MINIMAL DEGREE UNIVARIATE PIECEWISE POLYNOMIALS WITH PRESCRIBED SOBOLEV REGULARITY

Amal Al-Rashdan \& Michael J. Johnson*
Department of Mathematics
Kuwait University
P.O. Box: 5969 Safat 13060 Kuwait
yohnson1963@hotmail.com*

Abstract

For $k \in\{1,2,3, \ldots\}$, we construct an even compactly supported piecewise polynomial ψ_{k} whose Fourier transform satisfies $A_{k}\left(1+\omega^{2}\right)^{-k} \leq \widehat{\psi}_{k}(\omega) \leq B_{k}\left(1+\omega^{2}\right)^{-k}, \omega \in \mathbb{R}$, for some constants $B_{k} \geq A_{k}>0$. The degree of ψ_{k} is shown to be minimal, and is strictly less than that of Wendland's function $\phi_{1, k-1}$ when $k>2$. This shows that, for $k>2$, Wendland's piecewise polynomial $\phi_{1, k-1}$ is not of minimal degree if one places no restrictions on the number of pieces.

1. Introduction

A function $\Phi \in L_{1}\left(\mathbb{R}^{d}\right)$ is said to have Sobolev regularity $k>0$ if its Fourier transform $\widehat{\Phi}(\omega):=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \Phi(x) e^{-\imath x \cdot \omega} d x$ satisfies

$$
A\left(1+\|\omega\|^{2}\right)^{-k} \leq \widehat{\Phi}(\omega) \leq B\left(1+\|\omega\|^{2}\right)^{-k}, \quad \omega \in \mathbb{R}^{d}
$$

for some constants $B \geq A>0$. Such functions are useful in radial basis function methods since the generated native space will equal the Sobolev space $W_{2}^{k}\left(\mathbb{R}^{d}\right)$. The reader is referred to Schaback [3] for a description of the current state of the art in the construction of compactly supported functions Φ having prescribed Sobolev regularity. Wendland (see [4] and [5]) has constructed radial functions $\Phi_{d, \ell}(x)=\phi_{d, \ell}(\|x\|)$, where $\phi_{d, \ell}$ is a piecewise polynomial of the form $\phi_{d, \ell}(t)=\left\{\begin{array}{ll}p(|t|), & |t| \leq 1 \\ 0, & |t|>1\end{array}, p\right.$ being a polynomial. For $d \in\{1,2,3, \ldots\}$ and $\ell \in\{0,1,2, \ldots\}$, with the case $d=1, \ell=0$ excluded, $\Phi_{d, \ell}$ has Sobolev regularity $k=\ell+(d+1) / 2$ and the degree of the piecewise polynomial $\phi_{d, \ell}$, namely $\lfloor d / 2\rfloor+3 \ell+1$, is minimal with respect to this property. A natural question to ask is whether the degree of $\phi_{d, \ell}$ would still be minimal if we considered functions of the form $\Phi(x)=\phi(\|x\|)$ where ϕ is a piecewise polynomial having bounded support. In this note, we answer this question in the univariate case $d=1$. Specifically, we construct a compactly supported even piecewise

Key words and phrases. positive definite function, compactly supported, B-spline.
polynomial ψ_{k}, with Sobolev regularity k (see Theorem 2.8), and we show that the degree of ψ_{k}, namely $2 k$, is minimal (see Theorem 2.10). In comparison with Wendland's function $\Phi_{1, k-1}$ (which has Sobolev regularity k when $k>1$), we see that $\operatorname{deg} \psi_{k}=\operatorname{deg} \phi_{1, k-1}$, if $k=2$, while $\operatorname{deg} \psi_{k}=2 k<3 k-2=\operatorname{deg} \phi_{1, k-1}$ when $k>2$.

2. Results

Wendland's piecewise polynomial $\phi_{d, \ell}$ can be identified as a constant multiple of the B-spline having $\ell+1$ knots at the nodes -1 and 1 and $\lfloor d / 2\rfloor+\ell+1$ knots at 0 . This can be verified simply by observing that $\phi_{d, \ell}$ and the above-mentioned B-spline have the same degree, $\lfloor d / 2\rfloor+3 \ell+1$, and satisfy the same number of continuity conditions across each of the nodes $-1,0,1$, namely $\lfloor d / 2\rfloor+2 \ell+1$ at $-1,1$ and $2 \ell+1$ at 0 . It is well understood in the theory of B-splines that multiple knots are to be avoided if one wishes to keep the degree low, and with this in mind, we define ψ_{k} as follows. For $k=1,2,3, \ldots$, let ψ_{k} be the B-spline having knots $-k, \ldots,-2,-1,0 ; 0,1,2, \ldots, k$ (note that 0 is the only double knot). For easy reference, we display $\psi_{k}(t)$ (normalized) for $t \in[0, k]$ and $k=1,2,3$:

$$
\begin{aligned}
& \psi_{1}(t)=(1-t)^{2}, \quad \psi_{2}(t)= \begin{cases}8-24 t^{2}+24 t^{3}-7 t^{4}, & t \in[0,1] \\
(2-t)^{4}, & t \in(1,2]\end{cases} \\
& \psi_{3}(t)= \begin{cases}198-270 t^{2}+270 t^{4}-180 t^{5}+37 t^{6}, & t \in[0,1] \\
153+270 t-945 t^{2}+900 t^{3}-405 t^{4}+90 t^{5}-8 t^{6}, & t \in(1,2] \\
(3-t)^{6}, & t \in(2,3]\end{cases}
\end{aligned}
$$

We begin by mentioning several salient facts about the B-spline ψ_{k} which can be found in [1, pp. 108-131]. The piecewise polynomial ψ_{k} is supported on $[-k, k]$, positive on $(-k, k)$, even and of degree $2 k$. Furthermore, it is $2 k-1$ times continuously differentiable on $\mathbb{R} \backslash\{0\}$ and $2 k-2$ times continuously differentiable on all of \mathbb{R}. It follows from this that the $2 k-1$ order derivative, $D^{2 k-1} \psi_{k}$, is a piecewise linear function which is supported on $[-k, k]$ and is continuous except at the origin where it has a jump discontinuity. Consequently, the $2 k$ order derivative has the form

$$
D^{2 k} \psi_{k}=\sqrt{2 \pi} a_{0} \delta_{0}+\sum_{j=1}^{k} \sqrt{2 \pi} a_{j}\left(\chi_{[j-1, j)}+\chi_{[-j, 1-j)}\right),
$$

for some constants $a_{0}, a_{1}, a_{2}, \ldots, a_{k}$ and where δ_{0} is the Dirac δ-distribution defined by $\delta_{0}(f)=f(0)$. We can thus express the Fourier transform of $D^{2 k} \psi_{k}$ as

$$
\left(D^{2 k} \psi_{k}\right) \uparrow(\omega)=a_{0}+2 \sum_{j=1}^{k} a_{j} \frac{\sin (j \omega)-\sin ((j-1) \omega)}{\omega}=a_{0}+\sum_{j=1}^{k} 2\left(a_{j}-a_{j+1}\right) \frac{\sin (j \omega)}{\omega}
$$

with $a_{k+1}:=0$, whence it follows that

$$
\begin{equation*}
\widehat{\psi}_{k}(\omega)=(\imath \omega)^{-2 k}\left(D^{2 k} \psi_{k}\right) \uparrow(\omega)=\frac{(-1)^{k}}{\omega^{2 k+1}}\left(a_{0} \omega+\sum_{j=1}^{k} 2\left(a_{j}-a_{j+1}\right) \sin (j \omega)\right) \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let $\beta \in \mathbb{R}$. Then there exist unique scalars $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left|\beta+\sum_{j=1}^{k} c_{j} \cos (j \omega)\right|=O\left(|\omega|^{2 k}\right) \text { as } \omega \rightarrow 0 \tag{2.3}
\end{equation*}
$$

Proof. Define $g(w)=\beta+\sum_{i=1}^{k} c_{i} \cos (i \omega)$. Since $g \in C^{\infty}(\mathbb{R})$ is even, (2.3) holds if and only if $D^{2 \ell} g(0)=0$ for $\ell=0,1,2, \ldots, k-1$. These conditions form the system of linear equations $\left[c_{1}, c_{2}, \ldots, c_{k}\right] A=[-\beta, 0,0, \ldots, 0]$, where A is the $k \times k$ matrix given by $A(i, j)=$ $(-1)^{j-1} i^{2 j-2}$. Writing $A(i, j)=\left(-i^{2}\right)^{j-1}$, we recognize A as a nonsingular Vandermonde matrix, and therefore, (2.3) holds if and only if $\left[c_{1}, c_{2}, \ldots, c_{k}\right]=[-\beta, 0,0, \ldots, 0] A^{-1}$.
Theorem 2.4. Let $\beta, c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$ be such that (2.3) holds. Then

$$
\begin{equation*}
\beta+\sum_{j=1}^{k} c_{j} \cos (j \omega)=\beta \alpha_{k}(1-\cos \omega)^{k}, \quad \omega \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

where $\alpha_{k}>0$ is defined by $\frac{1}{\alpha_{k}}=\frac{1}{\pi} \int_{0}^{\pi}(1-\cos \omega)^{k} d \omega$.
Proof. Since $\cos ^{j} \omega \in \operatorname{span}\{1, \cos \omega, \cos 2 \omega, \ldots, \cos k \omega\}$ for $j=0,1, \ldots, k$, it follows that there exist $b_{j} \in \mathbb{R}$ such that $(1-\cos \omega)^{k}=b_{0}+\sum_{j=1}^{k} b_{j} \cos (j \omega)$. Note that

$$
0<\frac{1}{\alpha}{ }_{k}=\frac{1}{\pi} \int_{0}^{\pi}(1-\cos \omega)^{k} d \omega=\frac{1}{\pi} \int_{0}^{\pi} b_{0} d \omega+\sum_{j=1}^{k} b_{j} \frac{1}{\pi} \int_{0}^{\pi} \cos (j \omega) d \omega=b_{0}
$$

and hence $\beta \alpha_{k}(1-\cos \omega)^{k}=\beta+\sum_{j=1}^{k} \beta \alpha_{k} b_{j} \cos (j \omega)$. Since $\left|\beta \alpha_{k}(1-\cos \omega)^{k}\right|=O\left(|\omega|^{2 k}\right)$ as $\omega \rightarrow 0$, it follows from the lemma that $c_{j}=\beta \alpha_{k} b_{j}$ for $j=1,2, \ldots, k$, and therefore (2.5) holds.

Corollary 2.6. Let a_{0} be as in (2.1). Then $(-1)^{k} a_{0}>0$ and

$$
\begin{equation*}
\widehat{\psi}_{k}(\omega)=\frac{(-1)^{k} a_{0} \alpha_{k}}{\omega^{2 k+1}} \int_{0}^{\omega}(1-\cos t)^{k} d t, \quad \omega \neq 0 \tag{2.7}
\end{equation*}
$$

Proof. It follows from (2.1) that $\widehat{\psi}_{k}(\omega)=\frac{(-1)^{k}}{\omega^{2 k+1}} f(\omega)$, where $f(\omega):=a_{0} \omega+\sum_{j=1}^{k} 2\left(a_{j}-\right.$ $\left.a_{j+1}\right) \sin (j \omega)$. Since ψ_{k} is supported on $[-k, k]$ and positive on $(-k, k)$, it follows that $\widehat{\psi}_{k}$ is continuous (in fact entire) and $\widehat{\psi}_{k}(0)>0$. Consequently, $|f(\omega)|=O\left(|\omega|^{2 k+1}\right)$ as $\omega \rightarrow 0$. Since f is infinitely differentiable, it follows that $\left|f^{\prime}(\omega)\right|=\left|a_{0}+\sum_{j=1}^{k} 2 j\left(a_{j}-a_{j+1}\right) \cos (j \omega)\right|=$ $O\left(|\omega|^{2 k}\right)$ as $\omega \rightarrow 0$, and so by Theorem 2.4, $f^{\prime}(\omega)=a_{0} \alpha_{k}(1-\cos \omega)^{k}$. Since $f(0)=0$, we can write $f(\omega)=\int_{0}^{\omega} f^{\prime}(t) d t=a_{0} \alpha_{k} \int_{0}^{\omega}(1-\cos t)^{k} d t$, and hence obtain (2.7). That $(-1)^{k} a_{0}>0$ is now evident since $0<\widehat{\psi}_{k}(0)=\lim _{\omega \rightarrow 0^{+}} \widehat{\psi}_{k}(w)$.
Remark. At this point, it is also easy to show that

$$
\widehat{\psi}_{k}(\omega)=\frac{(-1)^{k} a_{0}}{\omega^{2 k+1}}\left(\omega+\sum_{j=1}^{k} b_{j} \sin (j \omega)\right), \quad \omega \neq 0
$$

where the scalars $\left\{b_{j}\right\}$ are determined by the fact that $\widehat{\psi}_{k}$ is continuous at 0 .

Theorem 2.8. For $k \in\{1,2,3, \ldots\}, \psi_{k}$ has Sobolev regularity k; that is, there exist constants $B_{k} \geq A_{k}>0$ such that

$$
\begin{equation*}
A_{k}\left(1+|\omega|^{2}\right)^{-k} \leq \widehat{\psi}_{k}(\omega) \leq B_{k}\left(1+|\omega|^{2}\right)^{-k}, \quad \omega \in \mathbb{R} \tag{2.9}
\end{equation*}
$$

Proof. As in the proof of Corollary 2.6, let us write $\widehat{\psi}_{k}(\omega)=\frac{(-1)^{k}}{\omega^{2 k+1}} f(\omega)$, where $f(\omega):=$ $a_{0} \omega+\sum_{j=1}^{k} 2\left(a_{j}-a_{j+1}\right) \sin (j \omega)$. Since $\lim _{\omega \rightarrow \infty} \frac{f(\omega)}{\omega}=a_{0}$, it follows that $\lim _{w \rightarrow \infty} w^{2 k} \psi_{k}(w)=$ $(-1)^{k} a_{0}$. Since $(-1)^{k} a_{0}>0$ (by Corollary 2.6), it follows that there exists $N>0$ such that (2.9) holds for $\omega \geq N$. That $\widehat{\psi}_{k}(\omega)>0$ for all $\omega>0$ follows easily from Corollary 2.6, and since $\widehat{\psi}_{k}$ is continuous and $\widehat{\psi}_{k}(0)>0$, we see that (2.9) holds for $0 \leq \omega \leq N$. We finally conclude that (2.9) holds for all $\omega \in \mathbb{R}$ since $\widehat{\psi}_{k}$ is an even function.

We now show that the degree of ψ_{k} is minimal.
Theorem 2.10. If ψ is an even, compactly supported, piecewise polynomial satisfying (2.9), then the degree of ψ is at least $2 k$.

Proof. Let ψ be an even, compactly supported piecewise polynomial satisfying (2.9) and let the ℓ-th derivative of ψ be the first discontinuous derivative of ψ (if ψ is itself discontinuous then $\ell=0$). Then $D^{\ell+1} \psi$ can be written as

$$
\begin{equation*}
D^{\ell+1} \psi=g+\sum_{j=1}^{n} \sqrt{2 \pi} c_{j} \delta_{x_{j}} \tag{2.11}
\end{equation*}
$$

where $g \in L_{1}(\mathbb{R})$ and c_{j} is the height (possibly 0) of the jump discontinuity at x_{j}. We can then express the Fourier transform of ψ as

$$
\widehat{\psi}(\omega)=(\imath \omega)^{-\ell-1}\left(D^{\ell+1} \psi\right) \uparrow(\omega)=(\imath \omega)^{-\ell-1}(\widehat{g}(\omega)+\Theta(\omega))
$$

where $\Theta(\omega)=\sum_{j=1}^{n} c_{j} e^{-\imath x_{j} \omega}$. Since Θ is bounded and $|\widehat{g}(\omega)|$ has limit 0 as $|\omega| \rightarrow \infty$ (by the Riemann-Lebesgue lemma), it follows that $|\widehat{\psi}(\omega)|=O\left(|\omega|^{-\ell-1}\right)$ as $|\omega| \rightarrow \infty$. With the left side of (2.9) in view, we conclude that $\ell+1 \leq 2 k$. Since Θ is a non-trivial almost periodic function (see [2, pp.9-14]), it follows that $|\Theta(\omega)| \neq o(1)$ as $|\omega| \rightarrow \infty$, and with the right side of (2.9) in view, we see that $\ell+1 \geq 2 k$. Therefore, $\ell+1=2 k$ and we conclude that ψ_{k} is $2 k-2$ times continuously differentiable. Since ψ_{k} is compactly supported (ie. ψ_{k} is not a polynomial), it follows that ψ_{k} has degree at least $2 k-1$ (see [1, pp. 96-120]). In order to show that the degree of ψ_{k} is at least $2 k$, let us assume to the contrary that the degree equals $2 k-1$. In this case the $\ell=2 k-1$ derivative of ψ_{k} is piecewise constant and hence $g=0$ and $\widehat{\psi}(\omega)=(-1)^{k} \omega^{-2 k} \Theta(\omega)$. Since $\widehat{\psi}$ is continuous at 0 , it follows that $\Theta(0)=0$. Since Θ is an almost periodic function, there exist values $\omega_{1}<\omega_{2}<\cdots$ such that $\lim _{n \rightarrow \infty} \omega_{n}=\infty$ and $\lim _{n \rightarrow \infty} \Theta\left(\omega_{n}\right)=0$; but this contradicts the left side of (2.9). Therefore, ψ has degree at least $2 k$.

REfERENCES

1. C. de Boor, A practical guide to splines, Applied Mathematical Sciences 27, Springer-Verlag, New York, 1978.
2. C. Corduneanu, Almost periodic functions, Chelsea Publishing Company, New York, 1989.
3. R. Schaback, The missing Wendland functions, Adv. Comp. Math. 34 (2011), 67-81.
4. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comp. Math. 4 (1995), 389-396.
5. H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2005.
