
B-form basics
C. de Boor

0. Introduction; notation This paper lists the essential facts about the repre-
sentation of polynomials in m variables as Bernstein polynomials. An expanded version
may appear elsewhere.

While univariate Bernstein polynomials are well studied - see, e.g., Lorentz’ classical
book Lorentz (1953), - the multivariate version has only attracted attention sporadically.
Lorentz’ book devotes just one page to the two most direct generalizations: the tensor
product or coordinate degree generalization, and the total degree generalization which is
the topic of the present paper.

Motivation for the paper comes from computer-aided geometric design where, through
the initiative of de Casteljau and Bézier, the Bernstein polynomials of mostly one variable
have become the main tool for the representation and computational use of pp (:= piece-
wise polynomial) functions. Farin’s work Farin (1979), Farin (1980) brought popularity
and understanding to the use of bivariate Bernstein polynomials, and my own understand-
ing starts from that work. My own interest has been started and repeatedly reinforced
by work with smooth pp functions in two or more variables (de Boor and Höllig (1983),
(1986)), in which their representation in terms of Bernstein polynomials, i.e., their B-
net, for short, plays an essential role, since it reflects so nicely, and far better than other
standard representations, the interplay between the geometry of the underlying triangular
partition and the smoothness requirements.

For the sake of brevity, and since there are several people and ideas responsible, I
am proposing here the term B-form (and correspondingly, B-net) for what would, more
properly, be called the barycentric-Bernstein-de Casteljau-Bézier-Farin- · · · -form.
I apologize to de Casteljau and Farin and · · · for the slight they might feel.

While the bivariate and trivariate situation is of most practical interest, I have chosen
here to record the facts in the general m-dimensional context. This forces careful consider-
ation of notation and brings out the essential mathematical aspects and surprising beauty
of the B-form.

I will adhere to the following notational conventions: I won’t bother with boldface,
arrows, or underlines to distinguish points in IRm from other objects. The j-th component
of a point x ∈ IRm I will denote by x(j) (rather than xj). I will use standard multi-index
notation throughout. Thus

xα := x(1)α(1)x(2)α(2) · · ·x(m)α(m)

with α ∈ ZZm , i.e., α an m-vector with integer entries. The normalized monomial is so
handy a function that it deserves a special symbol:

[[x]]
α

:= xα/α! =

m
∏

j=1

x(j)α(j)/α(j)!, (0.1)

hence [[x]]
α

= [[x(1)]]
α(1)

[[x(2)]]
α(2)

· · · [[x(m)]]
α(m)

, with the conventions

[[z]]
n

=

{

1, if n = 0;
0, if n < 0.
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In these terms, the multinomial theorem (for the power of a vector sum) takes the very
simple form

[[x + y + · · ·+ z]]
α

=
∑

ξ+υ+···+ζ=α

[[x]]
ξ
[[y]]

υ
· · · [[z]]

ζ
,

whose proof by induction on the length

|α| :=

m
∑

j=1

α(j)

of α is immediate. It is possible (and a useful exercise) to build the entire discussion of
the B-form on this identity.

The normalization of the monomials used here also makes differentiation neat. With

Dα := D
α(1)

1 D
α(2)

2 · · ·D α(m)
m

and Djf the partial derivative of f : IRm → IR with respect to its j-th argument, we have

Dα[[ ]]
β

= [[ ]]
β−α

.

Hence

Dα[[0]]
β

= δαβ , (0.2)

showing that {[[ ]]
α

: |α| ≤ k, α ∈ ZZ m
+ } is linearly independent. Their span

πk := span{[[ ]]
α

: |α| ≤ k, α ∈ ZZ m
+ }

is, by definition, the collection of all polynomials of degree ≤ k. We conclude that

dimπk = #{[[ ]]
α

: |α| ≤ k, α ∈ ZZ m
+ } =

(

m + k

k

)

. (0.3)

While the power form

p =
∑

|α|≤k

[[ ]]
α
c(α)

(with c(α) =
(

Dαp
)

(0), by (0.2)) is the standard mathematical representation for p ∈ πk,
it is not suited for work with pp functions since it provides explicit information only about
the behavior of p near 0. By contrast, the B-form (with respect to some (m + 1)-set
V ⊂ IRm) provides explicit information about the behavior of p at all the faces of the
convex hull

[V ]

of V . This makes it appropriate for the representation of smooth multivariate pp functions
over a triangular partition.
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1. Linear interpolation A set V of m+1 points in IRm is said to be in general
position in case every linear polynomial on IRm can be written in terms of its values on
V , i.e.,

∀p ∈ π1 p =
∑

v∈V

ξvp(v) . (1.1)

There are equivalent definitions of this term. E.g., V is in general position in case its affine
hull is all of IRm, or, in case the simplex [V ] is proper, or if the m + 1 vectors (v|1), v ∈ V
in IRm+1 are linearly independent, etc. But I stick with the above definition since it uses
the property of immediate interest here. In this way we associate with each such V m + 1
linear polynomials ξv, v ∈ V , characterized by the fact that (1.1) holds. In particular, with
p the constant polynomial, we find that

1 =
∑

v∈V

ξv, (1.2)

while, with p : x 7→ x(j), we get

x(j) =
∑

v∈V

ξv(x)v(j)

for j = 1, · · · , m, hence

∀x x =
∑

v∈V

ξv(x)v. (1.3)

We conclude that the vector
ξ(x) :=

(

ξv(x)
)

v∈V
(1.4)

provides the barycentric coordinates for x with respect to V . Note that I have chosen
here to use the points in V (rather than the integers from 0 to m, or from 1 to m + 1) to
index the components of the vector ξ(x). This unorthodox notation is more to the point
since it does not impose some artificial order on the vertices v; it also simplifies notation.

Since dim π1 = m + 1, we conclude from (1.1) that
(

ξv

)

v∈V
is a basis for π1. In

particular, the representation (1.1) is unique. Therefore

p =
∑

v∈V

ξva(v) =⇒ ∀v ∈ V p(v) = a(v). (1.5)

We conclude that
ξw(v) = δwv, (1.6)

hence
affine(V \w) = kerξw := {x ∈ IRm : ξw(x) = 0}. (1.7)

2. Definition of the B-form The B-form for p ∈ πk is a somewhat unexpected
generalization of the linear interpolation formula (1.1), viz.

p = (ξE)kc(0). (2.1)
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Here, c is a mesh function and ξE is a difference operator, and the formula is to
be read as an instruction: “Apply the difference operator ξE k times, starting with the
mesh function c, then evaluate the resulting mesh function at the mesh point 0.”

This definition of the B-form is unorthodox. In effect, I propose here to use de Castel-
jau’s algorithm (de Casteljau (1959)) as the definition, and to derive the other properties
of the B-form from this algorithm. Implicit in this is the claim that this provides a more
efficient path to these properties than standard approaches.

Consider now this definition more explicitly. The c appearing in (2.1) is a meshfunc-
tion, i.e., defined on the mesh of nonnegative integer points

α :=
(

α(v)
)

v∈V
∈ ZZ V

+ ,

and the difference operator ξE acts on mesh functions by the rule

(ξE)c(α) :=
∑

v∈V

ξvc(α + ev), (2.2)

with ev the unit vector given by ev(w) := δvw.
If k = 0, then we are to apply the difference operator no times, i.e., then

p = c(0).

If k = 1, then we are to apply the difference operator one time, i.e, then

p =
∑

v∈V

ξvc(ev).

This is just (1.1) again, in slightly changed notation, i.e., c(ev) = p(v), v ∈ V .
If k = 2, then we are to apply the difference operator two times, i.e., then

p =
∑

v∈V

∑

w∈V

ξvξwc(ev + ew).

For general k,

p =
∑

u∈V

∑

v∈V

· · ·
∑

w∈V

ξuξv · · · ξw c(eu + ev + · · · + ew), (2.3)

and this shows that the function p given by (2.1) is a polynomial of degree ≤ k
since it shows that p is a linear combination of products of k linear polynomials. This also
shows that, for the purpose of the definition (2.1), we only need to know c at meshpoints
of the form

eu + ev + · · · + ew

involving exactly k summands, i.e., at all mesh points α ∈ ZZ V
+ with

|α| :=
∑

v∈V

α(v) = k.
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Writing (2.3) in terms of distinct meshpoints α ∈ ZZ V
+ , we get

p =
∑

|α|=k

Bαc(α), (2.4)

with

Bα := |α|![[ξα]] =

(

|α|

α

)

ξα

and
[[ξ]]

α
:=

∏

v∈V

[[ξv]]
α(v)

=
∏

v∈V

ξv
α(v)/α(v)!.

The multinomial coefficient
(

|α|
α

)

= |α|!/
∏

v∈V α(v)! appears here in accordance with
the multinomial theorem, but its precise value is not important here. The only thing that
matters is that there are exactly

#{α ∈ ZZ V
+ : |α| = k} = #{β ∈ ZZ m

+ : |β| ≤ k} = dim πk

summands in (2.4) . Hence, necessarily
(

Bα

)

|α|=k
and

(

ξα
)

|α|=k
are both bases for πk,

provided we can convince ourselves that every p ∈ πk can be written in the form
(2.3) or (2.4). But that is not hard to do. Observe that every p ∈ πk can be written as
a sum of products of k linear polynomials, − e.g.,

∀|β| ≤ k xβ =
(

∏

β(j)>0

(

x(j)
)β(j)

)

(

1
)k−|β|

,

− and each linear polynomial can be written as a linear combination of the ξv as in (1.1).
Thus, for every p ∈ πk, there is a collection of k-tuples (q, r, · · · , s) of linear polynomials
so that

p =
∑

(q,r,···,s)

qr · · · s

=
∑

(q,r,···,s)

(

∑

u∈V

ξuq(u)
)(

∑

v∈V

ξvr(v)
)

· · ·
(

∑

w∈V

ξws(w)
)

=
∑

u,v,···,w

ξuξv · · · ξw

∑

(q,r,···,s)

q(u)r(v) · · · s(w)

which shows our claim.
In particular, the representation (2.4) is unique, i.e., for each p ∈ πk, there is exactly

one choice for c(α), |α| = k, so that (2.1) (or, equivalently (2.4)) holds.

Since
∑

|α|=k Bα =
(
∑

v∈V ξv

)k
= 1, the basis

(

Bα

)

|α|=k
forms a partition of unity,

and this partition of unity is nonnegative on [V ] since the barycentric coordinates are
nonnegative there.
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Further, Bα is unimodal on [V ], and the coefficient c(α) has its biggest
influence on p in [V ] at the point

vα :=
∑

v∈V

vα(v)/|α| (2.5)

since Bα, and equivalently ξα, takes its maximum over [V ] at vα. For this, and many
other, reasons, the pointset

{
(

vα, c(α)
)

∈ IRm+1 : |α| = k, α ∈ ZZ V
+ } (2.6)

in IRm+1 is given special attention. It is called the B-net for p. The points which make
up the B-net are often called the Bézier control points for p.

The point of the formulation (2.1) is to avoid having to deal with expressions like (2.3)
and to operate, calculate and reason directly with the simple expression (2.1) according to
the operations it prescribes. The next two sections may make this clearer.

3. Evaluation of the B-form Evaluation of the B-form (2.1) at some point x
requires k-fold application of the difference operator ξ(x)E. Since we are only interested in
(

ξ(x)E
)k

c at the meshpoint 0, we only need to apply the difference operator ”at” certain
meshpoints. Precisely, we calculate

c1(α) :=
(

ξ(x)E
)

c(α) =
∑

v∈V

ξv(x)c(α + ev) for |α| = k − 1

and this only requires knowledge of c(α) for |α| = k. Then we calculate

c2(α) :=
(

ξ(x)E
)

c1(α) =
∑

v∈V

ξv(x)c1(α + ev) for |α| = k − 2

and this only requires knowledge of c1(α) for |α| = k − 1. In this way, we calculate

cj(α) :=
(

ξ(x)E
)

cj−1(α) =
∑

v∈V

ξv(x)cj−1(α + ev) for |α| = k − j

for j = 1, · · · , k (and with c0 = c), and the final calculation gives

p(x) = ck(0) =
(

ξ(x)E
)

ck−1(0) =
∑

v∈V

ξv(x)ck−1(ev).

In this description, I used different meshfunctions cj to avoid confusion. But, since cj

is only considered and generated at meshpoints α with |α| = k − j, we might as well use
the same letter c for all of them. Thus, the evaluation amounts to generating the whole
(m + 1)-simplex

c(α), |α| ≤ k,
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of numbers from its base
c(α), |α| = k,

by the calculation

for j = 1, · · · , k, do:

c(α) =
(

ξ(x)E
)

c(α) =
∑

v∈V

ξv(x)c(α + ev), |α| = k − j.
(3.1)

While the base of this discrete simplex never changes, the layers built upon it do
depend on x. Its apex, c(0), provides the desired number p(x). We will see later that the
numbers c(α), |α| < k, generated here also provide useful information about p.

Figure 3 shows the meshpoints of interest for the case m = 2, i.e., the bivariate
case. In this case, the mesh points have three components, corresponding to the fact
that a two-dimensional simplex has three vertices. Correspondingly, each of the mesh
point layers |α| = k − j of interest forms a triangle in this case, and the total set forms a
tetrahedron. For m = 1, the meshpoints of interest would form a triangle. This is quite
familiar from the evaluation of univariate polynomials, e.g., from their Newton form in
which one also generates a triangular array of numbers.

keu

kew

kev

|α| = k

|α| = k − 1

eu

ev
ew

Figure 3. The meshpoint simplex for evaluation

Figure 3 also shows the typical stencil of the difference operator which, for the calcu-
lation of

(

ξ(x)E
)

c(β) =
∑

v∈V

ξv(x)c(β + ev),

requires one to go from meshpoint β into each of the m + 1 coordinate directions, picking
up the value of c at the m + 1 meshpoints β + ev, v ∈ V reached, multiplying that value
with the number ξv(x) and then summing these products over v to obtain the value of
(

ξ(x)E
)

c at β. Recall that
∑

v∈V ξv(x) = 1, hence application of the difference operator
ξ(x)E always amounts to averaging. If x ∈ [V ], then this average is proper since then
ξ(x) ≥ 0. Thus,
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p(x) is a convex combination of {c(α), |α| = k} in case x ∈ [V ]. (3.2)

As an example, consider the calculation of p(w) for some w ∈ V . Since ξ(w) = ew,
the difference operator simplifies in this case to

(

ξ(w)E
)

c(β) = c(β + ew),

i.e., we merely pick up the value at the next meshpoint in the w-direction. We conclude
that therefore

p(w) = c(kew) for w ∈ V . (3.3)

As another example, consider the calculation of p(x) for some x ∈ [V \u]. Now ξu(x) =
0, hence

(

ξ(x)E
)

c(β) =
∑

v∈(V \u)

ξv(x)c(β + ev).

We conclude that, in this case, p(x) is a convex combination of just the coefficients c(α)
with |α| = k and α(u) = 0. More generally,

x ∈ [V \ U ] =⇒ p(x) ∈ [c(α) : |α| = k, supp α ⊂ (V \ U)] (3.4)

To put it differently: For W ⊂ V , the coefficients for the B-form (with respect to
W ) of the restriction of p to the affine hull of W are provided by the restriction
of c to the corresponding mesh “simplex” {α ∈ ZZ V

+ : |α| = k, supp α ⊂ W}. In
these terms, (3.3) provides the extreme case W = {w}.

4. Differentiation of the B-form The directional derivative Dyf of the
function f on IRm in the direction y is, by definition, given by the rule

(

Dyf
)

(x) := lim
t→0

f(x + ty) − f(x)

t
.

Hence, in terms of the partial derivatives,

Dy =

m
∑

j=1

y(j)Dj .

(This would suggest the alternative notation yD for the operator Dy or of Eξ for ξE.)
It requires nothing more than the chain rule to differentiate the B-form:

Dyp = Dy

(

ξE
)k

c(0) =
(

ξE
)k−1

k
(

DyξE
)

c(0). (4.1)

Since ξ(x) is the unique solution of the linear system

∑

v

ξv(x) = 1,
∑

v

ξv(x)v = x,
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we have ξ(x + ty) − ξ(x) = tη(y), with η(y) the unique solution of

∑

v

ηv(y) = 0,
∑

v

ηv(y)v = y.

E.g.,
η(w − v) = ew − ev, w ∈ V \v. (4.2)

Thus, with
cy :=

(

η(y)E
)

c, (4.3a)

we obtain explicitly the B-form

Dyp =
(

ξE
)k−1

kcy(0) (4.3b)

for the polynomial Dyp. Therefore, at a vertex,

Dyp(v) = kcy

(

(k − 1)ev

)

= k
(

η(y)E
)

c
(

(k − 1)ev

)

, v ∈ V.

In particular, from (4.2),

Dw−vp(v) =
c
(

(k − 1)ev + ew

)

− c(kev)

1/k
, w ∈ V \v,

hence the m + 1 distinct points

{
(

vα, c(α)
)

∈ IRm+1 : α = (k − 1)ev + ew, w ∈ V }

with
vα :=

∑

v∈V

vα(v)/|α| (4.4)

all lie on the tangent plane to p at v and therefore determine that plane. This is a
further indication of the usefulness of the B-net for p, which, to recall from (2.6), is the
collection of points

{
(

vα, c(α)
)

∈ IRm+1 : |α| = k, α ∈ ZZ V
+ }.

Higher derivatives are obtained by iteration of this process. If Y ⊂ IRm \ 0 contains
r points, then

DY p :=
(

∏

y∈Y

Dy

)

p =
k!

(k − r)!

(

ξE
)k−r

cY (0) (4.5a)

with
cY (α) :=

∏

y∈Y

(

η(y)E
)

c(α), |α| = k − r. (4.5b)

The evaluation of such a derivative at some point proceeds just as the evaluation of
p itself, except that different difference operators are to be used at different stages. The
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order in which these are applied is immaterial since all (constant coefficient) difference
operators commute.

5. A Taylor formula By the binomial theorem and the fact that ξ(x + y) =
ξ(x) + η(y),

p(x + y) =
(

ξ(x + y)E
)k

c(0) =
k

∑

r=0

(

k

r

)

(

ξ(x)E
)k−r(

η(y)E
)r

c(0). (5.1)

Since
(

k

r

)

(

ξ(x)E
)k−r(

η(y)E
)r

c(0) =
1

r!

(

D r
y p

)

(x)

by (4.5), we recognize in (5.1) the standard Taylor formula

p(x + y) = p(x) +
(

Dyp
)

(x) +
1

2

(

D 2
y p

)

(x) + · · ·

6. Invariance under an affine change of variables Any affine change of
variables leaves the B-form unchanged. More precisely, if also W is an (m + 1)-point set
in IRm in general position, and f is an affine map so that f(W ) = V , then the B-form for
the polynomial q := p ◦ f with respect to W has again c as its coefficient sequence, in the
following sense. With ξ′(x) the barycentric coordinates of x with respect to W ,

q(x) = p(f(x)) =
(

ξ(x)E
)k

c(0) =
(

ξ′(x)E
)k

cf (0),

where
cf (α) := c(α ◦ f−1).

7. Integration of the B-form It is possible to express the integral of p over [V ]
quite simply in terms of the B-form:

∫

[V ]

p =
volm[V ]
(

k+m
k

)

∑

|α|=k

c(α). (7.1)

In effect, this identity claims that
∫

[V ]
Bα only depends on |α|. The quickest way to see

this is to realize that
∫

[V ]

Bα =

∫

[W ]

1,

with W the (m+1+k)-set in IRm+k generated from V and α by thinking of V as a subset
of IRm+k and adjoining to it, for each v ∈ V , α(v) points of the form (v, ej), with the unit

vectors ej ∈ IRk different from point to point.
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8. Product of two B-forms The B-form of the product of two polynomials is
obtainable from their B-forms with the aid of a few factorials:

(

ξE
)k

c(0)
(

ξE
)h

d(0) =
(

ξE
)k+h

c ∗ d(0)

with
c ∗ d(γ) :=

∑

α+β=γ

c(α)d(β)Cα,β (8.1)

and

Cα,β :=

(

|α|
α

)(

|β|
β

)

(

|α+β|
α+β

)
,

since

BαBβ =

(

|α|

α

)

ξα

(

|β|

β

)

ξβ = Cα,βBα+β.

The special choice d(β) = 1, |β| = h, gives the formula

(

ξE
)k

c(0) =
(

ξE
)k+h

c′(0)

with
c′(γ) :=

∑

α+β=γ

c(α)Cα,β, |γ| = k + h.

The particular case h = 1 of such degree raising has received special attention.

9. Degree raising Observe that

[[ξ]]
α

=
(

∑

v

ξv

)

[[ξ]]
α

=
∑

v

(

α(v) + 1
)

[[ξ]]
α+ev .

Hence
∑

|α|=k

Bαc(α) = k!
∑

|α|=k

∑

v

(

α(v) + 1
)

[[ξ]]
α+evc(α)

= k!
∑

|α|=k+1

[[ξ]]
α

∑

v

α(v)c(α − ev).

Conclude that
∑

|α|=k

Bαc(α) =
∑

|α|=k+1

Bα

(

Rc
)

(α) (9.1)

with
(

Rc
)

(α) :=
∑

v∈V

c(α − ev)α(v)/|α|. (9.2)

Note that (9.1-2) requires knowledge of c(β) for β with |β| = k and with, possibly, a
negative entry. This presents no difficulty, though, since all such values are multiplied by
zero, hence are not really needed.
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Since vα =
∑

v∈V vα−ev
α(v)/|α|, formula (9.2) can be interpreted as linear interpo-

lation at the point vα by the plane or linear polynomial through the points

(

vβ , c(β)
)

with β = α − ev, v ∈ V.

This draws further attention to the control polytope for p, i.e., the piecewise linear
function obtained from the B-net

{
(

υα, c(α)
)

: |α| = k}

by local linear interpolation.

10. The Bernstein polynomial The Bernstein polynomial for f of order
k with respect to V is, by definition, the particular polynomial

Bkf :=
∑

|α|=k

Bαf(vα). (10.1)

The Bernstein polynomial provides an approximation to f which, on [V ], converges uni-
formly to f as k → ∞ in case f is continuous (cf. Lorentz (1953), p.51). The convergence
is monotone in case f is V-convex in the sense that each of the univariate functions
t 7→ f(x + t(v − w)) is convex (Berens (1976)). Moreover, in this case, Bkf is also V -
convex. But Bkf need not be convex even if f is (Stancu (1959), Berens (1976), Chang
and Davis (1984)).

The B-form
(

ξE
)k

c(0) for p ∈ πk (with respect to V ) provides the essential information
about any f for which p = Bkf . We have

p = Bkf ⇐⇒ ∀|α| = k f(vα) = c(α). (10.2)

The simplest such functions f are the control polytopes for p, i.e., the piecewise linear
interpolants to the data

(

vα, c(α)
)

, |α| = k. (10.3)

For this reason, we denote any such control polytope by

B−1
k p. (10.4)

I have used the plural here advisedly since, for m > 2, there are several equally
reasonable piecewise linear interpolants, as has been rightfully stressed and detailed by
Dahmen and Micchelli in [13]. Different interpolants differ in how the points {vα : |α| = k}
are connected to produce a triangulation, i.e., a partition into simplices, for the simplex
[V ]. The typical triangulation is obtained by choosing an ordering v0, v1, . . . , vm of the
vertex set V , thus obtaining the directions di := vi−vi−1, i = 1, . . . , m. The corresponding
triangulation with meshpoints {vα : |α| = k} for V consists of all simplices in [V ] of the
form

σα,q := vα + [0, dq(1), dq(1) + dq(2), . . . , dq(1) + · · · + dq(m)]/k
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with |α| = k and q a permutation of the first m integers. Thus,

σα,q = [vα0
, . . . , vαm

],

with
α0 := α,

αj := αj−1 + evq(j)
− evq(j)−1

, j = 1, . . . , m.

A simplex may appear in the triangulation only for certain orderings of V and not for
others. To see this, observe that two points vα and vβ will be vertices for the same simplex
if and only if their difference can be written as a sum of some of the vectors dj/k. If we
order the entries of α and β to correspond to the ordering of the vertex set used, writing,
e.g., α(j) instead of α(vj), this means that either β − α or else α − β must be writable as
a sum of distinct vectors of the form ej − ej−1. For example, for m = 3 and k = 2, the
two vertices v(1,0,0,1) and v(0,1,1,0) are not connected by a meshline (in the triangulation
corresponding to the ordering used), while the two vertices v(0,1,0,1) and v(1,0,1,0) are. This
shows that the reordering v1, v0, v2, v3 would connect the former and disconnect the latter.

On the other hand, the simplices

[vβ−ev
: v ∈ V ] with |β| = k + 1

involved in degree raising are part of any such triangulation since, in terms of the particular
ordering used,

[vβ−ev
: v ∈ V ] = σα,q

with α = β − evm
and q(j) = m + 1 − j, j = 1, . . . , m. Thus, regardless of the particular

ordering of the vertex set V used, the resulting piecewise linear interpolant B−1
k p to the

data (10.3) will agree with B−1
k+1p at the basepoints vβ , |β| = k + 1, as we saw in §9.

This implies, by induction, that the Lipschitz constant (over [V ]) for any B−1
k+np, n > 0,

is no bigger than that for B−1
k p, hence the sequence

(

B−1
k+np

)

has uniform limit points. It

implies further that B−1
k+np converges pointwise to some function f as n → ∞, hence f is

the uniform limit of B−1
k+np. But this limit function is necessarily p since

p = Bk+nB−1
k+np = Bk+nf + Bk+n(B−1

k+np − f) −→ f, as n → ∞

using the facts that Bk+nf converges to f and ‖Bk+n(B−1
k+np − f)‖ ≤ ‖B−1

k+np − f‖ → 0.
Since local linear interpolation preserves convexity, we conclude that p is convex in

case its control polytope B−1
k p is.

11. Boundary behavior We now come to the heart of the B-form. We consider
how to extract from the B-form of p information about its behavior on the boundary of
the simplex [V ].

The boundary of [V ] is made up of faces, i.e., of convex hulls of subsets of V . For any
W ⊂ V , we call [W ] the W -face of [V ]. The (proper) faces of highest dimension are the
facets of [V ]. We find it convenient to call the (V \w)-face of [V ] the w-facet of [V ]. In
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other words, we identify the faces of the simplex by the set of vertices contained in them,
but identify a facet by the sole vertex not contained in it.

Recall from Section 3 that, on the W -face, p is entirely determined by c(α) with
supp α ⊂ W . Recall from Section 4 that the tangent plane for p at the vertex w is entirely
determined by c(α) with α = (k − 1)ew + ev, v ∈ V . We can describe this last set also as

{α : |α|V \w ≤ 1},

using the abbreviation

|α|W :=
∑

v∈W

α(v).

This makes it easy to recognize both of these facts as special cases of the following theorem.

Theorem All derivatives of p of order ≤ ρ on the W -face are determined by

c(α), |α|\W ≤ ρ. (11.1)

If the W -face in question is a facet, say the w-facet, then the coefficients involved
are those c(α) with α(w) ≤ ρ. In the whole coefficient-“simplex”, these occupy layers
0, 1, · · · , ρ “parallel” to the w-facet, i.e., the layers c(α), α(w) = j, with j = 0, 1, · · · , ρ.

For the general W -face, the relevant coefficients are those no more than ρ steps away
from the corresponding coefficient “facet” c(α), supp α ⊂ W .

For the proof, observe that the Theorem’s claim is equivalent to the statement that
p vanishes ρ+ 1-fold on [W ] iff c(α) = 0 for |α|\W ≤ ρ. But this follows from the fact that
|α|\W + 1 gives the order to which ξα vanishes on [W ].

In terms of the B-net
bp := {(υα, c(α)

)

: α ∈ ZZ V
+ }

for p introduced in Section 4, the Theorem states that knowing all derivatives of order ≤ ρ
on the W -face is the same as knowing bp on all υα within ρ steps from that face. It is part
of the attraction of the B-net that it makes such neat geometric statements possible.

For the application of this theorem to the problem of smoothly fitting together poly-
nomial pieces, we must be prepared to express two such polynomial pieces in B-form with
respect to the same simplex. In approaching this problem, we give another proof of the
Theorem. The approach makes use of the polynomials whose B-form with respect to V is
part of the B-form for p.

12. The subpolynomials The evaluation of p ∈ πk and its derivatives from the
B-form proceeds by repeated differencing. It is a remarkable fact that this differencing
is uniform. Regardless of the meshpoint at which it is applied, the difference operator
is the same. This implies that, during the calculation of some information about
p, we are simultaneously computing the same information for a whole host of
polynomials, viz. all polynomials whose B-form coefficients (with respect to V )
form a subsimplex of those for p. These are the polynomials

pα :=
(

ξE
)k−|α|

c(α), |α| ≤ k. (12.1)
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For |α| = k, pα is the constant c(α), while, at the other extreme, p0 = p.
Since the B-form coefficients for such a pα form a subsimplex of the coefficient simplex

for p, the B-form coefficients of its derivative DY pα form a corresponding subsimplex of
those for DY p, up to a scalar factor. Precisely, from (4.5), with Y ⊂ IRm\0 and r := #Y ,
and |α| ≤ k − r,

DY pα =
(k − |α|)!

(k − |α| − r)!

(

ξE
)k−|α|−r

cY (α) (12.2)

with
cY :=

(

∏

y∈Y

η(y)E
)

c, (12.3)

while

DY p = DY p0 =
k!

(k − r)!

(

ξE
)k−r

cY (0).

This shows that, on the W -face, DY pα is determined by the numbers

cY (α + β), supp β ⊂ W, |β| = k − |α| − r, (12.4)

while DY p is determined there by the numbers

cY (γ), supp γ ⊂ W, |γ| = k − r. (12.5)

Now note that (12.4) is a subset of (12.5) exactly when supp α ⊂ W . Since pα is of
degree ≤ k − |α|, this implies that, for any α with supp α ⊂ W , we know all derivatives
of pα on the W -face, as soon as we know there all derivatives of p of order ≤ k − |α| .
But, knowing all the derivatives of a polynomial even at just one point determines that
polynomial entirely. This proves the following

Proposition Each pα depends linearly on p and its derivatives of order ≤ k − |α|
on [supp α].

Conversely, (12.5) is the union of all the sets (12.4) with supp α ⊂ W . This proves
the following restatement of Theorem 11.

Theorem Let p, q ∈ πk, W ⊂ V . Then

∀(Y ⊂ IRm\0, #Y ≤ r) DY p = DY q on the W -face ⇐⇒
∀(|α| = k − r, supp α ⊂ W ) pα = qα.

13. Change of V The subpolynomials pα introduced in the preceding section
depend on V . This is reflected in the notation since, after all, α is defined on V . But,
by Proposition 12, pα depends, more precisely, only on the points in supp α. To say it
differently:

Proposition If also V ′ is an (m + 1)-set in IRm in general position, and α ∈ ZZ V
+

has its support in V ∩ V ′, then

pα = pα′ ,
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with

α′ : V ′ → ZZ+ : v 7→

{

α(v), if v ∈ V ∩ V ′;

0, otherwise.

This is so because, by the proposition, pα only depends on p and its derivatives on
[supp α]. This suggests the identification of any two α, α′ which agree on their support,
and we will follow this suggestion from now on. In effect, we think of α as defined at all
the vertices that might enter the discussion, but to be zero on all but at most m + 1 of
them.

This makes it easy to describe the change of V , i.e., the derivation of the B-form
p =:

(

ξ′E
)

c′(0) for p with respect to V ′ from the B-form with respect to V . It is sufficient
to consider the case

V ′ = (V \w) ∪ w′,

since an arbitrary V ′ can be reached from V as the (m + 1)-st in a chain of (m + 1)-sets
whose neighbors only differ by one point.

The crucial observation is the following. The coefficient c′(α) is the extreme coefficient
(associated with the vertex w′) for the subpolynomial pβ with β = α−α(w′)ew′ . In other
words,

c′(α) = pβ(w′), with β := α − α(w′)ew′ . (13.1)

On the other hand, supp β ⊂ (V \w), hence

pβ =
(

ξE
)α(w′)

c(β). (13.2)

This implies that pβ is evaluated during the course of evaluation of p from its B-form with
respect to V . Specifically, we find c′(α) = pβ(w′) at position β in the (m + 1)-simplex
c(β), |β| ≤ k, generated during the evaluation of p at w′, i.e.,

c′(α) = c(α − α(w′)ew′), for |α| = k. (13.3)

In fact, since the evaluation of p at w′ from the B-form with respect to V proceeds
without any special attention paid to the vertex w, it follows that we are generating
simultaneously the B-form coefficients for p with respect to every one of the (m + 1) sets
V ′ obtainable from V by an exchange of some w ∈ V for w′. This provides a subdivision
algorithm. Choosing w′ somewhere in [V ], we obtain a triangulation of [V ] into at most
m + 1 nontrivial simplices [Vw], with Vw := (V \w) ∪ w′, and the coefficient simplex for
the B-form of p with respect to Vw is to be found in the w-facet of the (m + 1)-simplex
c(β), |β| ≤ k generated during the evaluation of p at w′.

14. Smoothness across an interface The matching of derivatives of polyno-
mial pieces across an interface between two simplices is easily described in terms of the
subpolynomials associated with that interface, since these describe completely the behav-
ior of a polynomial and its derivatives on that interface, by Theorem 12. The precise
statement of the smoothness conditions is made quite simple by our agreement to think of
meshpoints α as defined on all vertices that might appear in the discussion, with its value
usually zero, with at most m + 1 exceptions.
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Theorem Let p, q ∈ πk , let ρ ≤ k, and let V, V ′ be the vertex sets of two simplices

in a triangulation. Then the pp function

f : [V ] ∪ [V ′] → IR : x 7→

{

p(x), if x ∈ [V ];
q(x), if x ∈ [V ′],

is in Cρ if and only if

∀(supp α ⊂ V ∩ V ′, |α| = k − ρ) pα = qα. (14.1)

If V and V ′ differ by just one point,

V ′ = (V \w) ∪ w′,

say, and q =
(

ξ′E
)

c′(0) is the B-form for q with respect to V ′, then the condition (14.1)
reads more explicitly

∀(supp α ⊂ (V \w), k − ρ ≤ |α| ≤ k)
(

ξ(w′)E
)k−|α|

c(α) = c′(α + (k − |α|)ew′). (14.2)

Note that these conditions are independent of k and depend on α only in the
sense that the weights in the linear relations between c and c′ in (14.2) depend on ρ or
k−|α|, i.e., on the order of the derivatives being constrained to be continuous. This means
that, in studying a linear system of such conditions across one or more neighboring facets,
we can choose k at will, e.g., k = ρ.

In general, Cρ-continuity across the w-facet of [V ] imposes conditions which connect
c(α) for α(w) ≤ ρ with c′(α) for α(w′) ≤ ρ. The form (14.2) makes explicit that this
involves exactly

#{α ∈ ZZ V
+ : α(w) = 0, k − ρ ≤ |α| ≤ k}

linearly independent conditions, i.e., exactly as many conditions as there are degrees of
freedom in p and its directional derivatives of order ≤ ρ on the w-facet in some fixed
direction transversal to that facet.

15. The B-net Let ∆ be a triangulation of some domain in IRm. This means
that ∆ consists of simplices δ, with the intersection δ∩δ′ of any two always a face (possibly
the empty face) of both of them.

I denote by Vδ the vertex set of the simplex δ ∈ ∆, and by

V := ∪δ∈∆Vδ

the totality of the vertices of simplices of ∆. Denote by

A = Ak,∆ := {α ∈ ZZ V
+ : |α| = k, ∃δ ∈ ∆ supp α ⊂ Vδ}

the corresponding set of index meshpoints of interest. In words, these are elements of
ZZ V

+ , i.e., defined on V and with nonnegative integer entries. In addition, each α ∈ A has
support only on some Vδ and has length |α| = k.
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Consider now the space
S := πρ

k,∆

of pp functions of degree ≤ k on the triangulation ∆ and in Cρ. This means that each f ∈ S
agrees on each simplex in ∆ with some polynomial of degree ≤ k, and these polynomial
pieces fit together to form a function with r continuous derivatives.

Consider specifically
S0 := π0

k,∆,

the space of continuous pp functions (of degree ≤ k) on ∆. Since two of its polynomial
pieces on neighboring simplices fit together continuously exactly when their B-form coef-
ficients associated with the common face coincide, it is possible to describe an element f
of S0 by the meshfunction c defined on the mesh A and providing in

c(α), supp α ⊂ Vδ,

the B-form coefficients for the polynomial piece f|δ with respect to the vertex set Vδ of δ.
The B-net for such f is, by definition, the collection of points

(

vα, c(α)
)

, α ∈ A,

with
vα :=

∑

v∈V

vα(v)/|α|, α ∈ A.

While it is satisfactory to deal with the meshfunction c, the B-net reflects more ex-
plicitly the geometry of the situation. We think of the B-net as the function

bf : VA → IR : vα 7→ c(α)

on the discrete set
VA := {vα : α ∈ A},

which is a subset of the domain of f ∈ S0. The values of this discrete function at all the
points in some face of some δ determine f on that face. In particular,

f(v) = c(kev) = bf (v), v ∈ V.

Further, Cρ-continuity of f is equivalent to certain linear relations involving bf on points
at most ρ layers away from the facets of the δ. For example, C1-continuity is equivalent
to having each (m + 2)-tuple

(

vβ , bf(vβ)
)

, β = α + ev, v ∈ W

lie on a plane, with W the vertices of any two simplices having a facet in common, and
|β| = k − 1 with support only on the vertices common to both simplices. This localizes
the effect of such continuity conditions as much as possible.

30nov09 Corrected some misprints (in (3.3) and in the last display before Section 6),
and provided the missing Figure 3.
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