [2, pp.9–14]), it follows that $|\Theta(\omega)| \neq o(1)$ as $|\omega| \to \infty$, and with the right side of (2.9) in view, we see that $\ell + 1 \geq 2k$. Therefore, $\ell + 1 = 2k$ and we conclude that ψ_k is 2k - 2 times continuously differentiable. Since ψ_k is compactly supported (ie. ψ_k is not a polynomial), it follows that ψ_k has degree at least 2k - 1 (see [1, pp. 96-120]). In order to show that the degree of ψ_k is at least 2k, let us assume to the contrary that the degree equals 2k - 1. In this case the $\ell = 2k - 1$ derivative of ψ_k is piecewise constant and hence g = 0 and $\hat{\psi}(\omega) = (-1)^k \omega^{-2k} \Theta(\omega)$. Since $\hat{\psi}$ is continuous at 0, it follows that $\Theta(0) = 0$. Since Θ is an almost periodic function, there exist values $\omega_1 < \omega_2 < \cdots$ such that $\lim_{n\to\infty} \omega_n = \infty$ and $\lim_{n\to\infty} \Theta(\omega_n) = 0$; but this contradicts the left side of (2.9). Therefore, ψ has degree at least 2k. \Box

References

- C. de Boor, A practical guide to splines, Applied Mathematical Sciences 27, Springer-Verlag, New York, 1978.
- 2. C. Corduneanu, Almost periodic functions, Chelsea Publishing Company, New York, 1989.
- 3. R. Schaback, The missing Wendland functions, Adv. Comp. Math. 34 (2011), 67–81.
- H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comp. Math. 4 (1995), 389–396.
- 5. H. Wendland, *Scattered Data Approximation*, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2005.