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Abstract. For k ∈ {1, 2, 3, . . . }, we construct an even compactly supported piecewise poly-

nomial ψk whose Fourier transform satisfies Ak(1 + ω2)−k ≤ bψk(ω) ≤ Bk(1 + ω2)−k, ω ∈ R,
for some constants Bk ≥ Ak > 0. The degree of ψk is shown to be minimal, and is strictly

less than that of Wendland’s function φ1,k−1 when k > 2. This shows that, for k > 2, Wend-
land’s piecewise polynomial φ1,k−1 is not of minimal degree if one places no restrictions on

the number of pieces.

1. Introduction

A function Φ ∈ L1(R
d) is said to have Sobolev regularity k > 0 if its Fourier transform

Φ̂(ω) := (2π)−d/2
∫

Rd Φ(x)e−ıx·ω dx satisfies

A(1 + ‖ω‖2)−k ≤ Φ̂(ω) ≤ B(1 + ‖ω‖2)−k, ω ∈ R
d,

for some constants B ≥ A > 0. Such functions are useful in radial basis function methods
since the generated native space will equal the Sobolev space W k

2 (Rd). The reader is re-
ferred to Schaback [3] for a description of the current state of the art in the construction of
compactly supported functions Φ having prescribed Sobolev regularity. Wendland (see [4]
and [5]) has constructed radial functions Φd,ℓ(x) = φd,ℓ(‖x‖), where φd,ℓ is a piecewise poly-

nomial of the form φd,ℓ(t) =

{
p(|t|), |t| ≤ 1

0, |t| > 1
, p being a polynomial. For d ∈ {1, 2, 3, . . .}

and ℓ ∈ {0, 1, 2, . . .}, with the case d = 1, ℓ = 0 excluded, Φd,ℓ has Sobolev regularity
k = ℓ+(d+1)/2 and the degree of the piecewise polynomial φd,ℓ, namely ⌊d/2⌋+3ℓ+1, is
minimal with respect to this property. A natural question to ask is whether the degree of
φd,ℓ would still be minimal if we considered functions of the form Φ(x) = φ(‖x‖) where φ is
a piecewise polynomial having bounded support. In this note, we answer this question in
the univariate case d = 1. Specifically, we construct a compactly supported even piecewise
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polynomial ψk, with Sobolev regularity k (see Theorem 2.8), and we show that the degree
of ψk, namely 2k, is minimal (see Theorem 2.10). In comparison with Wendland’s function
Φ1,k−1 (which has Sobolev regularity k when k > 1), we see that degψk = deg φ1,k−1, if
k = 2, while degψk = 2k < 3k − 2 = deg φ1,k−1 when k > 2.

2. Results

Wendland’s piecewise polynomial φd,ℓ can be identified as a constant multiple of the
B-spline having ℓ+ 1 knots at the nodes −1 and 1 and ⌊d/2⌋+ ℓ+ 1 knots at 0. This can
be verified simply by observing that φd,ℓ and the above-mentioned B-spline have the same
degree, ⌊d/2⌋ + 3ℓ + 1, and satisfy the same number of continuity conditions across each
of the nodes −1, 0, 1, namely ⌊d/2⌋+ 2ℓ+ 1 at −1, 1 and 2ℓ+ 1 at 0. It is well understood
in the theory of B-splines that multiple knots are to be avoided if one wishes to keep the
degree low, and with this in mind, we define ψk as follows. For k = 1, 2, 3, . . . , let ψk be
the B-spline having knots −k, . . . ,−2,−1, 0; 0, 1, 2, . . . , k (note that 0 is the only double
knot). For easy reference, we display ψk(t) (normalized) for t ∈ [0, k] and k = 1, 2, 3:

ψ1(t) = (1 − t)2, ψ2(t) =

{
8 − 24t2 + 24t3 − 7t4, t ∈ [0, 1]

(2 − t)4, t ∈ (1, 2]

ψ3(t) =






198 − 270t2 + 270t4 − 180t5 + 37t6, t ∈ [0, 1]

153 + 270t− 945t2 + 900t3 − 405t4 + 90t5 − 8t6, t ∈ (1, 2]

(3 − t)6, t ∈ (2, 3]

We begin by mentioning several salient facts about the B-spline ψk which can be found in
[1, pp. 108–131]. The piecewise polynomial ψk is supported on [−k, k], positive on (−k, k),
even and of degree 2k. Furthermore, it is 2k−1 times continuously differentiable on R\{0}
and 2k−2 times continuously differentiable on all of R. It follows from this that the 2k−1
order derivative, D2k−1ψk, is a piecewise linear function which is supported on [−k, k] and
is continuous except at the origin where it has a jump discontinuity. Consequently, the 2k
order derivative has the form

D2kψk =
√

2πa0δ0 +
k∑

j=1

√
2πaj(χ[j−1,j)

+ χ
[−j,1−j)

),

for some constants a0, a1, a2, . . . , ak and where δ0 is the Dirac δ-distribution defined by
δ0(f) = f(0). We can thus express the Fourier transform of D2kψk as

(
D2kψk

)
(̂ω) = a0 + 2

k∑

j=1

aj
sin(jω) − sin((j − 1)ω)

ω
= a0 +

k∑

j=1

2(aj − aj+1)
sin(jω)

ω
,

with ak+1 := 0, whence it follows that

(2.1) ψ̂k(ω) = (ıω)−2k
(
D2kψk

)
(̂ω) =

(−1)k

ω2k+1



a0ω +

k∑

j=1

2(aj − aj+1) sin(jω)



 .



A. AL-RASHDAN & M.J. JOHNSON 3

Lemma 2.2. Let β ∈ R. Then there exist unique scalars c1, c2, . . . , ck ∈ R such that

(2.3)

∣∣∣∣∣∣
β +

k∑

j=1

cj cos(jω)

∣∣∣∣∣∣
= O(|ω|2k

) as ω → 0.

Proof. Define g(w) = β +
∑k

i=1 ci cos(iω). Since g ∈ C∞(R) is even, (2.3) holds if and
only if D2ℓg(0) = 0 for ℓ = 0, 1, 2, . . . , k − 1. These conditions form the system of linear
equations [c1, c2, . . . , ck]A = [−β, 0, 0, . . . , 0], where A is the k×k matrix given by A(i, j) =
(−1)j−1i2j−2. Writing A(i, j) = (−i2)j−1, we recognize A as a nonsingular Vandermonde
matrix, and therefore, (2.3) holds if and only if [c1, c2, . . . , ck] = [−β, 0, 0, . . . , 0]A−1. �

Theorem 2.4. Let β, c1, c2, . . . , ck ∈ R be such that (2.3) holds. Then

(2.5) β +
k∑

j=1

cj cos(jω) = βαk(1 − cosω)k, ω ∈ R,

where αk > 0 is defined by 1
αk

= 1
π

∫ π

0
(1 − cosω)k dω.

Proof. Since cosj ω ∈ span{1, cosω, cos 2ω, . . . , cos kω} for j = 0, 1, . . . , k, it follows that

there exist bj ∈ R such that (1 − cosω)k = b0 +
∑k

j=1 bj cos(jω). Note that

0 <
1

αk
=

1

π

∫ π

0

(1 − cosω)k dω =
1

π

∫ π

0

b0 dω +
k∑

j=1

bj
1

π

∫ π

0

cos(jω) dω = b0,

and hence βαk(1− cosω)k = β+
∑k

j=1 βαkbj cos(jω). Since
∣∣βαk(1 − cosω)k

∣∣ = O(|ω|2k
)

as ω → 0, it follows from the lemma that cj = βαkbj for j = 1, 2, . . . , k, and therefore
(2.5) holds. �

Corollary 2.6. Let a0 be as in (2.1). Then (−1)ka0 > 0 and

(2.7) ψ̂k(ω) =
(−1)ka0αk

ω2k+1

∫ ω

0

(1 − cos t)k dt, ω 6= 0.

Proof. It follows from (2.1) that ψ̂k(ω) = (−1)k

ω2k+1 f(ω), where f(ω) := a0ω +
∑k

j=1 2(aj −
aj+1) sin(jω). Since ψk is supported on [−k, k] and positive on (−k, k), it follows that ψ̂k

is continuous (in fact entire) and ψ̂k(0) > 0. Consequently, |f(ω)| = O(|ω|2k+1
) as ω → 0.

Since f is infinitely differentiable, it follows that |f ′(ω)| =
∣∣∣a0 +

∑k
j=1 2j(aj − aj+1) cos(jω)

∣∣∣ =

O(|ω|2k
) as ω → 0, and so by Theorem 2.4, f ′(ω) = a0αk(1 − cosω)k. Since f(0) = 0,

we can write f(ω) =
∫ ω

0
f ′(t) dt = a0αk

∫ ω

0
(1 − cos t)k dt, and hence obtain (2.7). That

(−1)ka0 > 0 is now evident since 0 < ψ̂k(0) = limω→0+ ψ̂k(w). �

Remark. At this point, it is also easy to show that

ψ̂k(ω) =
(−1)ka0

ω2k+1
(ω +

k∑

j=1

bj sin(jω)), ω 6= 0,

where the scalars {bj} are determined by the fact that ψ̂k is continuous at 0.
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Theorem 2.8. For k ∈ {1, 2, 3, . . .}, ψk has Sobolev regularity k; that is, there exist
constants Bk ≥ Ak > 0 such that

(2.9) Ak(1 + |ω|2)−k ≤ ψ̂k(ω) ≤ Bk(1 + |ω|2)−k, ω ∈ R.

Proof. As in the proof of Corollary 2.6, let us write ψ̂k(ω) = (−1)k

ω2k+1 f(ω), where f(ω) :=

a0ω+
∑k

j=1 2(aj−aj+1) sin(jω). Since limω→∞

f(ω)
ω = a0, it follows that limw→∞ w2kψk(w) =

(−1)ka0. Since (−1)ka0 > 0 (by Corollary 2.6), it follows that there exists N > 0 such

that (2.9) holds for ω ≥ N . That ψ̂k(ω) > 0 for all ω > 0 follows easily from Corollary

2.6, and since ψ̂k is continuous and ψ̂k(0) > 0, we see that (2.9) holds for 0 ≤ ω ≤ N . We

finally conclude that (2.9) holds for all ω ∈ R since ψ̂k is an even function. �

We now show that the degree of ψk is minimal.

Theorem 2.10. If ψ is an even, compactly supported, piecewise polynomial satisfying
(2.9), then the degree of ψ is at least 2k.

Proof. Let ψ be an even, compactly supported piecewise polynomial satisfying (2.9) and let
the ℓ-th derivative of ψ be the first discontinuous derivative of ψ (if ψ is itself discontinuous
then ℓ = 0). Then Dℓ+1ψ can be written as

(2.11) Dℓ+1ψ = g +

n∑

j=1

√
2πcjδxj

,

where g ∈ L1(R) and cj is the height (possibly 0) of the jump discontinuity at xj . We can
then express the Fourier transform of ψ as

ψ̂(ω) = (ıω)−ℓ−1
(
Dℓ+1ψ

)
(̂ω) = (ıω)−ℓ−1(ĝ(ω) + Θ(ω)),

where Θ(ω) =
∑n

j=1 cje
−ıxjω. Since Θ is bounded and |ĝ(ω)| has limit 0 as |ω| → ∞ (by

the Riemann-Lebesgue lemma), it follows that
∣∣∣ψ̂(ω)

∣∣∣ = O(|ω|−ℓ−1
) as |ω| → ∞. With

the left side of (2.9) in view, we conclude that ℓ+ 1 ≤ 2k. Since Θ is a non-trivial almost
periodic function (see [2, pp.9–14]), it follows that |Θ(ω)| 6= o(1) as |ω| → ∞, and with the
right side of (2.9) in view, we see that ℓ+ 1 ≥ 2k. Therefore, ℓ+ 1 = 2k and we conclude
that ψk is 2k − 2 times continuously differentiable. Since ψk is compactly supported (ie.
ψk is not a polynomial), it follows that ψk has degree at least 2k− 1 (see [1, pp. 96-120]).
In order to show that the degree of ψk is at least 2k, let us assume to the contrary that
the degree equals 2k− 1. In this case the ℓ = 2k− 1 derivative of ψk is piecewise constant

and hence g = 0 and ψ̂(ω) = (−1)kω−2kΘ(ω). Since ψ̂ is continuous at 0, it follows that
Θ(0) = 0. Since Θ is an almost periodic function, there exist values ω1 < ω2 < · · · such
that limn→∞ ωn = ∞ and limn→∞ Θ(ωn) = 0; but this contradicts the left side of (2.9).
Therefore, ψ has degree at least 2k. �
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