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This thesis investigates the problem of facial image amalj\duman faces contain a lot of infor-
mation that is useful for many applications. For instanke face and iris are important biometric
features for security applications. Facial activity as@ysuch as face expression recognition is
helpful for perceptual user interfaces. Developing newhoés to improve recognition perfor-
mance is a major concern in this thesis.

In approaching the recognition problem of facial image gsial the key idea is to use learning-
based methods whenever possible. For face recognitionyep®ge a face cyclograph represen-
tation to encode continuous views of faces, motivated bylpsyhysical studies on human object
recognition. For face expression recognition, we apply ahime learning technique to solve the
feature selection and classifier training problems simmeltaisly, even in the small sample case.

Iris recognition has high recognition accuracy among bimiméeatures, however, there are
still some issues to address to make more practical use dfitheOne major problem is how
to capture iris images automatically without user intaaacti.e., not asking users to adjust their
eye positions. Towards this goal, a two-camera system stimgiof a face camera and an iris
camera is designed and implemented based on facial landietektion. Another problem is iris
localization. A new type of feature based on texture diffieeis incorporated into an objective
function in addition to image gradient. By minimizing thegj@ttive function, the iris localization
performance can be improved significantly. Finally, a mdtisogproposed for iris encoding using
a set of specially designed filters. These filters can takaradge of efficient integral image

computation methods so that the filtering process is fast abemhow big the filters are.
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Chapter 1

I ntroduction

Computer vision is the study and application of methods éiflatv computers to understand
image content. The images can be single images or sequehtaages. One major goal of
computer vision research is to automatically recognizkaigjacts or scenes. In particular, humans
can recognize each other by looking at faces. As shown inr€igjui(a), we can recognize Tom
Cruise quickly from his face image without any problem, ewgth changes in expression, pose,
lighting, and hair style. A second ability of people whenking at faces is the ability to recognize
facial expressions such as smiling in Figure 1.1(b). Thesithis concerned with developing

improved methods for these two problems.

1.1 Recognition Problems

Recognizing faces and facial expressions are importalitie®for many practical applications.
Face expression recognition is useful for human-computeraction, perceptual user interfaces,
and interactive computer games [101] [92]. The face expyesscognition problem is challenging
because different individuals display the same expreddiiterently. Selecting the most relevant
features and ignoring unimportant features is a key stelwvirg) this problem. But previous
papers have not adequately addressed this issue.

Face recognition is an important biometric feature. Corapomal face recognition has been

studied for over 30 years [18] [135], but the performancdilsr®t high in comparison with face



(@) (b) ()

Figure 1.1 (a) A face image, (b) a smiling face image, and (3jia image.

recognition by people. Observations from biological wisgystems are helpful for designing com-
putational methods. Recent psychophysical studies shatvirttmans seem to represent objects as
a series of connected views instead of separate single VieM@$ [111] [12]. But it is not clear
how to develop a computational method that encodes and wsssgea of continuous views.

Another important biometric feature is the iris of the ey@shown in Figure 1.1 (c). Humans
do not use iris features to recognize each other, but it tomhshat iris features have been used to
obtain high recognition accuracy for security applicasif26]. Although iris recognition has high
accuracy, there are still some issues remaining for piaise of this biometric. For example, the
human iris is about 1cm in diameter, which is difficult to aapt Traditional systems capture iris
images by requiring user cooperation and interaction. $Jadjust their eye positions based on
feedback from the camera system [125]. Is it possible togahesn iris acquisition system without
user interactiot?

Another challenging problem in building iris recognitioystems is iris localization. Iris fea-

tures cannot be used for recognition unless the iris regitwcalized precisely. Classical methods

L“User cooperation is still required” means that the useughiok at the camera system. But users do not need
to adjust their eye positions.



for iris localization are Daugman’s integro-different@berator (IDO) [26] and Wildes’ Hough
transform [125]. When evaluated on a public iris databae#) methods achieve only about 85
- 88% localization rates, which means that about 12 - 15 % afy@s cannot be used for recog-
nition. Why don'’t classical methods work very well for irisdalization? By analyzing these
methods carefully, we found that all previous methods udg immage gradient information for
detecting iris boundaries. In order to improve iris localian performance, more information is
needed. But what kind of information can be added? And howdorporate that information?
This dissertation focuses on the above problems: face néttmg, face expression recognition,
and iris recognition. All these problems exploit inforneattifrom face images as shown in Figure
1.2. Usually the whole face is used for face recognitionrspéocal features are used for face ex-
pression recognition, and only the eye regions are used$aeicognition. The research emphasis

is to develop improved methods that exhibit high recogniperformance.

Figure 1.2 Facial image processing: face, face expresaiahiris recognition.



1.2 Learning-based Approaches

How can the facial recognition problems listed in previoest®n be solved more successfully?
In other words, what kinds of novel methods can be used toamgarecognition performance? We
use learning-based approaches. Because of the largeilgriaiihin each object class, model-
based approaches are difficult to define. On the contramnitegbased approaches circumvent
the difficulty in modeling and solve these problems in an igffitand robust way.

Learning-based approaches to computer vision problemsingly learning for vision is a
promising research direction. There are two classes of adstin machine leaning: generative
and discriminative learning methods. Generative methsdsnodels that “generate” the observed
data. The model is often a probability distribution. On thleep hand, discriminative methods
learn a function to discriminate among different classedath. Which method is best depends
on the task. The difference between generative and distaiime methods can be seen based on
a statistical viewpoint. As shown in Figure 1.3, generathethods usually learn the conditional
probability density functiom(z|C;), wherez is the data and’; represents the class. When the
prior, p(C;), is known for each class, a Bayesian decision can be madéafsification or recog-
nition. On the other hand, discriminative methods learnpibsterior probability density function,
p(Ci|x), or a decision boundary directly.

For the specific problem of face expression recognition re/asually we have a small number
of training examples, discriminative methods usually dret¢ter results than generative learning
methods. The new methods that we use are discriminativaifgpmethods, such as support
vector machines [121] and a linear programming technigli€l[Bese methods are evaluated and
compared with some existing generative methods experatignt hese results for face expression
recognition may also be useful for other computer visiorbfms.

For face recognition, the learning comes from studying athjecognition by people. Obser-
vations of the characteristics of biological vision sysseane important for designing computer

vision algorithms. Recent psychophysical studies showghaple seem to represent objects as
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Figure 1.3 A statistical view of the generative and discnative methods.

a series of connected views. Our research develops a conopatianethod to encode and use a
series of connected views for recognition.

For iris recognition, we focus on three sub-problems: idquasition, iris localization, and
iris encoding. For automatic iris capture without userratéion, we design a two-camera system
based on face anthropometry. The key observation is that@uametric measures have small
variations (within a few centimeters) over all races, gesdend ages. An AdaBoost-based detec-
tor [122] is developed for face and facial landmark detectithen, the eye region detected in one
camera is used to control another camera so that a high tiesoiis image can be captured.

To localize iris boundaries, a new type of high-level knage is used and a new energy
function is formulated. By minimizing this function, iri®¢alization performance is improved
significantly.

After irises are localized and normalized, the next issugois to encode the iris pattern. A
new set of filters is designed for this purpose. The new meltasdhigher recognition accuracy
and is faster than state-of-the-art methods.

To summarize the approaches to recognition problems sturdidis dissertation, a categoriza-

tion of learning for vision is shown in Figure 1.4.
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Figure 1.4 A categorization of learning for vision approagh
1.3 ThesisContributions

This thesis focuses mainly on learning-based approactibs facial image analysis problems
of face recognition, face expression recognition, andrgsognition. The major contributions

include:

e For face recognition, we use a representation called fackgsaphs in order to encode
continuous views of faces [47]. Our research then develogengutational method that
is inspired by psychophysical evidence for object repredem and recognition. When a
human head rotates in front of a stationary video cameraatospmporal face volume can
be constructed based on a fast face detector. A slicing igabims then used to analyze the
face volume and a composite image is generated which we tadkacyclograph. To match
two face cyclographs, a dynamic programming technique eésl is align and match face

cyclographs. We also introduce a technique for normalifaeg cyclographs.

e For face expression recognition, we apply a recent lineagnamming method that can se-
lect a small number of features simultaneously with classifaining [44] [46]. The method
was originally proposed by Bradley and Mangasarian [9]. Wansthat this method works
well for recognizing face expressions using a very small beirof features (usually less

than 20). This kind of result has never been reported in ptsviace expression recognition



work. We also address the problem of learning in the smallpdacase [46] and show that
this technique has the power to learn a classifier in the ssaatiple case, which was not

dealt with in the original paper [9].

e In iris recognition, first we present a two-camera systencéuturing eye images automat-
ically [52] instead of depending on user interaction tomligs or her eye’s position at the
center of the image. Second, we propose a new objectiveifumictr iris localization [51].
The new method incorporates the texture difference betweeiris and sclera or between
the iris and pupil, in addition to the intensity gradientighew method improves iris local-
ization performance significantly over traditional methodhird, we propose a new method
for iris encoding [50] [49] based on a new set of filters, chliEference-of-sum filters. The

new method has higher accuracy and is faster than previotiwose

1.4 ThesisOutline

Chapter 2 presents the problem of moving face representatid recognition. To simplify the
problem, we consider only single-axis rotations. Givencefeideo sequence with head rotation,
a spatiotemporal face volume is constructed first. Thercanglitechnique is presented to obtain a
face cyclograph. Some properties of the face cyclograptesentation are presented. After that,
two methods are developed for recognition based on the fadegraph representation. Finally,
recognition experiments are performed on a video databdkemwsre than 100 videos.

Chapter 3 considers the problem of face expression re¢ogniVe first introduce the linear
programming formulation which was first developed in [9].€flwe give a simple analysis that
shows why it can avoid the curse of dimensionality probleime Thethod is evaluated experimen-
tally and compared with other methods.

Chapter 4 investigates the problem of iris recognitionst-ive present a method for automatic
iris acquisition using a two-camera system. One is a lowlu®n “face camera” with a wide
field of view, and another is an “iris camera” with narrow fiefdview. Second, we describe a new

method for iris localization given an eye image. A new obyectunction is developed. We also



discuss the problem of model selection, i.e., circles vigpsals for representing the shape of the
iris, and present a new method for the mask computation #tratremove eyelid occlusion from
the extracted iris images. Iris localization experimemésg@erformed and compared with existing
methods. Third, we consider iris encoding. We present a nethod using a new set of filters,
called difference-of-sum filters. Experiments on iris affiog are performed and compared with
previous methods.

Chapter 5 extends the idea of iris capture using two camérhe.images taken by a high-
resolution digital camera can be used to enhance the lowititesn video images. Our first attempt
is to deal with a planar scene. As a result, we may acquirelai@golution video sequence.

Finally Chapter 6 concludes by summarizing contributiomd andicating future research di-

rections.



Chapter 2

Face Cyclographsfor Recognition

A new representation of faces, called face cyclographsjnbarporates all views of a rotating
face into a single image, is introduced in this chapter. Th@mmotivation for this representation
comes from recent psychophysical studies that show thabhsmse continuous image sequences
in object recognition. Face cyclographs are created binglispatiotemporal face volumes that
are constructed automatically based on real-time facecti@te This representation is a compact,
multiperspective, spatiotemporal description. To use falographs for face recognition, a dy-
namic programming based algorithm is developed. The matajactory image of the eye slice
is used to analyze the approximate single-axis motion anchalize the face cyclographs. Using

normalized face cyclographs can speed up the matchinggsoce

2.1 Motivation

Over the last several years there have been numerous advencapturing multiperspec-
tive images, i.e., combining (parts of) images taken fronitiple viewpoints into a single rep-
resentation that simultaneously encodes appearance framy miews. Multiperspective images
[130, 104] have been shown to be useful for a growing variétysks, notably scene visualiza-
tion (e.g., panoramic mosaics [93] [107]) and stereo reitooson [103]. Since one fundamental
goal of computer vision is object recognition [82], a questmay be asked: are multiperspective
images of benefit for object recognition?

Under normal conditions, 3D objects are always seen frontiphellviewpoints, either from a

continuously moving observer who walks around an objectyotuibning the object so as to see
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it from multiple sides. This suggests that a multiperspectepresentation of objects might be
useful.

Recently, psychophysical results have shown that the hiomaan represents objects as a series
of connected views [111] [123] [12]. In psychophysical expents by Stone [111], participants
learned sequences which showed 3D shapes rotating in ameupardirection. If participants had
to recognize the same object rotating in the opposite dinectt took them significantly longer
to recognize and the recognition rate decreased. Thistresmuhot be reconciled with traditional
view-based representations [115] whose recognition padace does not depend on the order
in which images are presented. Instead, it is argued in [fldt]temporal characteristics of the
learned sequences, such as the order of images, are closatyvined with object representa-
tion. These results and others from physiological stud&$ $upport the hypothesis that humans
represent objects as a series of connected views [12].

The findings from human recognition may give practical gonmafor developing better com-
putational object recognition systems. Bulthoff et aR][fpresented a method for face recognition
based on psychophysical results [111] [123] in which theywsid experimentally that the rep-
resentation of connected views gives much better recagniterformance than traditional view-
based methods. The main idea of their approach is to proocespat sequence frame-by-frame
by tracking local image patches to achieve segmentatiohe&equence into a series of time-
connected “key frames” or views. However, a drawback of #ey‘frames” representation is that
it heuristically chooses several single view images irste#fantegrating them together to form a
composite visual representation.

Can we integrate all continuous views of an object intsirggleimage representation? We
propose to incorporate all views of an object using the gyeph of the object [27], a type of
multiperspective image [104]. A cyclograph is generatecnvthe object rotates in front of a
static camera or the camera rotates around the object.

Cyclographs have a long history in photography. The firgmpatelated to making cyclographs

was issued in 1911 [27]. Historically, different names wesed, such as peripheral photographs,
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rollout photographs, and circumferential photographsypidal usage of the technique is in arche-
ology, such as the rollout display of Maya vases, as one ebeaimghown in Figure 2.1. The
basic idea of a peripheral photograph is to include in ondqgraph the front, sides, and back of
an object so that one could see all the detail contained osutface of the object at once [27].
The technique can also be used for other cylindrical (or@gprately cylindrical) objects such as
pistons, cylinders, earth core samples, potteryware,[2#]. For example, a peripheral photog-
raphy of a human head is shown in Figure 2.8ee [27] for details on how to change a regular

camera into a “strip” camera in order to capture periphenatpgraphs of objects.

Figure 2.1 Left: A rollout photograph of a Maya vase; Righhe®napshot of the Maya vase.

Cyclographs have been used in computer vision and compatehigs, including image-based
rendering [98] and stereo reconstruction [103] but, to cuovidedge, there is no previous work
using cyclographs for object recognition.

The rest of this chapter is organized as follows. Sectiorg®@s a short review of face recog-
nition approaches. Section 2.3 presents the analysis afghtotemporal volumef continuous
views of objects, and the generation of face cyclographsti@e2.4 describes properties of face

cyclographs especially for face recognition. Section 2&€sents two methods for face recognition

IThe Maya vase images are obtained from http://www.wideatdrprinters.org/MayaMaya vaserollout_book
/Mayanvaserollout book.html
2The head image is obtained from http://www.rit.edahdpph/travel-exhibit.html
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Figure 2.2 A peripheral photograph of a human head.

using face cyclographs. Experimental results are giverenti®n 2.6. Some issues are discussed

in Section 2.7.

2.2 Related Work

Face recognition is an important biometric feature and hentstudied for over 30 years.
Some survey papers [18] [135] cover most research topica@nriecognition. According to the
type of input data, face recognition includes still imagedzhand video based. Still image based
face recognition can be viewed as a pattern recognition@mobl hen we have two issues: feature
extraction and classification. For feature extractiors tftwork focuses on linear dimensionality
reduction such as principal component analysis (PCA) [&b®l] Fisher linear discriminant analy-
sis (FLD) [4], and nonlinear dimensionality reduction sashthe kernel PCA method [102]. For
classification, the support vector machine (SVM) method [1&s shown to have high recognition
accuracy [53] [56], and been used more and more in face réamgn

On the other hand, human faces share a similar geometnigatwte. The elastic bunch graph
matching (EBGM) method proposed by Wiskott et al. [128] takdvantage of the facial geometry
and faces are represented as graphs, with nodes positiditaeczal points, and edges labeled with

2D distance vectors. Each node contains a set of 40 complesr@avelet coefficients at different
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scales and orientations. Recognition is based on labe#gxhgr This kind of method has been used
in some commercial face recognition products.

Another representative method for still image based facegmeition is the Bayesian method
proposed by Moghaddam et al. [86]. The basic idea is to mbaelace recognition problem as
a two-class classification problem, i.e., intra-person iatef-person. Bayesian rules are used to
measure similarities. A drawback of this method is that aatdge has to be stored in order to
compute the image difference between a new test face anchtheng faces.

For video-based face recognition, there are some recembagpes. In [67] Gabor features
were extracted on a regular 2D grid and tracked using MonteoGaquential importance sam-
pling. The authors reported performance enhancement ofranee to frame matching scheme.
In another work [136], a framework was proposed to track aeagnize faces simultaneously by
adding an identification variable to the state vector in #euential importance sampling method.

In [66] a probabilistic appearance manifold was used toasgmt each face. Example faces in a
video were clustered by a k-means algorithm with each alustéed a pose manifold represented
by a plane computed by principal component analysis (PCA& donnectivity between the pose
manifolds encoded the transition probability between iesag each pose manifold.

In [70] hidden Markov models (HMM) were used. During the tiag stage, an HMM was
created to learn both the satistics and temporal dynameadaf individual. During the recognition
stage, the temporal characteristics of the face sequeni® amalyzed over time by the HMM
corresponding to each subject. The likelihood scores peal/by the HMMs were compared, and
the highest score determined the identity of a face in theosgkequence.

In [1] the autoregressive and moving average (ARMA) modet wsed to model a moving
face as a linear dynamic system and to perform recognitiegognition was performed using the
concept of subspace angles to compute distances betwdsnagond gallery video sequences.

Hadid and Pietikinen [54] recently analyzed several vidased face recognition approaches
and used the methods in [70] and [1] for experimental evaedoaf heir conclusion was that these
methods “do not systematically improve face recogniticults” [54]. Previous video-based face

recognition systems do not extract and use head motiomnaton explicitly, although video data
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has been used as the input either for training or testingofelasion, it is still not clear how to

use motion information to help face recognition.

2.3 Viewing Rotating Objects

Our goal is to develop a computational method that encodesatinuous views of faces for
face recognition. In some psychophysical experimentsctimected views of an object were
captured by object rotation in one particular directionq[L[12]. Following this approach, we
consider the class of single-axis rotations and associgtpearances as the basis for capturing the
continuous views of faces. The most natural rotations irttdép faces are when an erect person
rotates his or her head, resulting in an approximately shagis rotation about a vertical axis.
Many other objects have single-axis rotations as the magutal” way of looking at them. When
we see a novel object we usually do not see random views ofjeetdout in most cases we walk

around it or turn the object in our hand [12].

2.3.1 Spatiotemporal Volume

Suppose that a 3D object rotates about an axis in front of a&@nas shown in Figure 2.3,
where different circles represent different depths of theat, and a sequence of images are cap-
tured. Stacking together the sequence of images, a 3-diomagolume x-y-t, can be built, which

is called aspatiotemporal voluméAll continuous views are contained within this 3D voluméada

Rotation Axis

<

¥y
w? Z

Figure 2.3 A camera captures a sequence of images when ait wiigtes about an axis. Circles
with different radii denote different depths of the object.
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In psychophysical studies, this 3D volume data is callsgaiotemporal signaturand there
is evidence showing that such signatures are used by humantgect recognition [110], but no
computational representation was presented. We analgzeptitiotemporal volume and generate

a computational representation of rotating objects.

2.3.2 3D Volume Analysis

The spatiotemporal volume-y-t, is a stack ok-y images accumulated over timeEachx-y
image contains only appearance but no motion informatianth@ contrary, the&-t or y-timages
contain both spatial and temporal information. They arkedalpatiotemporal imaged hex-tand

y-timages can be obtained by slicing th-t volume, as shown in Figure 2.4.

X

Figure 2.4 A 3-dimensional volume is sliced to get differiemage content. The-t andy-t slices
arespatiotemporal images

Given a 3D volume, all the-t (or y-t) slices preserve all the original information without any
loss. Thex-y slices are captured by the camera, whilextker y-t slices are cut from the volume
independently. The union of altt (or y-t) slices is exactly the original volume. On the other hand,
different slicesj.e., x-y, x-t, ory-t, encode different information from the 3D volume.

Although bothx-t andy-t slices arespatiotemporal imageshey contain different information.
When the object rotates about an axis that is parallel torttage’sy axis, eaclhx-t slice contains

information on object points along a horizontal line on thgect surface, defining the motion
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trajectories of these points. One example is shown in Figut&(a). On the contrary, eagh

t slice contains the column-wise appearance of the objetdibecause of the object rotation
about an axis that is parallel to the imagg'axis. Thusy-t slices encode the appearance of the
object as it rotate860°. Partial examples are shown in Figure 2.9.

When a convex (or nearly convex) object rotei68’ about an axis, thepatiotemporal volume
is constructed by stacking the whole sequence of imagesregplby a static camera. The slice that
intersects the rotation axis usually contains the mosblasippearance of the object in comparison
with other parallel slices. Furthermore, this slice alss least distortion.

As shown in Figure 2.5 with a top-down view, when an objecate$360°, each point on the
object surface intersects the middle sliSg, once and only once. All other slices will miss seeing
some parts of the object. In this sensgcontains the most appearance of the object. This can
also be observed from thet slices in the face volume shown in Figure 2.9 in which the r&dd
image corresponding t6,. Further, sliceS,; usually minimizes foreshortening distortion because
it captures every visible fronto-parallel surface poinaatormal angle while other parallel slices

do not.

Figure 2.5 Top-down view of a 3D object rotating about an aktse circles with different radii
denote different depths on the object surface.

2.3.3 Spatiotemporal Face Volume

To represent rotating faces for recognition we need to ek#aspatiotemporal sub-volume
containing the face region, which we call thpatiotemporal face volumeA face detector [122]

can be used to automatically detect faces in sequenceseoifegyes. Figure 2.6 shows the face
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detection results in the first frame of a video sequence. @be positions reported by the face
detector can then be used to determine a 3D face volume. &alses from the face detector are
removed by using facial skin color information. The eyeseded with a similar technique as that
in the face detector [122], are used for locating the motigjettory image of the eye-level slice,

which will be presented in Section 2.5.3.

Figure 2.6 Face and eye detection in a frontal face image.

2.3.4 Face Cyclographs

Given aspatiotemporal face volumeith each coordinate normalized between 0 and 1, we can
analyze the 3D face volume via slicing. Based on Sectior22dhe may slice the volume in any
way without information loss. However, thet slices encode all of the visible appearance of the
object for single-axis rotation about a vertical axis. Rarimore, the unique slice that intersects the
rotation axis usually contains the most visible appeararicke object with minimum distortion
among ally-t slices. As a result, we will use this slice for the rotatingdaepresentation.

In our face volume, the slice that intersects the rotatios &xapproximately the one with
x = 0.5. This middle slice extracts the middle column of pixels freath frame and concatenates
them to create an image, called the “cyclograph of a facesiraply “face cyclograph.” One face

cyclograph is created for each face video. The size of a fpclegraph image is determined by
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the video length and the size of the segmented faces, ieewitith of the face cyclograph is the
number of frames in the video, and the height is the height@tegmented faces.

A face cyclograph can also be viewed as being captured bypacstmera [98]. As shown
in Figure 2.8(b), the face cyclograph captures the face tetelp from left to right profiles, and
all parts of the face surface are captured equally well. @nctintrary, when a pin-hole camera
is used as shown in Figure 2.8(a), the face surface is cappgerly when the camera’s viewing

rays approach grazing angle with the face surface, causirig pf the face surface to be captured
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Figure 2.7 Some examples of face cyclographs. Each headsdtam frontal to its right side.

Because in our face videos (see Section 2.6.1 for detaisjnitial face is always approxi-
mately frontal and the last face is approximately a profinwithe created face cyclographs look
like a “half face,” as shown in Figure 2.7. To create a “whaled cyclograph,” the head needs to
rotate approximately80°. For recognition purpose, there is no need to cagtGoé head rotation

since the back of the head has no useful information.

2.4 Propertiesof Face Cyclographs

Some properties of the face cyclograph representatiorcavelascribed, especially concerning

the face recognition problem.

24.1 Multiperspective

A face cyclograph is a multiperspective image of a face. Tinvaatage of using a multi-
perspective face image is that the faces observed fromeMpoints can be integrated together

into a single image representation. The multiperspectiece fmage encodes facial appearance all
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Figure 2.8 A face (nearly-convex object) is captured. (& frontal (fromC’) and side views

(from C and(}) are captured separately. (b) The face cyclograph capalirparts of the face
surface equally well.
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Figure 2.9 They-t slices of the face volume at every twenty-pixel intervaliax coordinate.

over the face surface and not just from 1 viewpoint. The fa@tograph can be viewed as being
captured by a strip camera [98]. For nearly cylindrical otgge.g., faces), each strip captures
frontoparallel views of the surface along that strip. On ¢betrary, the “key frames” approach

[12] uses a series of single perspective images.

2.4.2 KeepsTemporal Order

If a head rotates continuously in one direction, the facdéoggaph successively extracts strips
from the spatiotemporal face volume without changing theperal order in the original face
sequence. Temporal order is important for moving face neitiog in psychophysical studies
[110] [111] [12]. Computationally, temporal order is alsagortant for designing a matching
algorithm for face recognition. In Section 2.5 the recoignitilgorithm, which is based on dynamic

programming, depends on this property.

24.3 Compact

The face cyclograph representation is compact. From Seéti®, they-t slices contain all

appearance information insgpatiotemporal face volum&ut only one slice intersects the rotation
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axis (see Figure 2.5). The face cyclograph is constructad this slice. The other slices that do
not intersect the rotation axis are not used. Consequehi$yrepresentation largely reduces the
redundancy in thepatiotemporal face volumén comparison with Bulthoff's key frames approach
[12], the face cyclograph uses local strips from moving $aaéthout overlap, instead of using

partially overlapped key frames and overlapped local petdfom each key frame. Therefore the

face cyclograph is a concise representation.

2.5 Recognition using Face Cyclographs

For face recognition, one face cyclograph is computed foln é&ce video sequence containing
one rotating face. Given a testing face sequence, the fadegrgph is computed first and then
matched to all face cyclographs in the database. The rettogmroblem is illustrated in Figure
2.10. Two algorithms have been developed for matching fgclgraphs. The first uses dynamic
programming (DP) [96] for alignment and matching of facelogcaphs. The monotonicity con-
dition has to be satisfied to use DP and face cyclographsystitis by keeping the temporal order
of the original face sequences. The second method analygdade motion trajectory image and

then normalizes face cyclographs to the same size beforhingt
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Figure 2.10 The recognition problem is defined as matchiraga €yclograph against a gallery
of cyclographs.
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2.5.1 Matching Two Strips

The local match measure for comparing two strips is desgiiléhis subsection. Each strip is
a vertical column in a face cyclograph image. Matching twipstin two face cyclographsis a 1D
image matching problem. We define the similarity betweengtsips,: andj, in two cyclographs,

1 and2, respectively, using the-norm:
SE? =\ pi(strip}, ©) — pa(strip?, ©) ||, [2.1]

wherep,; andp, are transforms for strips with respect to a paramete©sed characterizes the
method used for feature extraction. Currently, we simply tne pixel color information as the
similarity measure; one could alternatively use a 1D wauedasform to extract features and then

match strips.

2.5.2 Matching Face Cyclographs using Dynamic Programming

Given a match measure between two strips, the next step iattthrtwo face cyclographs. The
number of strips within each cyclograph will vary in gendratause it is determined by the number
of frames in the input video sequence, which itself is infeexhby the speed and uniformity of
the head rotation. The algorithm has to take these vatti@siinto consideration in matching face
cyclographs.

We develop a method for matching face cyclographs basedeoaytiiamic programming tech-
nique [96], which can effectively align variable-width &acyclographs and match them simul-
taneously. The DP technique can be used for matching fadegraphs because they keep the
temporal order in head motion. The sub-problem of matchimdtrips was presented in Section
25.1.

The DP optimization is to find the minimum cast? of matching two cyclographg, and2,
where cyclograpH is the test face and cyclograghs from the gallery of known faces. Itis a

composition of the following sub-problems,

1,2 : 1,2 1,2 1,2 1,2
Ci; =min{C; 5 ;_,,C; Ciiia} +Si [2.2]

% i—1,59
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WhereC},’j2 is the minimum cost of matching strip pairand; in cyclographd and2, respectively.
Note that indexes and: — 1 are always in face cyclograph while j andj — 1 are always in
cyclograph2. The accumulated costs are filled in a 2D table and an optiathlip traced back in
the cost table. The final cost corresponds to the optimal fpatimatch two face cyclographs. The
smaller this cost, the more similar are two face cyclograpages.

The computational complexity of dynamic programmin@igV/ N') to match two face cyclo-
graphs of widths\/ andN.

2.5.3 Normalized Face Cyclographs

Face cyclographs can also be normalized to the same sizeelmefdching. Using normalized
face cyclographs can make the recognition process muaér fastd allow feature extraction on
2D images rather than 1D strips. To normalize face cycldigawe developed a method based on
motion trajectory image analysis.

Motion-trajectory images are slices perpendicular to thtatron axis in the spatiotemporal
volume. They are similar to epipolar plane images (EPI) THe EPI was used for scene structure
estimation with a camera moving along a straight line. Hegeuge the motion trajectory images
for face motion analysis. For a face rotating about a vdrgés, the horizontal slices contain
face motion trajectory information. Experimentally we folthat the slice of the eyes gives richer
information than other slices for motion analysis. One eplenof the eye slice is shown in Figure
2.11(a).

(@) (b) (€) (d)

Figure 2.11 (a) Motion trajectory image sliced along thétigye center. (b) Detected edges. (c)
Cotangent of the edge direction angles averaged and meltéaadi (d) The new face cyclograph
after non-motion part removal.
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Given the eye slice motion-trajectory image, we can detadt r@move non-motion image
frames from the original sequence of face images, and thgmthle remaining frames. The whole
algorithm consists of the following 5 steps:

(1) Edge detection. Edges in the motion trajectory imagedatected using the Canny edge
detector [14].

(2) Average edge direction. The average of edge directivasaach row in the edge image is
estimated using

Dir = =3 | cot 8y | 2.3

i i1
wheren; is the number of edges in ronof the motion trajectory imagé,; is the edge direction
angle of thej*" edge in rowi, and Dir; is the average of edge direction in raw This average
improves the robustness for edge direction estimation.

(3) Median filtering [43] of average edge directions compguteprevious step.

(4) Non-motion detection. Each row in the motion trajectomage corresponds to one frame
in the original video sequenc®ir; characterizes the amount of motion in framéf the average
edge direction in row is almost vertical, then there is no motion in framand the value oDir;
will be very small. So, the criterion for non-motion detectiis that if Dir; is smaller than a
threshold (experimentally chosen to be 0.4), frarnentains no motion. The detected frames with
no motion are removed.

(5) Image warping. The remaining frames in the image sequeantain some head rotation
between consecutive frames. The corresponding stripsdstfiom those frames are concatenated
to construct the face cyclograph. In this way, all face cgcdphs contain only moving parts.

Finally, the face cyclograph is normalized to a fixed sizerbgge warping [129].

2.6 Experiments
2.6.1 A Dynamic Face Database

A face video database with horizontal head rotation wasuregt Each subject was asked to

rotate his or her head from an approximately frontal viewriapproximately profile view (i.e.,
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approximately &0° head rotation). A single, stationary, uncalibrated camexs used to capture
videos of the subjects. 28 individuals, each with 3 to 6 vilewere captured for a total of 102
videos in the database. The number of frames per video yaaieging from 98 to 290, resulting
in a total of 21,018 image frames. Each image is $z@ x 480. An image in one of our face
videos is shown in Figure 2.6.

Each video in our face video database was matched agaimshati face videos, providing an
exhaustive comparison of every pair of face videos. Pratiand recall measures were computed
to evaluate the algorithm’s performance. &P stand for true positives; P for false positives,
andF'N for false negativesPrecision is defined as-, andrecall is defined as-. Pre-
cision measures how accurate the algorithm is in predi¢hiagositives, and recall measures how
many of the total positives the algorithm can identify. Betlecision and recall were computed
with respect to the top matches, characterizing how many faces have to be exanonget ta

desired level of performance.

2.6.2 Face Recognition Results

Face cyclographs were created for all 102 face videos inatabése. No faces were missed by
this completely automatic process. The similarity meabeteveen two face cyclographs was the
1-norm, i.e.,« = 1in Eg. (2.1). Given a query face cyclograph, the costs of magrit with all
remaining 101 face cyclographs were computed and sortestanding order. Then the precision
and recall were computed with respect to the topatches, with = 1,2, --- 101. Finally, the
precision and recall were averaged over all 102 queries snsh@wn in Figure 2.12.

Using the normalized face cyclograph method, the perfoomavas lower than using DP. The
reason may be that linear warping introduces artifacts. A-lhneear warping method is under
consideration.

The face cyclograph algorithms were also compared with ametbased face recognition
method, where the whole face volume was used for matchinggubie dynamic programming
optimization method. As seen in Figure 2.12, the performarf¢he face cyclographs methods is

very close to the volume-based method in terms of precisidirecall. However, using the whole
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Figure 2.12 Average precision versus recall. The compaisbetween face cyclographs
(multiperspective), face volume-based method, and nazetaface cyclographs.

volume has two disadvantages: (1) it requires a large amafustbrage, and (2) it is very slow
for volume-based matching. In our experiment, the progmaok thore than 24 hours in order to
obtain the precision and recall curve (as shown in Figur@)2using the whole volume data as

input, while it took just a couple of minutes using the facelograph representation.

2.7 Discussion

In this chapter face cyclographs were used for face redognitntegrating the continuous
views of a rotating face into a single image. We believe thatrnultiperspective representation is
also useful for other object representation and recognitieks. The basic idea is to capture object
appearance from a continuous range of viewpoints and thearge a single multiperspective
image to represent the object, instead of using multiplglsiperspective images, which is the
traditional view-based representation.

Assuming a simplified 3D head model, e.g., a cylinder [16]ltpwoid [71], a 2D face image

taken from a single viewpoint can be unwrapped when it issteged with the head model that
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contains reference face texture maps. Our face cyclogrgmtesentation does not require any
assumptions about the object shape, nor registration tdreift object views. Hence it is not
difficult to extend the cyclograph representation for otbleject recognition tasks. Furthermore,
the creation of a face cyclograph is simple and fast so iteul$or real-time recognition. Finally,
unwrapped faces [16] [71] are not necessarily multiperspefl04], as face cyclographs are.
The focus of our approach is a face representation that esadtlviews of a rotating face with
a face cyclograph, and its use for face recognition. Our vi@dkfferent from recent methods on
video-based face recognition where the head motions usexlaxieitrary (see [54] and references

there).

2.8 Summary

Motivated by recent psychophysical studies, this chaptesgnted a new face representation,
called face cyclographs, for face recognition. Temporarabteristics are encoded as part of
the representation, resulting in better face recognitieriggmance than using traditional view-
based representations. This new representation is conrpacist, and simple to compute from
a spatiotemporal face volumevhich itself is automatically constructed from a video seuce.
Face recognition is performed using dynamic programmingadch face cyclographs or using
normalized face cyclographs based on motion trajectorlyaisaand image warping. We expect

this multiperspective representation to improve reswlt®ther object recognition tasks as well.
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Chapter 3

Face Expression Recognition

In this chapter a linear programming technique is introduteat jointly performs feature se-
lection and classifier training so that a subset of featusaxptimally selected together with the
classifier. Because traditional classification methodompmuter vision have used a two-step ap-
proach: feature selection followed by classifier trainifegture selection has often been ad hoc,
using heuristics or requiring a time-consuming forward badkward search process. Moreover,
it is difficult to determine which features to use and how mémstures to use when these two
steps are separated. The linear programming techniqueituseid chapter, which we call fea-
ture selection via linear programming (FSLP), can deteentiie number of features and which
features to use in the resulting classification functioredasn recent results in optimization. We
analyze why FSLP can avoid tleirse of dimensionalitproblem based on margin analysis. As
one demonstration of the performance of this FSLP techrfmqusomputer vision tasks, we apply
it to the problem of face expression recognition. Recogniiccuracy is compared with results

using Support Vector Machines, the AdaBoost algorithm,aBayes classifier.

3.1 Motivation

The goal of feature selection in computer vision and pattecognition problems is to prepro-
cess data to obtain a small set of the most important pr@sesthile retaining the optimal salient
characteristics of the data. The benefits of feature seleatie not only to reduce recognition time
by reducing the amount of data that needs to be analyzedidoimmany cases, to produce better

classification accuracy due to finite sample size effectp [59
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Most feature selection methods involve evaluating diffiéfeature subsets using some criterion
such as probability of error [59]. One difficulty with this@geach when applied to real problems
with large feature dimensionality, is the high computagiocomplexity involved in searching the
exponential space of feature subsets. Several heuristioigues have been developed to circum-
vent this problem, for example using the branch and bounarihgn [29] with the assumption
that the feature evaluation criterion is monotonic. Grealdyprithms such as sequential forward
and backward search [29] are also commonly used. Thesathlgsrare obviously limited by the
monotonicity assumption.

Sequential floating search [95] can provide better resuit@abthe cost of higher search com-
plexity. Jain and Zongker [59] evaluated different seargo@hms for feature subset selection
and found that the sequential forward floating selectior-&Falgorithm proposed by Pudit al.
[95] performed best. However, SFFS is very time consumingmthe number of features is large.
For example, Vailaya [120] used the SFFS method to select&tifes from 600 for a two-class
problem and reported that SFFS required 12 days of compaotttne.

Another issue associated with feature selection methatie @irse of dimensionality.e., the
problem of feature selection when the number of featureargel but the number of samples is
small [59]. This situation is common in many computer vistasks such as object recognition
because there are often less than tens of training sampiegé€s) for each object, but there are
hundreds of candidate features extracted from each image.

Yet another difficult problem is determining how many featito select for a given data set.
Traditional feature selection methods do not address tloisi@m and require the user to choose
the number of features. Consequently, this parameter alyset without a sound basis.

Recently, a new approach to feature selection was propongkd machine learning community
calledFeature ®lection via Concae Minimization(FSV) [9]. The basic idea is to jointly combine
feature selection with the classifier training processgisiinear programming technique. The
results of this method are (1) the number of features to @eaylich features to use, and (3) the

classification function. Thus this method gives a complaté@ptimal solution.
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In order to evaluate how useful this method may be for problencomputer vision and pattern
recognition, we investigate its performance using the &garession recognition problem as a
testbed. 612 features were extracted from each face imagedatabase and we will evaluate
if a small subset of these features can be automaticallgteelevithout losing discrimination
accuracy. Success with this task will encourage future ns#her object recognition problems
as well as other applications including perceptual useriates, human behavior understanding,
and interactive computer games.

This chapter is organized as follows. First, related woreisewed in Section 3.2. The feature
selection via linear programming (FSLP) formulation isgaeted in next section. We analyze why
this formulation can avoid theurse of dimensionalitgroblem in Section 3.4. Then we describe the
face expression recognition problem and the feature éxramethod used in Section 3.5. The
FSLP method is experimentally evaluated in Section 3.6 asdlts are compared with Support

Vector Machines, AdaBoost, and a Bayes classifier.

3.2 Related Work

There are two versions of the face expression recognitioblem depending on whether an
image sequence is the input and the dynamic charactedspressions are analyzed, or a single
image is the input and expressions are distinguished bassthtic differences.

Previous work on dynamic expression recognition incluthesfollowing. Sumeet al. [112]
analyzed dynamic facial expressions by tracking the matfamventy markers. Mase [83] com-
puted first- and second-order statistics of optical flow iergy divided small blocks. Yacoob and
Davis [132] used the inter-frame motion of edges extraatettié areas of the mouth, nose, eyes,
and eyebrows. Bartlett al. [3] combined optical flow and principal components obtaifreth
image differences. Essa and Pentland [34] built a dynamianpetric model by tracking facial
motion over time. Donatet al. [30] compared several methods for feature extraction, andd
that Gabor wavelet coefficients and independent compomatygsis (ICA) gave the best represen-
tation. Tianet al. [116] tracked upper and/or lower face action units over saqgas to construct

their parametric models.
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There has also been considerable work on face expressiognigon from single images.
Padgett and Cottrell [91] used seven pixel blocks from featagions to represent expressions.
Cottrell and Metcalfe [19] used principal component aniglynd feed-forward neural networks.
Rahardjaet al. [99] used a pyramid structure with neural networks. Laretisal. [65] used
parameterized deformable templates to represent facessipns. Lyont al. [74] [75] and
Zhanget al. [134] [133] demonstrated the advantages of using Gabor letaseefficients to code
face expressions. See [92] [36] for reviews of differentrapphes for face expression recognition.

Facial expressions are usually performed during a shoet piemiod, e.g., lasting for about 0.25
to 5 seconds [36]. Thus, intuitively, face expression agialyequires image sequences as input.
However, we can also tell the expression from single pistofdaces such as those in magazines
and newspapers. As shown in Figure 3.1, one can easily remtire face expression from the
picture in a magazine. So, either image sequences or simglges are appropriate input data for

facial expression analysis.
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Figure 3.1 A smiling face on a magazine cover.

Almost all previous work does not address the feature detegiroblem for face expression

recognition, partly because of the small number of traiirgmples. Some previous work noticed
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that different features may have different discriminategabilities, however, to our knowledge
little work addresses the feature selection problem eitlylifor face expression recognition. For
instance, it was noticed that the links have different wisgh artificial neural networks [134]
[133]. In our face expression recognition method, we willlies$s the feature selection problem
explicitly.

As for feature extraction, Gabor filters have demonstrateatigperformance [74] [75] [134]
[133], so we use Gabor filters to extract facial features.

Here, we are interested in face expression recognition sioigle images. Our major focus is
on the evaluation of some new methods for face expressi@gn&on. Recently, large margin
classifiers such as support vector machines (SVMs) [121fatadBoost [41] were studied in the
machine learning community, and have been used for sohontesvision problems. Here, we
are interested to see if they are useful for face expressimgnition learning in the small sample
case. To our knowledge, this is the first time that large nmactsssifiers have been evaluated for

face expression recognition [44] [46].

3.3 Linear Programming Formulation

In the early 1960s, the linear programming (LP) techniq@? \Was used to address the pattern
separation problem. Later, a robust LP technique was peabtusdeal with linear inseparability
[5]. Recently, the LP framework has been extended to cofdetivd feature selection problem [9].
We briefly describe this new LP formulation below.

Given two sets of pointsA and B in R", we seek a linear function such thatx) > 0 if
x € A, andf(z) < 0if 2 € B. This function is given byf(z) = w'z — v, and determines a
hyperplanev’x = ~ with normalw € R™ that separates poing from 5. Let the set ofn points,

A, be represented by a matrik € R™*" and the set ok points, 3, be represented by a matrix

B ¢ R, After normalization, we want to satisfy

Aw >ey+e, Bw<ey—e [3.1]
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wheree is a vector of all 1s with appropriate dimension. Practicdlecause of overlap between

the two classes, one has to minimize some norm of the averewgdre(3.1) [5]:

min f(w,7) = miny, 5 || (~Aw+ey+e)i |

+3 I (Bu—ey+e)y |h [3.2]

wherez . denotes the vector with componenisx{0, z;}. There are two main reasons for choos-
ing the 1-norm in Eq. (3.2): (i) it is easy to formulate as a&énprogram (see (3.3) below) with

theoretical properties that make it computationally effti[5], and (ii) the 1-norm is less sensitive
to outliers such as those occurring when the underlying diatabutions have pronounced tails

[9].

Eqg. (3.2) can be modeled as a robust linear programming (Rtd®iem [5]:

. e’y ez
min — -
W,Y,Y,2 m TR

subject to —Aw +ey+e <y,
Bw —ey+e <z, [3.3]

y>0,2z2>0.

which minimizes the average sum of misclassification embtke points to two bounding planes,
2w =~ + 1andz’w =~y — 1, where *” represents transpose.

Problem (3.3) solves the classification problem withoutsidering the feature selection prob-
lem. In [9] a feature selection strategy was integrated ih&éoobjective function in order to si-
multaneously select a subset of the features. Featurdiselésdefined by suppressing as many
components of the normal vectorto the separating planB as needed to obtain an acceptable
discrimination between the setsand5. To accomplish this, they introduced an extra term into

the objective function of (3.3), reformulating it as



33

subject to —Aw+ey+e <y,
Bw —ey+e <z, [3.4]

y>0,z2>0.

where|w|. € R" has components equal to 1 if the corresponding componentsané nonzero,
and has components equal to 0 if the corresponding compooéatare 0. So¢'|w|, is actually

a count of the nonzero elements in the veatorThis is the key to integrating feature selection
with the classifier training process. As a result, Problem)(Balances the error in discrimination
between two setd ands, % + % and the number of nonzero elementsot’|w|.. Moreover, if
an element ofv is 0, the corresponding feature is removed. Thus, only tarifes corresponding
to nonzero components in the normahre selected after linear programming optimization.

In [9] a method called~eature Selection via Concave Minimizati(ffSV) was developed to
deal with the last term in the objective function of (3.4). eyHirst introduced a variable to
eliminate the absolute value in the last term by replaeihg|. with ¢’v, and adding a constraint
—v < w < v, which models the vectdmw|. Because the step functiofw, is discontinuous,
they used a concave exponential to approximate. itz t(v, ) = e — =", in order to get a
smooth solution. This required introduction of an addiibparameterq. Alternatively, instead
of computing the concave exponential approximation, a Ertgyme’s with only one parameter,
14, can be used. This produces the final formulation, which WeFeature Selection via Linear
Programming(FSLP) [131]:

- ey, ¢z /
wrgl;lz (m+k)+,“€3
subject to —Aw +ey—y < —e,

Bw —ey— 2z < —e, [3.5]

—s<w< s,

y,z > 0.
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The FSLP formulation in (3.5) is slightly different from tl&V method [9] in that FSLP is
simpler to optimize and is easier to analyze in relation #rtfargin, which we do in Section 3.4.
It should be noted that the normal of the separating hypeeplain (3.5) has a small number of
non-zero components (about 18) and a large number of O caanp®E94) in our experiments.
The features corresponding to the 0 components in the norecédr can be discarded, and only
those with non-zero components are used. As a result, nespseified parameter is required to

tell the system how many features to use.

3.4 Avoiding the Curse of Dimensionality

In [9] the authors did not address the issue ofdhese of dimensionalitynstead, they focused
on developing the FSV method to get a smooth solution, whgaok explicitly connected with
the margin analysis we do here. Also, their experiments ds¢al sets in which the number of
examples was much larger than the number of feature dimensidere we will show that the
FSLP method is actually related to margin maximization,clihinakes it possible to avoid the
curse of dimensionalitgroblem [59].

Consider the last terme,s, in the objective function of (3.5), whereis the absolute value of
the normalw due to the constraints < w < s. To minimize the objective function in (3.5)

requires minimizing the terre's too. Since

¢'s = Zsi = Z [wi| =[] w |1 [3.6]

this means minimizing w ||;, which is the 1-norm of the normal. Because minimizing w ||,
is equivalent to maximizin%, the objective function in (3.5) maximiz%*lm.

Recall from Eq. (3.1) there are two bounding hyperplanes,: w'x — v = 1 and P2 :

w'zr — v = —1. The discriminating hyperplang is midway between these two hyperplanes, i.e.,
w'z —~ = 0. The distance of any point to the hyperplané® is defined asi(z; P) = 'T‘Em.

From Eq. (3.1)w'z — v| > 1, so any pointg, that is outside the two bounding hyperplangs,
and P2, satisfiesi(z; P) > ——.

l[wll2
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The minimum distance between the two bounding hyperplanﬁu%, which is defined as the
margin, similar to that used in SVMs [121]. We know that theorm is non-increasing monotonic
forp € [1, 00|, so|| w |[1>]] w |2, Yw € R", which is equivalent to

1 1
lwlly = [fwll2

[3.7]

1
|w]

Also, thep-norm || w ||, is convex onR", Vp € |1, o0] [100]. So, by maximizin T we
approximately maximiz%. As a result, the last terma)s, in the objective function of (3.5) has
the effect of maximizing the margin.

Maximizing the margin can often circumvent therse of dimensionalitgroblem, as seen in
Support Vector Machines, which can classify data in venhkdgnensional feature spaces [121]
[32]. The FSLP method has a similar advantage because ifgorates a feature selection process
based on margin size.

In fact, wheny = 0 the last term in the objective function of (3.5) disappedrsthis case
classification performance worsens (we do not describecttsis in Section 3.6 formally) because
the remaining two terms do not have the property of maxingitive margin. So, the last termis,
has two effects: (i) feature selection, and (ii) margin maxation.

Because theurse of dimensionalitproblem occurs in so many computer vision tasks, our
analysis that FSLP circumvents this problem is an impomant result. Further demonstration of

this property is shown empirically in Section 3.6.

3.5 Face Expression Recognition

Face expression recognition is an active research arearipwer vision. Here we investigate
face expression recognition from static images using Géliers for facial feature extraction.
Several researchers [74] [75] [134] [133] have demonglrtite advantages of using Gabor wavelet
coefficients [24] to code facial expressions.

A two-dimensional Gabor functiom,(z, y), and its Fourier transforn@;(u, v), can be written

as

1 1 2 2
g(z,y) = exp [—— (x_2 + y_2> + QWij] [3.8]
o2 o

2mo L0y 2\ o2 ;
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Glu,v) = exp {—1 lw + “2] } [3.9]

2 o2 o?
where WV is the frequency of a sinusoidal plane wave alongtkexis, ando, ando, are the
space constants of the Gaussian envelope along #mely axes, respectivelyr, = 1/270, and
o, = 1/2m0,. Filtering a signal with this basis provides a localizedjfrency characterization.
Filters with arbitrary orientation can be obtained by atiotaof thex-y coordinate system.

In earlier applications of Gabor filtering [24] for face regguntion [64] [128] and face expression
classification [74] [75] [134] [133], investigators havelpwaried the scale and orientation of
the filters, but kept the Gaussian envelope parametiéxed to = or 2x. This methodology is
guestionable because the area of the energy distributidheofilters varies with scale, so the
Gaussian envelope should vary with the filter size. Congsatyieve designed the Gabor filter
bank based on the filters used previously for texture segatientand image retrieval [60] [80].

The Gabor filter bank is designed to cover the entire frequepectrum [60] [80]. In other
words, the Gabor filter set is constructed such that the gek magnitude of the filters in the
frequency spectrum touch each other. This results in theviolg formulas to compute the filter

parameters, ando,:

a = <%) o , W =d"U, [3.10]
U
(a—1HW
w = —F— 3.11
7 (a+1)v2In2 [3.11]
T (2In2)02 (2In2)2%02 2
wherelU, andU, denote the lower and upper center frequencies of interest.{0,1,...,5 — 1}
andn € {0,1,..., K — 1} are the indices of scale and orientation, respectivilys the number

of orientations and' is the number of scales.

In our experiments we uséd, = /2/4, U, = /2/16, three scalesy = 3) and six orientations
(K = 6). The half-peak support of the Gabor filter bank is shown guFe 3.2. The differences in
the strength of the responses of different image regiorgei&ey to the multi-channel approach to

face image analysis. The amplitudes of each filtered imagelatted fiducial points were used as
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Figure 3.2 The filter set in the spatial-frequency domairer€lare a total of 18 Gabor filters
shown at half-peak magnitude.

feature vectors. Thus, for each face image, the extractedrie vector was length 612 (34x3x6)

when 34 fiducial points were used. Typical positions of thedidl points are shown in Figure 3.3.

3.6 Experimental Evaluation
3.6.1 FaceExpression Database

The face expression database [74] used in our experimentgine 213 images of 10 Japanese
women. Each person has two to four images for each of sevaessipns: neutral, happy, sad,
surprise, anger, disgust, and fear. Each image size is 256 piels. A few examples are shown
in Figure 3.4. For more information on the database such agencollection, data description,

and human ranking, see [74]. This database was also usefl]ifLp4] [133].

3.6.2 Experimental Results

Our experimental procedure used 10-fold cross-validatecause the database contains only
213 images. That is, the database was divided randomlyentoaughly equal-sized parts, from
which the data from nine parts were used for training thesdi@ss and the last part was used for

testing. We repeated this procedure ten times so that eattv@sused once as the test set.
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Figure 3.3 34 fiducial points on a face image.

Experimentally we found that the parametein (3.5) is best set to a small value, and we used
1 = 0.00001 in all experiments. To solve this 7-expression classificatiroblem we used a simple
binary tree tournament scheme with pairwise comparisons.

Experimental results of the FSLP method are shown in Taldle Beature selection was per-
formed for each pair of classes, resulting in a total of 2xpfair the 7-expression classification
problem. The second column in Table 3.1 shows the numbel@ftee features on average over
the 21 pairwise classifiers, ranging from 16.0 to 19.1 fortdreruns. The average number of
selected features over the ten runs was 17.1. Thus a vergesgair of features was automatically
selected out of the 612 features extracted from each facgeimiéhis demonstrates that FSLP can
significantly reduce the number of feature dimensions, aitlibwt any user interaction.

The third column in Table 3.1 shows the total number of fesgtgelected by FSLP for all 21
pairwise classifiers in each test set. Because some feattgaesseful in discriminating between
one pair, say, “angry” and “happy,” but not for separatingther pair, say “angry” and “sad,” the
number of features selected for all pairs is larger thanftraach pair. For instance, there were 82

selected features for 21 pairwise classifiers in Set 1. Timsher is still much smaller than all 612
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Figure 3.4 Some images in the face expression database.|&tdmright, the expressions are
angry, disgust, fear, happy, neutral, sad, and surprise.

features. On the other hand, the frequency of occurrende@2 features over all pairs of classes
was very variable, as shown by the histogram in Figure 3.% three most selected features are
shown on the face in Figure 3.6.

Column 4 in Table 3.1 lists the number of classification eyt of 21 test examples by FSLP

on each data set. The average over 10 runs was 1.9.

3.6.3 Comparison with SVMs

In order to verify whether the FSLP method has good perfooman not in terms of recog-
nition accuracy, we compared it with some other methods.p8up/ector Machines [121] are
known to give high recognition accuracy in practice, so wa iompared FSLP with SVMs. The
constant”' in SVMs [121] was set to 100. The classification errors of Hdimtear and non-linear
SVMs (using all 612 features) in each run are shown in coluthaad 6 of Table 3.1. For the
non-linear SVM, we used the GRBF kernel and experimentallyre width parameter to its best
value. The maximum error of FSLP was 3 over the 10 runs, whihmever larger than the errors
by linear SVMs and non-linear SVMs. The average number ofgwver 10 runs was very similar
for FSLP, linear SVM (1.6 errors) and non-linear SVM (1.7o0es). The corresponding recogni-

tion accuracies of the three methods were 91.0%, 92.4%, hi®&4) respectively (see Table 3.2),
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Statistics of the selected features for all pairwise classifiers
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Figure 3.5 Histogram of the frequency of occurrence of th2féhatures used in training Set 1 for
all 21 pairwise FSLP classifiers.

which are comparable. Notice, however, that the averagebeuwf features selected by FSLP
was 17.1, much less than that used by the SVMs. Furtherntmeomputation time of FSLP was
fast in both the training and recognition phases, with rames of several minutes to train all 21
classifiers on a Linux machine with a 1.2 GHz Pentium progassing a Matlab implementation
and CPLEX 6.6 for the standard linear programming optinuzat

While the recognition accuracy of SVMs is comparable to F®Iioe major weakness of SVMs
is their high computational cost, which precludes reaktiapplications. In addition, SVMs are
formulated as a quadratic programming problem and, thexefois difficult to use SVMs to do
feature selection directly. (Some researchers have peopagproximations to SVM for feature
selection [124] [10] by first training the SVM using the whaiaining set, and then computing ap-
proximations to reduce the number of features. This twp-gpproach cannot guarantee selection
of the best feature subset, however.) Finally, SVM appratioms [124] [10] cannot determine
automatically how many features to use. On the contrary,F~&tldresses all of these issues at

once.
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Figure 3.6 The three most used features (as in the histogir&imgure 3.5) are illustrated on the
face: the corner of the left eyebrow, the nose tip, and thevetith corner.

3.6.4 Comparison with AdaBoost and Bayes

Because one of our main goals was an evaluation of FSLPsrieatelection process, we also
compared the method with some greedy and heuristic metboéedture selection. The AdaBoost
method [117] uses a greedy strategy to select features iedhnaing phase. The Bayes classifier
that we used is a Naive Bayes classifier assuming featuraéadependent. The greedy feature
selection scheme can also be used by incrementally addengdist discriminating features [69].
Figure 3.7 shows the recognition performance of the AdaBand Naive Bayes classifiers as a
function of the number of features selected. It is clear tbss$ that 100 features are sufficient
for both algorithms. The Naive Bayes classifier reachedets performance of 71.0% with 60
features, and the performance deteriorated slightly iferfeatures were used. The recognition
accuracy of the Naive Bayes classifier was 63.3% (shown iteTaB) when all 612 features were
used. Overfitting the training data is a serious problem lierNaive Bayes method, so feature
selection is necessary for it. Nevertheless, a simple gneedhod does not give Naive Bayes much
better accuracy. For the AdaBoost method, peak performamse’1.9% using 80 features (see
Table 3.2) for each pair of classes. As shown in Figure 3.ingumore features slightly lowered

recognition accuracy. In summary, both the AdaBoost anddNBayes classifiers combined with
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Face expression recognition
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Figure 3.7 Recognition accuracies of a Naive Bayes classaifi¢ Adaboost as a function of the
number of features selected.

a greedy feature selection strategy needed to use a largdyemnwf features than FSLP, and their

recognition accuracies were much worse than FSLP.

3.6.5 Comparison with Neural Netsand L DA

We also compared the recognition performance of FSLP whirgbublished methods [134]
[133] [75] that used the same database. In [134] [133] a NéNeawvork was used with 90.1%
recognition accuracy. When some problematic images indtabdse were discarded, the accuracy
was 92.2%. In [75] a result of 92% using linear discriminamalgsis (LDA) was reported, but
they only included nine people’s face images and, hencg, 188 of the 213 images were used.
In conclusion, FSLP gives comparable results to Neural Ngtvand LDA methods, but FSLP
optimally selects a small number of features automaticadhych is especially important for real-

time applications.

3.7 Summary

This chapter introduced a linear programming techniquieda&SLP for jointly accomplish-

ing optimal feature selection and classifier training, aethdnstrated its performance for face



43

expression recognition. There are four main propertieisfrnethod that make it advantageous
over existing methods: (1) FSLP can determine how many ffeatto use automatically without
any user interaction; (2) FSLP gives high recognition paniance, comparable with linear SVMs,
non-linear SVMs, Neural Networks, and LDA, and much bettantAdaBoost and Naive Bayes
classifiers; (3) FSLP avoids thmirse of dimensionalitproblem, which often occurs when the

amount of training data is small [59]; and (4) FSLP featutect®n is fast to compute.
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Table 3.1 The performance of FSLP compared to a linear SVIY{IM) and a GRBF non-linear
SVM (NL-SVM) using 10-fold cross-validation. The averagember of selected features (Ave.
#) for each pairwise classifier and the total number of setefgatures (Total #) used for all pairs
are shown in addition to the number of errors out of 21 testmgtas in each run.

Test | Ave. # | Total #| FSLP | L-SVM | NL-SVM
Setl| 16.8 82 3 2 1
Set2| 17.0 84 2 2 2
Set3| 17.1 90 1 1 2
Set4 | 16.4 92 3 3 3
Set5| 16.0 83 1 2 2
Set6| 19.1 102 2 2 2
Set7| 16.9 85 2 2 2
Set8| 17.2 91 1 0 0
Set9| 175 91 2 1 2
Set10| 17.4 89 2 1 1
Ave. | 17.1 | 88.9 1.9 1.6 1.7

Table 3.2 Comparison of the recognition accuracy and thebeumf features used by the Naive
Bayes classifier without feature selection (Bayes All) WddBayes with pairwise-greedy feature
selection (Bayes FS), AdaBoost, linear SVM (L-SVM), nomefar SVM (NL-SVM), and FSLP.

Bayes All | Bayes FS| AdaBoost| L-SVM | NL-SVM | FSLP

Accuracy | 63.3% 71.0% 71.9% | 92.4% | 91.9% | 91.0%
# Features 612 60 80 612 612 17.1
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Chapter 4
Iris Recognition

A wide variety of systems require reliable person identifaraor verification. Biometric tech-
nology overcomes many of the disadvantages of conventidaatification and verification tech-
niques such as keys, ID cards and passwords. Biometrias rieféhe automatic recognition of
individuals based on their physiological and/or behavioharacteristics [61]. There are many
possible features to use as biometric cues, including facggerprint, hand geometry, handwriting,
iris, retinal vein, and voice. Among all these features, iegcognition has very high accuracy [81].
The complex iris texture carries very distinctive inforinat Even the irises of identical twins are

different [25] [61].

Eye Capture Iris Locate H Normalize }—Iris Encode—‘ Iris Match

| Y Iris Mask
N .
No Mask

Figure 4.1 The steps in an iris recognition system. See textdtails on each part.

An iris recognition system begins with eye image captursghasvn in Figure 4.1. The captured
images may undergo quality assessment [26] to check thabilitg. If the eye image is good
enough for recognition, the system first locates the irishie ¢aptured image. This is a very

important step for iris recognition. If the iris cannot beadtized correctly, the system will fail in
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recognizing the person. The correctly localized iriseslaea normalized into rectangular images
called unwrapped images [26] with a predefined size. Iritufes are then extracted from the
unwrapped images and used for iris matching. Because oip@eyelid occlusions, some recent
work also removes eyelids by computing a mask image [25].icBy@mpproaches detect eyelid
boundaries in the eye images. We propose to compute the masklifferent way that works
on the unwrapped image as shown in the flow chart within théeth®ox in Figure 4.1. This
approach has advantages over previous methods and wileserded in detalil later.

This chapte'is organized as follows. The motivation for our work is imtuzed in Section 4.1
and previous work is reviewed in Section 4.2. Then we desiggvatwo-camera system to capture
iris images automatically in Section 4.3, and present a nethad for iris localization in Section
4.4. Finally, we describe a new method for iris encoding iotide 4.5. Experimental evaluations

are performed for the three parts separately.

4.1 Motivation

Although the iris can provide high recognition accuracys ot easy to capture iris images in
practice. Classical iris recognition systems, e.g., Daagisnand Wildes’, need the users to adjust
their eye positions in order to capture their irises [125Urthermore, existing systems require
users to be close to the capturing apparatus [26] [126] [F&nce, design of an iris capturing
system that works without user interaction is of great inigoaece in practice.

A common observation about eye images is that the iris regidnighter than the pupil and
darker than the sclera. As a result, almost all previousaggtres to iris localization are based on
the intensity gradient or edge information. These methegedd heavily on the strong intensity
contrast between the pupil and iris and between the iris alelas However, these contrasts are
not always strong enough for reliable iris localization ragtice.

Our new observation is that the iris region has very diffeterture than the pupil and sclera.

We believe that this texture difference is also useful f@cdmination between the iris and pupil

This work is in collaboration with Mike Jones at MERL.
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and between the iris and sclera, especially when the inyecmntrast is not strong enough for iris

localization. In fact, the rich texture information in thésiis what is used for iris recognition.
Based on this observation, our goal is to develop a new tqaertihat combines the texture

difference between iris and sclera, and between iris and fogether with the intensity contrast

in order to improve iris localization performance.

4.2 Related Work

Since the problem of iris recognition consists of the thrag9 iris capture, iris localization,

and iris encoding, we now review the related work on theseetparts separately.

4.2.1 PreviousWork on Iris Capture

Two classical iris capture systems are Daugman’s [26] andeaa/i [125]. Both systems re-
quire users to adjust their eye positions. Some recentragstise stereo computation, e.g., [88].
However, as reviewed by Brown et al. [11], any real-timeesteémplementation makes use of
special-purpose hardware such as digital signal proce¢B&P) or field programmable gate ar-
rays (FPGA), or uses single-instruction multiple-data{B) coprocessors (e.g. Intel MMX).

Our effort is to develop a new system to capture iris imagésmaatically without user inter-
action based on recent advances in real-time face detd&®@hrather than doing complex stereo

reconstruction. Furthermore, it works at a distance of dvaeter from the user.

422 PreviousWork on IrisLocalization

Daugman [26] presented the first approach to computatioisatecognition, including iris
localization. He proposed an integro-differential opergtDO) for locating the inner and outer

boundaries of an iris via the following optimization,

max
(r,20,Y0)

9 I(z,y)
Golr) * 5- ﬁwa - ds‘ [4.1]

wherel(z,y) is an image containing an eye. The IDO searches over the id@mgain(z, y) for

the maximum in the blurred partial derivative with respedticreasing radius, of the normalized
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contour integral off (x, y) along a circular ards of radiusr and center coordinates, yo). The
symbolx denotes convolution an@d, (r) is a smoothing function such as a Gaussian of scale
Daugman’s IDO actually behaves as a circular edge detédterlDO searches for the gradient
maxima over the 3D parameter space, so there are no thrgsdraleheters required as in the Canny
edge detector [14].
Later, Wildes [125] proposed detecting edges in iris imdgksved by use of a circular Hough
transform [57] to localize iris boundaries. The Hough tfan® searches for the optimum param-

eters of

max Zh(xjvijx()vymr) [42]

(TvavyO) j=1

where

17 Zf g(xjvijx())yO)T):O
h(xjvijx()vyOvr) =
0, otherwise

with g(z;, y;, 20, yo, ) = (z; — x0)? + (y; — vo)* — r* for edge poin{z;,y;),j =1, -, n.

One weak point of the edge detection and Hough transfornoaghris the use of thresholds
in edge detection. Different settings of threshold valuey mesult in different edges that in turn
affect the Hough transform results significantly [94].

Recently, some other methods have been proposed for iatizaton. But most of them are
minor variants of Daugman’s IDO or Wildes’ combination ofedletection and Hough transform,
that either constrain the parameter search range or spetb@ gparch process. For example, Ma
et al. [76] estimated the pupil position using pixel intensitywalprojections and thresholding,
followed by Canny edge detection and a circular Hough tamsf Masek [84] implemented an
edge detection method slightly different from the Cannyrafwe [14], and then used a circular
Hough transform for iris boundary extraction. Cui et al. J[2@Bmputed a wavelet transform and
then used the Hough transform to locate the iris’ inner bamypdvhile using Daugman’s IDO for
the outer boundary. Raelt al. [97] used gradient vector pairs at various directions taselg
estimate positions of the circle and then used Daugman’sttix@fine the iris boundaries. Kim
et al. [62] used mixtures of three Gaussian distributions to @grsegment eye images into dark,

intermediate, and bright regions, and then used a Houghftran for iris localization.
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All previous work on iris localization used only image graui information and the rate of iris
extraction is not high in practice. For example, Daugmant @/ildes’ methods can only extract

about85 ~ 88% of the iris patterns in the CASIA iris database [17].

4.2.3 PreviousWork on Iris Feature Extraction

Daugman was the first to present a complete iris recognitistem [26]. In it, the iris is local-
ized by an integro-differential operator and unwrapped atectangular image; then a set of 2D
Gabor filters were applied to the unwrapped image and thetigednocal phase angles were used
for iris encoding. The resulting binary feature vector ieththe iris code [26]. Two binary iris
codes are matched using the Hamming distance. Wildes ped@oother iris recognition system
[125] where Laplacian of Gaussian filters were applied for fieature extraction and the irises
were matched using normalized cross-correlation. In [@jpzrossings of the wavelet transform
at various scales on a set of 1D iris rings were proposed ifofaature extraction. A 2D wavelet
transform was used in [68] and quantized to form an 87-biecdthis method can not deal with
the eye rotation problem, which is common in iris capture stkaimplemented an iris recognition
system using a 1D log-Gabor filter [84] for binary iris codéragtion.

Ma et al. [76] used two circular symmetric filters and computed the mead standard devi-
ation in small blocks for iris feature extraction, with fee¢ dimension 1,536. The authors also
compared different methods for iris feature extractiord aoncluded that their method outper-
forms many others but is not as good as Daugman’s iris codeeriflg, a method based on local
variation analysis using a 1D wavelet transform was prop@s€]. The authors reported that their
method has comparable recognition accuracy to Daugmas’'sade, but only evaluated it using
200 iris images. In addition, their method used 1D procegssiatead of 2D. In [113], a method
was proposed to characterize the local gradient directioirit feature extraction. They claimed
that their method has recognition accuracy comparablestaigcode, but it was much more com-
plicated to compute and the extracted feature vector is 96&sbwhich is about 3 times bigger

than the iris code.



50

In conclusion, Daugman’s iris code method [26] is still tha&tes-of-the-art algorithm in terms
of recognition accuracy and computational complexity. tNewe develop a new method that is
much simpler and faster to compute in 2D and has higher reétogmccuracy than Daugman’s

iris code method.

4.3 IrisCapture

In this section we first introduce face anthropometry, wigdahe basis of our algorithm design.
Second, we describe facial landmark detection on face imagerd, we present an algorithm for
learning with detected facial landmarks. Fourth, we déschiow to map from the face camera to
the iris camera. In our system, the face camera is a videorearaed the iris camera is a high

resolution digital still camera. Finally, we evaluate tlygstem experimentally.

4.3.1 Face Anthropometry

Anthropometry is the biological science of human body mezsent. Anthropometric data is
used for many applications that depend on knowledge of tteillition of measurements across
human populations. For example, in forensic anthropolegyjectures about likely measure-
ments, derived from anthropometry, figure in the deternmomadf individuals’ appearance from
their remains [35]; and in the recovery of missing childrby,changing their appearance with
age on photographs [35]. It has also been used recentlyderrfeodel construction in computer
graphics applications [28]. Here we use the property of raptbimetric measurements to develop
an algorithm for automatic iris acquisition.

Anthropometric evaluation begins with the identificatidghemdmarkpoints, as shown partially
in Figure 4.2. All landmarks are named according to GreekaiimLanatomical terminology and
are indicated by abbreviations [35]. For exampgbefor exocanthionthe outer corner of the eye,
n for nasion the point in the midline of both the nasal root and the nasdaél suture, and so
on. A series of measurements between these landmarks igakem using carefully specified
procedures and measuring instruments. Farkas [35] deskcailwidely used set of measurements

for describing the human face. A large amount of anthropdmdata is available in [35]. The
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system uses a total of 47 landmarks and 132 measurements éacthand head. The measures
used by Farkas [35] include distance and angles. The sshyaxe grouped by gender, race, and
age. Means and standard deviations were measured for eap [®5], capturing the variation

that can occur in the group.
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Figure 4.2 Anthropometric landmarks on the head and face.

Some anthropometric measurements obtained from [35]stsgllin Table 4.1. In the table four
distance measures are listed in terms of race, gender an@aga&denotes the distance between
the two outer eye cornerps-pithe distance between the upper and lower eyetitia) the nose
width, andn-prn the distance between the nasal root and the nose tip. Sorhé idermation
can be acquired from Table 4.1. For exampis;piis aboutl0mm with the standard deviation
less thanl.5mm, so the size of the iris is abouitm.

One observation from the anthropometric measures [35aidiie distance variations are small
with respect to different race, gender, and age. For instdhe range of variation @Xx-exis about
1.2e¢m (from 80mm to 91.2mm, corresponding to ages from 6 to 25 years old) for North Aoaeri
Caucasian males, and is abaticrn (from 77.8mm to 96.8mm) over all races, genders, and ages.
Considering the standard deviations, the maximum vanaif@x-exis less tha8cm. This upper
limit also holds for other distance measures on human f&%s [n sum, the range of variations
of distance measures between facial landmarks is quitd ¢engJ, less tha3cm) over all races,

genders, and ages. This observation is important for aicapture algorithm.
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Table 4.1 Some anthropometric measurements obtained 85nleans and standard
deviations (SD) are measured for different groups in terfmaae, gender, and age.
unavailable from [35]. All distance measures are in milliers.

“.” indicates

North American Caucasian Chinese African-American
Meas.| Age Male Female Male Female Male Female
Mean| SD | Mean| SD | Mean| SD | Mean| SD | Mean| SD | Mean| SD
6 80.0 | 36| 778 | 3.2 | 814 | 34| 79.6 | 45 - - - -
ex-ex | 12 85.6 |3.0| 836 | 34 | 87.2|3.8| 84.6 | 4.0 - - - -
18 89.4 | 36| 868 | 40 | 91.7 | 40| 87.3 |5.2 - - - -
19-25| 91.2 | 3.0| 87.8 | 3.2 - - - - 96.8 | 46| 929 | 5.3
6 95 |10 94 | 08 | 86 | 09| 88 |08 - - - -
ps-pi | 12 | 98 | 09| 102| 1.1 | 84 |[09| 89 |11| - - - -
18 104 |11 111 | 1.2 94 (0.7] 95 |12 - - - -
19-25| 10.8 | 0.9| 109 | 1.2 - - - - 100 |11 104 | 1.2
6 286 16| 278 | 1.3 | 33.0|20| 31.8 |24 - - - -
al-al 12 316 |19| 309 | 21 | 36.2| 23| 36.1 |23 - - - -
18 347 26| 314 | 19 | 39.2 29| 372 |21 - - - -
19-25| 349 | 21| 314 | 20 - - - - | 441 34| 40.1 | 3.2
6 348 | 20| 331| 22 | 369 |3.1| 368 | 3.1 - - - -
n-prn | 12 428 | 3.2| 420 | 3.1 | 404 | 29| 41.7 | 3.7 - - - -
18 490 | 42| 454 | 39 | 46.2 | 28| 443 | 3.7 - - - -
19-25| 50.0 | 3.6| 44.7 | 34 - - - - | 45.6 | 35| 426 | 3.7
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Ci

Figure 4.3 The two camera system setGp s the face camera with WFQOV, whitg, is the high
resolution iris camera with NFOV. The two cameras are ngitded together and are moved by a
PTU.

4.3.2 System Setup

To demonstrate our anthropometry-based approach to atitdnscapture, we now present a
prototype system using two cameras. The design of the tweaystem is shown in Figure 4.3,
and the 2-camera rig is shown in Figure 4.4. One camera isctcHie face camera and the other is
called the iris camera. The face camera is a wide field of Viemsresolution video camera that
captures and tracks the whole face continuously. In eachefthe face and 9 facial landmarks are
detected. The iris camera is a narrow field of view, highdggmn digital still camera, which is
used to capture the iris region. The orientation of the imimera is adjusted automatically to view
the iris. A pan-tilt-unit (PTU) is controlled to rotate thiésicamera so that it tracks the iris. The
two cameras are close together (hence a very small baselitteapproximately parallel optical
axes. This setting guarantees that if a face appears astalfwigw in one camera, it will also be
an approximately frontal view in the other camera as well.

The system block diagram is shown in Figure 4.5. The basicatip@ of the system is to
continuously detect a face in each frame of the video sequematured by the face camera. When
a face is found, facial landmark feature points are locatedl atightly cropped bounding box

around the eyes is computed. This eye region is mapped iatorthge plane of the iris camera.
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Figure 4.4 The MERL 2-camerarig.

If the eye region is well centered in the iris camera then aamgienof the eyes is captured. If the
eye region is not well centered, then the PTU is used to partilidmbth cameras until the eye
region is approximately centered in the iris camera’s imajee detection of faces and features
and subsequent panning and tilting of the cameras iteratdghe eye region is well centered in

the iris camera’s image.

4.3.3 Landmarkson Face lmages

Unlike the anthropometric face model used in computer geap28] where face images are
generated from anthropometric measurements [35], our workutomatic iris acquisition has to
find landmarks on face images and use them to control irisucaptlo detect facial landmarks,
the algorithm first finds a face in the input images and therckea for landmarks within the face

region.

4.3.3.1 FaceDetection

To detect faces in real-time, we use a face detector profgms¥®ibla and Jones [122], which

uses simple rectangle filters for feature extraction andAth@Boost learning algorithm [42] for
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Figure 4.5 The system block diagram. The input is the videsgees and the output is the
captured high resolution iris image. See text for details.

feature selection and classification. A large number ohingi examples (face and non-face im-
ages) are used by the AdaBoost learning algorithm. As atrebid face detector is very fast and

robust.

4.3.3.2 Facial Feature Detection

When a face is detected, some facial features or landmarkbealetected within the face
box. We use the same rectangle filters and AdaBoost leartgogthm as in face detection [122]
but train the classifiers with templates characterizinfedint facial features, such as eye corners,
nose tips, and so on. The training examples for each of thel feeature detectors are simply
rectangular regions around each feature where each fdataon has been precisely specified
by hand. In practice, we found that usually 9 facial featwm{s can be detected robustly. They
are the left and right outside eye corners, left and rightoeyeers, left and right nose corners, nose
tip, center of upper lip, and the bridge of the nose. Theswifes correspond to landmargs p,
al, prn, Is, andn in the anthropometric measures used by Farkas [35]. SeedsSigu6 and 4.7 for

the nine detected features (each displayed with a whiterejjua
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The detected landmarks on face images are used to congrahiaige acquisition. Details on

how to use the facial landmarks will be presented next.

4.3.4 Learningwith Detected Facial Landmarks

Anthropometric measures [35] are used to guide iris acipisi(1) Given face landmarks such
asexor p, we can compute the location of the iris region to captur@.T{ie distances between
facial landmarks can be used as a measure of how far the foenshe camera. The smaller the
distance between landmarks, the farther the face is fronsdheera. Because of the small range
of variation of anthropometric measures as discussed itidde4.3.1, we can learn the relation
between the distance measures of facial landmarks on faagesnand the distance of the face

from the camera.

4.3.4.1 EyeRegion via Facial Feature Points

To capture high resolution iris images, the system first ag¢ednow where the eye region is.
Facial features are used to determine the eye region. Asrshioltigure 4.6, a simple strategy is
to use the two eye corners to determine the eye region. Asgutne distance between two eye
corners isiy, letW = 1.25 x d; andH = 0.5 x W, wherel// and H are the width and height of
the eye region, then we havg = X; — 2 x dy, X, = Xo + & x dy, Y, = Y1 — & x dy, and
Y, =Y, + 1—56 x di, where(Xy,Y]) and(Xs, Y5) are the image coordinates of the left and right eye
corners, andX;, Y;) and(X,, Y;) are the coordinates of the upper-left and bottom-right exsrof
the eye region rectangle.

The location of the eye region in the low-resolution vide@ag®,/;, can then be mapped to the

high-resolution still camera imagé,, using the technique presented in Sections 4.3.4.210.2.3.5

4.3.4.2 Distance of Faceto Camera

After a face is detected in the video frame, the system neekisaw the distance of the face to
the camera. This is so that the eye region can be mapped mtm#yge plane of the iris camera to

decide whether to capture an image or re-orient the camerg tee pan-tilt unit.
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Figure 4.6 Facial features detected determine the eyerr@gibe video image. The outer box is
the face detection result, while the inner rectangle is tieputed eye region in the face image.
d, is the Euclidean distance between two eye corners.

Here we present a technique that uses only the low-resolfgice camera to compute the
distance using facial features directly. This techniquieased on the geometric optics of a pin-
hole camera model: the image of an object is bigger if theatligecloser to the camera, and vice

versa. Using this property, a mapping from facial featustatices to depth values is computed.

Independent Linear Regression Assume we collect a data setiofaces at four different depths
from the face camera. For each face we computéacial feature distance measures. bgf,

1 < j < N, 1< i< nbethe Euclidean distance between jHepair of feature points for face

at depth index. Dy is the depth for indeX, 1 < k£ < 4. We use linear regression to map each

feature distancel’ , to the depth from the face camera :
Qj + d;,k + bj = Dk

To computez; andb; for each distance featugewe need to solve a set of linear regressions

A X; =0 [4.3]
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with i i
d},l 1 —-D;
dr, 1 —D
d's 1 —D
A= 77 ? [4.4]
d?y 1 —Ds
d}4 1 —-D,
| dja 1 =Dy |
and
a;
X; = bj [4.9]
1

Hence, there is a different linear mapping from featureaglisé to camera depth for each dif-
ferent pair of features. It is straightforward to solve B3] using singular value decomposition.

Since each feature is processed independently, we calinttilsod independent linear regres-
sion (ILR). To get a single depth estimate, all of the deptimestes are averaged. Thus, from a set
of feature distanced, }, the corresponding linear mappings for each feature distare used to

get a set of estimated deptHs), }:

a-dp+b =4, le{l,---, L} [4.6]
_ 1L
A:ZZAl [4.7]

where L is the number of feature distance measures for a test fate/wik N. When some

features are not detectetl,< N.
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This results in a more robust estimate than using only thami® for a single pair of features.
It also has the advantage of easily handling missing fegtoirgs. When a feature is not detected,
the linear mapping for that distance is simply not used, aediepth estimates from all the other
distance measures are averaged to yield a robust depth reeasu

Using the ILR method, the procedure for depth estimationdathtihe learning and testing

phases are given below.

L earning Phase

¢ Divide facial features into groups. In our case, nine fai@ature points are detected in each
face image. Because the image distance measure is setsitiose feature points, the nine
points are partitioned into 4 groups in order to get a robasimate. See Figure 4.7 for an

illustration.

e Compute the pairwise Euclidean distances from a point ingyoap to all points in other

groups.

e Concatenate distance measures into a feature vector. leasar 28 distance measures are
computed given this 4-group-division of nine facial feasir The resulting feature vector is

of dimension 28.

e Repeat the above processes for various faces captured fgctheamera at various depths

to the cameras.

e Compute regression coefficientsandb; using the ILR method.

Testing Phase For a new face, the system first detects the locations of teedad facial fea-
tures. Then, the pairwise distance measures are computethe@isame 4 group division as in the
learning stage. The regression coefficient@indb; are used to estimate the depth of the face to
the camera using Equations (4.6) and (4.7). In practice gbssible to use fewer than 28 distance

measures (due to missing data), but the ILR algorithm caityeshesal with this.
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Figure 4.7 Facial features (9 white squares) detectedmiitid face box. They are divided into 4
groups for pairwise feature distance measurement.

4.3.5 Mapping from Face CameratolrisCamera

Using the ILR method with detected face landmarks, the sygfets an estimate of the dis-
tance of the face to the cameras. This distance value wilskd together with the pre-calibrated
homographies (Section 4.3.5.1) and projective invarigdgstion 4.3.5.2) to map the eye region in

the image of the wide field of view face camera to the narrowd foélview iris camera.

4351 Camera-CameraCalibration

The goal of camera-camera calibration is to enable the esiiquus detected in the video image
to be mapped to estimated eye positions in the image plateafis camera. One way to achieve
this would be to do a full Euclidean stereo calibration of thee camera and iris camera. Given
full calibration and an estimate of the depth of the face ftbenface camera (see Section 4.3.4.2),
it is straightforward to find the face position in the iris cend. But the iris camera that we use
is autofocus, and a full Euclidean calibration would be diffi and expensive [127]. We adopt a
simpler partial calibration that is sufficient for our goal.

First note that if the face is at a known deptfrom the cameras, then the calibration is simple.

A homography is computed for a fronto-parallel plane at deptrom the cameras. A plane is
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an approximate model for the face, so the homography appaigrly describes the mapping of
features on the face between the two cameras.

Now consider the case when the face is within some range dhslephe range is quantized,
and a separate homography is computed for a fronto-papddlet at each depth, ds, - - -, d,,. At
run-time, the distancé to the face is estimated, and the homography associatedhetttistance
d; that is closest td could be used to provide the mapping of face features betteecameras.
Alternatively, we can interpolate the calibrated homograg to find a mapping for facial features
at depthd, as described in Section 4.3.5.2.

For computing the homography, we use a calibration plartetvé pattern shown in Figure 4.8.
The face camera captures the full pattern, and featuregaretfound automatically for the eight
large squares. The iris camera has a narrower field of viewcaptlires just the central three-by-
three grid of small squares, and features points are foutadraatically for these squares. Knowing
these image feature points and the Euclidean coordinatéedtill pattern, it is straightforward
to compute the homograph¥dy », between the video image and the pattern, and homography,
Hgsp, between the still image and the pattern, and hence the earaenera homographiy, s =
HpHyp between the video image and the still image [5H}, s is a 3x3 matrix that describes

the mapping of a homogeneous feature pojnin the video image to a point, in the stillimage

by

r, = Hygx, [4.8]
As described above, the process is repeated for a set ofdefpthe calibration pattern from
the cameras, to give a set of homograpties;;, Hy sz, - -, Hygp-
4.35.2 CrossRatio Projectivelnvariant

Assume at run-time the face is at deptlfrom the cameras. This section describes a simple
technique to interpolate between the homograpliles; at depthsd; to determine a mapping

between the face and iris cameras for features at depth
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Figure 4.8 Calibration pattern used for computing the horaplgy between two image planes.
The wide-FOV face camera captures the entire pattern, whel@arrow-FOV iris camera
captures the central three-by-three grid of small squares.

The cross ratio of four numbers is invariant under a genemaldgraphy [109]. For a lind D

. . . . . AB AC . IB/ Alc/
shown in Figure 4.9, the cross ratio is definedas- 7 /&5, Which equalsg‘,—D/C,D,.

How do we use the cross ratio in our two camera system? In &ig®,C; andC, are two
camera centers. Lét be the video camera’s image plane, datie the iris camera’s image plane.
For any pixel inly, there is a viewing line, e.g(j; A. If the homography frond; to I, at depthA
is known, we can map the 3D pointatto A’ in imagel,. Similarly, the 3D points af’ andD can
be mapped ta” and D', respectively, assuming the homographies at dethad D are known.
Suppose the homography@&tis unknown. Using the technique in Section 4.3.4.2, theldepB3
can be estimated. Now the cross ratioof A, B, C'andD in line AD can be computed. Then the
cross ratiaer is used for lined’ D’ based on the invariant property.

Specifically, the coordinates &f', (x;, 1), in I, are obtained by

T 1—cr) 2y Ty — Ty - Te
v — rTe-Tg+(l—cr) x4 29— 24 4.9]

xg— (1 —cr) -z, —cr- -z,

Yy - 1— Yo Yd — Ya - Yo
gy = Y Yat (1= €T) Yo Yo = Yoy 14.10]
Yya— (L—cr)-ye—cr-y,

where (., va), (ze y.), (x4, yq) are the coordinates of’, C’, andD’ in image pland,, and they

are computed using the pre-calibrated homographies atikdewthsA, C, andD. Although we
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actually have four precomputed homographies at known deptb only use three of them with
the cross ratio.

In this way, any point in imagé, can be mapped tH, at any depth to the cameras.

Figure 4.9 Cross ratio computation in the two camera sysetaps

4.3.6 Experiments

For the face camera we used a Sony DCR-PC105 video cameranveitfe resolutiors40 x
480, focal length 3.7 to 37mm, and a field of view about 60 degrEesthe iris camera, we used
a Canon Digital Rebel, which has a resolutior8672 x 2048 (6 megapixels), a 200mm telephoto
lens, EF70, and a field of view about 12 degrees. The minimwatsig distance for the telephoto
lens is 1.2 meters, thus the iris images are captured atleasteters away.

To estimate the linear mapping from facial feature distartoecamera depth described in Sec-
tion 4.3.4.2, 10 people were asked to stand at approximfatehdifferent distances: 1.2, 1.5, 1.8,
and 2.1 meters from the cameras. Then the face camera ahyphages of their faces. We cap-
tured a total of 40 face images - 4 images per person. Facetidvetand facial landmark detection
was performed on each image. The ILR algorithm was then usedrhpute the linear mappings

for depth.
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To evaluate our depth estimation method, we randomly cha$é¢ite 10 people as the training
set to estimate the linear coefficients of ILR, and used theanmeing 5 people for validation. The
coefficients are used to estimate the depth of each persdme imalidation set given their facial
feature measurements. The result on the validation setowrsin Figure 4.10(a), where each
curve (corresponding to one person) is close to a straighidnd the deviation is quite consistent.
The main reason for the deviation is that we did not adjush @adividual’s distance exactly, so
the “ground truth” is not exactly as listed. The mean anddsaath deviation of the depth estima-
tion are shown in Figure 4.10(b). The four means are 1.28), .87, and 2.04 meters, and the
corresponding standard deviations are 0.08, 0.08, 0.@40#&1 meters. In fact our systetoes
notrequire very accurate depth values. The linear mappingag@ate and works quite well. After
validation, we re-computed the linear coefficients usind @lindividuals and used these for the

capture system.

Face to camera depth estimate by ILP Face to camera depth estimate: Mean and Std
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Figure 4.10 Face to camera depth estimation on the validagb

To compute the homographies at four different depths fraarctimeras, we put the calibration
pattern at approximately the same four depths: 1.2, 1.5ahd@2.1 meters. The method described

in Section 4.3.5.1 was then used to compute the homographies
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To determine the eye region based on facial features, fivgesaere randomly chosen from
the 40 images that were used for depth learning, and thearlat the eye region size and the
distance between two eye corners was examined in the fivessnalfe found the approximation
shown in Section 4.3.4.1 works well in practice.

Finally, we tested the prototype system for iris capture. s&rustands still in front of the
cameras at a distance between 1.2 and 2.1 meters, and tamsystiomatically pans and tilts if
needed to capture high resolution images of both irisese@tly the system has captured about 20
people (excluding the 10 individuals used for training)haiit failure. For most of them, the two
eyes are centered in the high-resolution images (notehisaténtering is done automatically by
the pan-tilt unit without any user adjustment), while a fewages were slightly shifted but this had
no influence on extracting the two eyes. An example is showsigare 4.11 where the person’s

left eye is zoomed for visual inspection of the iris texture.

- |
A

e T e

Figure 4.11 An example of the high-resolution eye regiomswad by the iris camera (middle)
and a digitally zoomed view of the left eye (right). The imaggtured by the wide-field-of-view
face camera is shown in the left.

4.3.7 Summary

In this section we have presented an anthropometry-bagedagh to automatic iris acquisi-
tion without user interaction. The method detects faciaditaarks and estimates the distance from

the face to the camera. These techniques are fast and rotwadving only 2D images without
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stereo reconstruction. To demonstrate the anthroponbesgd method for iris capture, a proto-
type system was built using two cameras (i.e., face and amsezas). The mapping between the
two cameras is computed using projective invariants. BExpental results show that the prototype

system works well.

4.4 IrisLocalization

In this section we focus on improving iris localization aazy and mask computation. A new
approach to iris localization is presented in Section 4.8\Vk discuss a new issue called model
selection and give a solution in Section 4.4.2. The mask exxagnputation is presented in Section

4.4.3. Experimental results are given in Section 4.4.4.

4.4.1 Intensity Gradient and Texture Difference

Figure 4.12 The inner and outer zones separated by a circlesisclera boundary detection.
The texture difference is measured between the inner ama pomhes in addition to the intensity
gradient for iris localization. Because of possible eyelidlusion, the search is restricted to the
left and right quadrants, i.e, -45 to 45 and 135 to 225 degiEas figure also illustrates that the
pupil and iris may not be concentric and the pupil/iris boanyds modeled by an ellipse instead

of a circle.
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Our approach to iris localization is to use features of ba#hintensity gradient and texture

difference. The new formulation for iris localization is

(T*vxgvyg)k) = argmax( C(vaOvy()vT) + )\T(Zivzoax()vy(br) [411]

7,20,Y0)

whereC(1, zo, yo, ) IS the intensity contrast or gradient over image dondin y) along a cir-
cle with center at coordinatés,, yo) and radius-, and7'(Z;, Z,, zo, yo, ) measures the texture
difference between an inner zog and an outer zong, that are rings of pixels just inside and
outside the circle boundary, respectively, as shown infeéigul2. The parameteris a constant
to weight the contributions from intensity gradient andtbeg difference. Since the whole region
inside or outside the circle is not necessarily homogenengs the inner region of the iris/sclera
boundary contains two different parts, pupil and iris, ametéfore only a narrow zone next to the
circular boundary is used to measure the texture property.

What is the specific form for each term in Eq. (4.11)? For tist ferm, i.e, intensity gradient
or contrast, we use Daugman’s integro-differential omerbecause the IDO encodes the image

intensity gradient very well along a circular boundary. $hke have

_ 9 I(z,y)
C(]v Zo, Yo, T) - ‘GU(T) * 5 ?{@myo oy dS‘ [412]

For the second term in Eq. (4.11), we use the Kullback-Lethkeergence (see Section 4.4.1.2)
to measure the distance between two probability distidmstiderived from the inner and outer
zones, respectively. Now the question is how to extractekute information from each zone.
One could use standard texture features such as those aanipyitGabor filters, but filtering
approaches usually need a large region of support that nosg ¢the circular boundary. This is
a general issue in texture segmentation where the regionpepy may be characterized well
but the boundary between two textures can not be locatedsphgcin iris localization, accurate
boundaries are needed to normalize and match iris imagascurate iris localization deteriorates
the iris recognition accuracy quickly no matter how discénative the iris feature is. Consequently,
to efficiently extract the texture properties without négay influencing iris localization, we use

a method called local binary pattern (LBP) with a small neiginood.
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4.4.1.1 Local Binary Pattern

The local binary pattern (LBP) operator is a simple yet pdutenethod of analyzing textures
[78]. It was first proposed by Ojakt al. [90] for texture classification. The basic operation of LBP
consists of three steps as shown in Figure 4.13: (1) thrdstgpthe pixel values of all neighbors
using the intensity value of the center pixel as the thresh@) weighting each neighbor with a
value associated with a power of 2, and (3) summing the valfiab neighbors and assigning this

value to the center pixel.

150 1 1

139 | 100 | 112 1 1 8 2 11

91 - 0 > 0 :

Threshold Weight Sum

Figure 4.13 The LBP operator using four neighbors. Threstia four neighbors with respect to
the center pixel, weight each neighbor with a different poefe2, and sum the values to get a
new value for the center pixel.

The pixels in a region of interest are encoded by new integétsthe LBP operator. Then
the histogram of these new integers for each zone is compoit@gpresent its probability density
function. In our case, a 4-neighborhood is used resulting ew integer value for each center
pixel between 0 and 15, so each histogram has 16 bins. The pBRitor is applied to the whole
image once, while the histogram is computed dynamicallynduthe search process.

The probability densities are computed for the inner aneémombnes, denoted(z; Z;) and
q(z; Z,) respectively, or simply(z) andg(x), wherez € {0,---,15}. The distance between two

probability distributions is measured using KL-divergenc
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4.4.1.2 KL-Divergence

Given two probability mass functiong(x) and¢(x), the Kullback-Leibler (KL) divergence

(or relative entropy) betweenandgq is defined as

D(pllq) = Zp ) log Ei [4.13]

The KL-divergenceD(p||q) is always non-negative and is zero if and onlyif= ¢. Even
though it is not a true distance between distributions b&eauis not symmetric and does not
satisfy the triangle inequality, it is still often useful timink of the KL-divergence as a “distance”
between distributions [20].

As a result, the second term in Eq. (4.11) can be computedeiithdivergence as
T(Zi, Zo, o, Yo, 7) = D (p(z; Zs)|la(2; Z,)) [4.14]

whereZ; and Z, are the inner and outer zones separated by the dirgle),, ). The probability
densitiegp(z; Z;) andq(x; Z,) are represented by the histograms computed by the LBP operat

4.4.1.3 Multi-Resolution Search

The optimization in Eq. (4.11) is a search problem. In ordereduce the search space and
hence speed up the process, and also to avoid local maximasene multi-resolution, coarse-to-
fine technique. The original image is smoothed and down-tadtp a much smaller image and
the optimum is found there. Then the search starts again imeaifnage with the initial values
set by the result obtained in the previous coarser resolulibe process repeats until reaching the
finest resolution image. Note that the search in each raesolig restricted to the left and right

guadrants because of possible eyelid occlusions [25] agrshoFigure 4.12.

4.4.2 Mode Seection

Most approaches to iris localization use two circles to nhtdfteinner and outer boundaries of
the iris. Using circles is simple to compute but may not fititieeinner boundary well. Camus and

Wildes [13] used an ellipse to model the pupil/iris boundangl a circle to model the iris/sclera
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boundary. The ellipse model fits the inner boundary bett@n the circle whenever the boundary
is not a true circle, but the problem is, the search will be #Daspace instead of 3D. To search in
a higher dimensional space will be slower and may be errargro

What models should be used for iris boundaries? Should ttexfiouter boundaries be modeled
by circle/circle or ellipse/circR? We call this the model selection problem. And we believé tha
model selection should be data-driven rather than assigefedehand.

Our scheme is a two-step approach. First, the circle/ciradeel is used to approximate the
inner/outer iris boundaries. Second, within a region slighigger than the inner circle, do the
following: (1) detect edges using the Canny edge detectd)t [R) generate chain codes for the
detected edge points using 8-connectivity [43], (3) chdbsdongest contour from all generated
chains to eliminate outliers of edge points, (4) fit an e#ige the chosen contour using a di-
rect ellipse-fitting method [38], (5) compute the ecceitiyie of the fitted ellipse, and (6) decide
whether to use an ellipse or circle to model the inner irisrotawy with the criterion that, # > e,
choose an ellipse, otherwise, use a circle.

Theoretically, the ellipse model also fits a circular shape.why choose between an ellipse
and a circle? The reason is that the circle model makes itlsitopunwrap the iris image into a
rectangular image.

The eccentricitye = \/@ for an eIIipse‘("E‘iO)2 + (y_bé’o)z = 1. Theoretically, the eccen-

a

tricity satisfies) < e < 1 with e = 0 in the case of a circle. Note that the standard ellipse has
the major and minor axes consistent with thandy axes, while the fitted ellipses in iris images
may be rotated by an angle. The direct ellipse-fitting me{l38{ solves a generalized eigenvalue
system to estimate the ellipse parameters. It does notnienanly iterative computation and thus is
very fast.

To show the necessity of ellipse fitting for real iris imagegure 4.14 shows an example
image from the CASIA iris database [17] localized by diffsrenethods. The results in the left

and middle images were obtained using the Hough transfochttenlDO, respectively, assuming

2We do not consider an ellipse/ellipse model because a cigtlally fits the visible portion of the outer boundary
well.
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Figure 4.14 Demonstrate that the circle model is not acedaatthe iris inner boundary. The iris
image (1051 1) uses a circle model to fit by Hough transform (left) andgntedifferential
operator (middle). The right image shows the result baseatirewt ellipse fitting. All circles and
ellipse are drawn with one pixel wide white line.

a circle model for the inner boundary. It is obvious that aleidoes not fit the pupil/iris boundary

well. The result in the right image uses direct ellipse fgtand the boundary is fitted precisely.

4.4.3 Mask Computation

The iris may be partially occluded by the upper or lower egliBecause of this problem,
Daugman [26] excluded the top and bottom parts of the irisrfeifeature extraction and recog-
nition. But this will ignore useful information when venytle or no eyelid occlusion exists. As
argued by Wildes [125], explicit modeling of the eyelids shiballow for better use of available
information than simply omitting the top and bottom of this.irin [25], Daugman used curves
with spline fitting to explicitly search for the eyelid bouartes. Cuiet al. [22] used a parabolic
model for the eyelids and fit them separately. The upper @yekearched for within the eyelash
region, while the lower eyelid is searched for from deteeegde points. Masek used straight lines
to approximate the eyelids [84], which usually results iar@ér mask than necessary.

Almost all previous work explicitly estimates eyelid boamigs in the original eye images. This
approach has some problems in practice however: (1) thelseange for eyelids is usually large,
making the process slow, and (2) the eyelids are always atttreven when they do not occlude

the iris. To address these issues, we propose to computgehd ecclusion in the unwrapped
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rectangular image rather than in the original eye image.eledid region looks like a dome in the

unwrapped image, as shown in Figure 4.15 (b) and (c), so wé& eadlome model.

4431 DomeModd

There are three possible cases for the domes in an unwrappge, as shown in Figure 4.15:
(&) no dome, where there is no eyelid occlusion, (b) one davhere only the upper or lower

eyelid occludes, and (c) two domes, where both upper and leyedids occlude the iris.

(@)

(b)

()

Figure 4.15 The dome model of three possible cases: (a) bhenly one dome, and (c) two
domes. The dome boundaries are drawn with white curves.

Using the dome model, occlusions from either the upper oetayelids can be processed in
a unified way. To extract the domes, a circle model is use@ausbf complex models such as
splines [25] and parabolas [22], or a rough model of strdigks [84].

Our approach is a least commitment strategy. The algoritrshdetermines whether eyelid
occlusions exist or not. If no occlusion exists, such as gufe 4.15 (a), there is no need to detect
dome boundaries. When occlusions do exist, the algoritheriskénes how many domes (1 or 2),

and then detects them. The algorithm also has a post-progestage that reduces false alarms.
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To detect possible eyelid occlusions in the unwrapped imémgeregion of the iris where an
eyelid might appear is compared to a region where occlusammat occur. These regions are
compared by looking at their distributions of raw pixel vedu The Chi-squared distance measure
is used to compare the histograms of raw pixel values in toerégions,

B (Mb _ Nb)2

2(M,N) =
X ( ) A

[4.15]
b=1

whereM and N are two histograms, each wit bins.

The iris mask computation consists of six steps:

1. Extract three regions in the unwrapped image, denotdg ag,,, and R,, approximately
corresponding to the upper eyelid, part without occluseg.( the region between 135 and

225 degrees in Figure 4.12), and lower eyelid, respectiveljne original eye images.
2. Compute the histogram of pixel values in each region, tbehid,, H,,,, andH,.
3. Computey?(H,,, H;) andx*(H,,, H,) using Eq. (4.15).

4. Decide whether there are occlusions or not and, if so, h@amyndomes, by testing if

x*(H,,, H)) > T, andx*(H,,, H,) > T,, whereT, is a threshold.

5. Search the dome regions if necessary using Eq. (4.11)e that now the circle center is

below the unwrapped image and only the top arc of the cirdi¢tis the eyelid.

6. Remove false alarms by checking whether the maximum \aflaedetected dome satisfies
CIL, x5, ys,17°) + XN S(Z;, Zo, x5, ys, ™) > Te, WwhereT,. is a threshold an@cf, v, 7*) is the

circle for the dome. If not, the extracted dome is a falsenalar

4.4.4 Experiments

To evaluate our proposed method for iris extraction, we tise@ASIA iris database [17] that
contains 756 iris images in 108 iris classes. For all irisggsashown in this section, original image

names are also given for reference.
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Table 4.2 Comparison of iris detection rates between diffemethods using the CASIA
database.

Hough Transform Integro-differential Operator Gradient & Structure

(Wildes) (Daugman) (new method)
85.6% 88% 97.6%

4.44.1 Experimental Results

First, we evaluate the iris localization rate. In Eq. (4,14)was set ta).1 to balance the
intensity gradient and texture difference between theriand outer zones. Pixel gradient values
were normalized td0, 1). In Eq. (4.12), the central difference approximation iscue gradient
estimation with two pixel intervals. To measure the texinfermation with the LBP operator, a
4-neighborhood was used for each pixel. This small neiditmt helps the boundary localization
precision. The inner and outer zones are both 4 pixels widegathe radial direction so that
enough information is available for structure estimatiom the computational load is low. The
KL-divergence is computed only for binswith p(x) - ¢(z) # 0.

Iris localization results are shown in Table 4.2. Our methaaich combines intensity gradient
and texture difference, located 97.6% irises correctlyh@n@ASIA database, which is much bet-
ter than Wildes’ Hough transform technique (85.6%) and Daaugs integro-differential operator
(88%). The correctness of the iris boundaries were deteniy manual inspection.

Some examples are shown in Figure 4.16 to show the localizadisults obtained by the dif-
ferent methods. The upper row in Figure 4.16 shows the seBulimage 0372_4. The intensity
contrast between the iris and sclera is not strong and tlectget edges are weak, so the Hough
transform (left image) does not find the true boundary. ThHe ethod (middle) gets weak gradi-
ent information, especially in the left part of the iris, e detected circle is shifted away from the
true boundary. In contrast, our method can deal with the chaeak edges and gives an accurate
boundary for the iris (right image, upper row). Similar ars holds for the example in the lower

row in Figure 4.16 (image 032_1).
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Figure 4.16 Comparison between different techniques i®bwundary extraction. From left to
right, the results are based on the Hough transform, intdgferential operator, and the proposed
new method. The iris images are Q34 (first row) and 032_1 (second row).

Second, we evaluate the model selection method. Becausartiera viewing direction is not
perpendicular to the eye, perspective makes the projeofitime pupil not a circle. In addition,
the eyes can move freely to a certain degree. As a result|libgegcircle model is better than the
circle/circle model for iris localization in some cases. Wend that there were 75.7% (572/756)
iris images with eccentricity > 0.19, where 0.19 is the threshold value chosen to determine
whether to use the ellipse/circle model or not. Our apprastiie first to use the circle/circle model
to search for iris boundaries, and then use direct ellipadifor detecting the inner boundary
without turning to a 4D search. As shown in Figure 4.14, foag®a 1051 1, both the Hough
transform (left) and IDO (middle) methods do not work wellevhthe circle model is used for the
inner boundary. On the contrary, ellipse fitting (right) @va much better result for the pupil/iris
boundary.

Third, we evaluate our new mask computation method. As dssiin Section 4.4.3, the mask
image is computed in the unwrapped images instead of thenaligye images. The unwrapped

image is of sizes12 x 64 (see [26] [76] for details on how to unwrap iris images). Oppr@ach
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first determines whether there is any eyelid occlusion inutherapped image. If not, there is no
need to compute a mask. Three regions of size 40 by 20 pixelsk#nined, starting from the
image bottom. The middle regio®,,, is centered at 256, representing the part of the iris that is
never occluded by the eyelids. The left regidi, is centered at 128, and the right regidt), is

at 384. Their histogramdy;, H,,, andH,, are computed using 32 bins. Then thedistance is
computed using Eq. (4.15). The threshold valye= 0.26 was set empirically. The left dome
exists if y?(H,,, H;) > 0.26. Similarly, the right dome exists i{*(H,,, H,) > 0.26. Otherwise,
there are no domes detected.

In finding domes, a small search range can be used, which isfaihe advantages of com-
puting the mask in the unwrapped images. For the left doneehthizontal search range is 15
pixels to the left and right, centered at= 128. The same range is used for the right dome, but
centered at: = 384. The vertical search range ({64 + 15, 512), and the search range of radius
is (128 — 15,200). To remove false alarms, the maximum value for each detelciett is checked
to see if it satisfie€' (1, z, y5,r*) + A S(Zi, Zo, x5, y5, v*) > T, with T, = 13.5 set empirically.

If not, the detected dome is a false alarm.

In the CASIA iris database, our method extracted the domés avi accuracy of 93%. We
found that almost all domes were detected, but the dome laoi@sdwere not accurate for 7%
(53/756) of the images.

4442 Comparison of Results

There has been some recent work on iris localization. Ma8ék reported 82.5% iris lo-
calization rate on the CASIA database using the Hough toamsf A comparison of different
methods was presented in [94] where the Hough transform 8&v@®% localization rate on CA-
SIA. Daugman’s IDO method had 83% localization rate on CARIA. All these reported results
are comparable with our own implementation given in Tabl where the Hough transform has
85.6%, and the IDO has 88% localization rates on the CASIAlzide. In contrast, our method

gives 97.6% iris localization rate, which is much bettentpaevious methods.
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In [22], the authors reported some results on the CASIA dataln which the IDO method had
98.6% and the Hough transform 99.9% localization ratess ot clear how Cui et al. achieved
such good results since our implementations as well as pti#ished work show poorer results.

Unwrapped images were also used in [97] to compute maskghéytid not give any details
on it, nor did they explain why they used unwrapped imaged,thay did not report any mask
extraction accuracy either.

So far, we have not mentioned the problem of eyelash andigighiemoval. In [63] Gabor
filtering was used for eyelash detection but this method leasaen verified with a large iris
database such as CASIA. In [84] a simple thresholding methasl used for eyelash removal
on CASIA but the method is not general for other imaging cbods. Both [63] and [84] used
thresholding for highlight removal.

445 Summary

We presented a novel method for iris localization that zesi both the intensity gradient and
texture difference between the iris and sclera and betwepupil and iris. The iris localization
rate using this method is much higher than existing tectesqising the Hough transform and the
integro-differential operator. We considered the modidaten problem and proposed a solution
based on direct ellipse fitting. Finally, we presented a happroach to mask computation in the
unwrapped image. The new procedure follows a least commitsteategy that triggers a dome

detection process only when necessary.

4.5 IrisEncoding

In this section, a new method for iris feature encoding isenéed. A new set of filters is
proposed for iris encoding in Section 4.5.1. The advantafesing these filters are discussed in

Section 4.5.2. Experimental results are shown in Sectisi34nd compared with other methods.
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45.1 Difference-of-Sum Filtersfor IrisEncoding

A new set of filters, called difference-of-sum (DoS) filtassintroduced to encode iris features.
First, the basics of DoS filters are described. Second, a®&DkS filters is designed specifically
for iris encoding. Third, the filtered results are binarizedrobustness and compactness. Fourth,
an intermediate representation, called an integral imagepmputed that makes DoS filtering

extremely fast. Finally, we describe how to apply DoS filtersnwrapped iris images.

45.1.1 Basic Shapesof DoSFilters

There are two basic shapes of DoS filters for iris encoding,i®odd symmetric and the other
is even symmetric, as shown in Figure 4.17 in the one-dino@ascase. Because the filter function
f(x) only has values of +1 and -1 in its support, convolvifig:) with any 1D signal computes
the difference between the sums of the 1D signal associdtbdhve positive and negative parts of
f(z). Consequently, they are called the difference of sum (Ddt®)di[50]. The odd symmetric
filter, as shown in Figure 4.17(a), is similar to the Haar vietlveBoth the odd and even symmetric
filters have zero sum in order to eliminate sensitivity offiter response to absolute intensity val-
ues. This is realized without effort for DoS filters, unlikelgdr filters where the even components
have to be biased carefully.

The basic shapes of the DoS filters in 2D are shown as the topjndagure 4.18.

f() f(x)

A 1

(a) (b)

Figure 4.17 Basic shapes of the difference of sum(DoS)diitedD, (a) odd symmetric, and (b)
even symmetric.
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45.1.2 A Bank of DoSFilters

For iris feature extraction, a bank of two-dimensional Ddterfs was designed and is shown
in Figure 4.18. The set of DoS filters have the same heightdmidws widths. We call this special
design purely horizontal scaling (PHS). We found that scgthe filters in both the horizontal and
vertical directions degrades recognition performancee @ussible reason is that the iris patterns
may have different dependencies in the radial and anguleettbns [84]. As shown in Figure 4.18,

four pairs of odd and even symmetric DoS filters with varioudtias are used for iris encoding.

Figure 4.18 A bank of 2D DoS filters with multiple scales in tiregizontal direction (purely
horizontal scaling). All filters have the same height. Tlgedal design is of benefit for iris
feature extraction from unwrapped iris images.

The set of DoS filters is designed to extract iris features @tipte scales. The sizes of the

filters were adjusted based on experiments.

45.1.3 Binarization

The unwrapped iris images are filtered with the set of DoSiléed the output is real valued.

A sign function is then used to binarize the filtered values.
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The reason for the binarization is to make the encoding toftnss is important because there
are quite a few sources of noise in the iris pattern. For exantbe irises may be captured at
different viewing angles, the incident angles of the lighti€e(s) may change, the iris localization
may be not perfect, and so on. A binarized representatidnanseries of “1” and “0” bits improves
the robustness in iris feature encoding. The binarizasagimilar to digitizing an analog signal.
The alteration of an analog waveform is progressive andmmoots, hence it is quite sensitive to
noise. While a digital signal can be quite robust. In addit@improved robustness, it also creates

a very compact signature of the iris pattern.

45.1.4 Fast Computation of DoS Filtering

The DosS filtering can be computed rapidly with a pre-compum¢elgral image. Crow [21]
first proposed “summed-area tables” for fast texture mappiola and Jones [122] used a similar
idea they called the “integral image” for rapid feature agtion in face detection. Here iris feature
encoding using DoS filters can also take advantage of thgraitanage for fast computation.

The integral image at locationy y contains the sum of all the pixels above and to the left,of

y, inclusive:
i(z,y) = >, Iy, [4.16]

o' <w,y'<y

whereii(x, y) is the integral image andl(z, y) is the original image. Summed row by row, the
integral image can be computed quickly in one pass over igeat image. Then any rectangular
sum in the original image can be computed in four array refas in the integral image as shown
in Figure 4.19.

DosS filters are different from the rectangle filters used wefdetection [122], although both
use the integral image computation. The rectangle filte22][xhaustively search all possible
scalings of the base filters for discrimination between $amed non-faces, while DoS filters are

designed for the special iris patterns in a predefined manner
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Figure 4.19 A rectangular sum over region D in the originag®a can be computed by
ii(4) 4+ (1) —4i(2) — ii(3) in the integral image where each point contains a sum value.

45.1.5 DoSFiltersApplied tolrisimages

To apply the set of DoS filters, an unwrapped iris image isddigiinto eight horizontal strips
as shown in Figure 4.20. Then the filters are applied withchesrip at intervals, with all DoS

filters having the same height as each strip.

4.5.2 Advantagesof DoSFilters

Before evaluating iris recognition performance using D#8r§ we point out some advantages

of DoS filters over Gabor filters [26]:

1. Simple The DoS filters are very simple. There is no need to worry abhoy complicated

implementation issues as in Gabor filter design.

2. Fast Iris feature extraction with DoS filters is very fast. It @ster than using Gabor filters
because the only required computation in DoS filtering istamdor subtraction without in-
volving multiplication or division. Thus DoS filters can eakdvantage of the integral image
representation which can be computed quickly in advandeerifig using a DoS filter has
constant computation time, no matter how big the filter isthAfiaditional filters the filtering

time is proportional to the filter size — the bigger the filtee slower the computation.
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Figure 4.20 An unwrapped iris image is divided into eightibantal strips before applying the
DosS filters.

Table 4.3 Iris image database information

Database #Eyes| Iris Localized| Localization Ratg Intra Comps.| Inter Comps.
CASIA | 756 647 85.6% 1,759 207,222

3. Few parametersin the design of the DoS filter bank, all parameters suchzas(aiidth and
height) and shape (odd vs. even symmetric) are explicihout many parameters. On the
other hand, Daugman’s iris code uses Gabor filters with mangrpeters, such as the aspect

ratio, wavelength, and Gaussian envelope size.

4. High accuracy Iris features extracted from DoS filtering are highly disgnative. As will
be shown in Section 4.5.3, DoS features are better than Gaatures, which is the state-

of-the-art method in terms of the recognition accuracy.

453 Experiments

To evaluate our method for iris feature encoding, we used¥&8IA iris database [17] that
contains 756 iris images in 108 classes. First, the irisedamalized using the Hough transform
[125]. The localization rate was about 85.6%. Then the deteicises are unwrapped into rect-
angular images and used for recognition. 1,759 intra-adasgparisons and 207,222 inter-class

comparisons, as given in Table 4.3, were computed.
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Table 4.4 False accept rate (FAR) and false reject rate (MRR)yespect to different separation
points for DoS filters and iris code on the CASIA iris database

Iris code DosS filters
Threshold FRR FAR FRR FAR
0.20 0.9449 0 0.8937 0
0.25 0.7362 0 0.6111 0
0.30 0.3428 0 0.2393 0
0.35 0.0608 | 9.65e-006| 0.0262 0
0.40 0 0.0039 0 0.0036
0.45 0 0.5882 0 0.3344
0.50 0 1 0 0.9848
Decidability 4.7 5.3

45.3.1 Fair Comparison of DoS Filtersand thelris Code

The DoS filters are compared with our own implementation efitts code [26]. As argued
in Section 4.5.2, the aspect ratio, wavelength, and Gaussizelope size of the Gabor filters are
unknown in Daugman’s iris code [26] [25]. We tried varioustisgs of these parameters and
used the best ones in our implementation [26]. The unwramednage is of sizeh12 x 64
and divided into eight rows. The DoS filters and Gabor filteesavapplied to each row at the
same pixel positions for sampling. The input to both metheds exactly the same in order to
do a fair comparison. The heights of all the DoS filters weréx8lp, and the widths were2 x n
with n = 1,2, 3,4 for the 4 pairs of odd and even symmetric filters. For the iadecmethod
using Gabor filters, the filter bandwidth used was 3 octavesious wavelengths (8, 16, 24, and
32) and different aspect ratios (2 to 4) were tried and ondylist settings were chosen for the
four quadrature Gabor filter pairs. The number of samplingtsovas 256. As a result, the iris
code took exactly 256 bytes for each iris image, which is #meslength as in [26] [25]. The DoS

filters with binarization also resulted in a binary featueetor of 256 bytes. Computationally, DoS
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filtering is much faster than Gabor filtering because of its@icity and the use of the integral

image. We do not report the specific computation times hecause the code for both DoS
filtering and Gabor filtering are not optimized in our implemntedions. Instead, an analysis of the
computation is given in Section 4.5.2. For iris matching, Hamming distance [26] was computed

with 6 shifts (each shift is one byte) to the left and right tonpensate for iris rotation.

4532 FAR and FRR

The intra- and inter-class Hamming distance distributimndoth methods are shown in Fig-
ure 4.21. The top corresponds to the iris code method, antidtiem to DoS filters. One can
see that both methods for feature encoding deliver sephpsaks for the intra- and inter-class
distributions. To make a quantitative comparison, theefalscept rate (FAR) and false reject rate
(FRR) were computed with different separation points. Aswshin Table 4.4, DoS filters have
smaller error rates than the iris code consistently overdhge of threshold values. To show the
improvement of the DoS filters over the iris code method \iguthe ROC curves are given in
Figure 4.22 where the curve for the DoS filters is much lowanttiat for the iris code. This sug-
gests that DoS filtering gives smaller error rates than ieeade with various separation points.
These comparisons indicate that iris features encodedebptd$ filters are more discriminative
than the iris code method, and thus give higher recognitcmur@acy. For both methods, a good
choice of the threshold value is 0.4 for intra- and intessslaeparation, where both our method
and the iris code have 0 FRR. Our method does have a smalleoFAR036 than the iris code
FAR value of 0.0039. The threshold value of 0.4 is the saméatssuggested by Masek [84] in

his Matlab implementation of the iris code [17].

4533 Decidability

For a two-choice decision, Daugman [25] introduced the fabgaility” index d to measure how

well separated the two distributions are. For two distitiu with meang:; andyu,, and standard
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deviationss; ando,, the decidability index! is defined as

d= M [4.17]
(of +03)/2

Since recognition errors are usually caused by the overdyden these two distributions,
decidability measures how much the overlap is, and is inuggat of how the threshold is chosen
to separate the two distributions. As shown in Table 4.4 nihe features using DoS filters has
decidability index 5.3 which is higher than the 4.7 using th®& code. This comparison also

indicates that DoS filters have better performance for im=eling than the iris code.

45.4 Discussion

In Daugman’s iris code, the phase information is quantiZést &abor filtering to obtain a
binary bit stream. In DoS filters there is no explicit phaderimation. The difference between
the summations over different iris regions may be positiveemative given the randomness of iris
texture. Thus a sign function is used to extract binary fegtior encoding.

For better iris matching, a mask image may be needed [25ove artifacts such as eyelid
occlusions. But that is a hard problem in practice. In ourapgh, the bottom 2 rows (see Figure
4.20) were discarded during iris encoding to remove possklid occlusions to some extent,
similar to the approach in [76]. With this simple stratedpe error rates for the iris code and DoS
filtering are very small after more than 200,000 comparis®hg FAR can be further reduced for
both methods with the mask computation, and the decidabilitex can be increased too. But this
does not affect our comparison of the two methods withoutmgmg the masks.

Difference-of-sum (DoS) filters are similar to the rectanfilters used by Viola and Jones for
face detection [122]. We chose a different name here to esigdél) the computation instead
of the filter shape, (2) the special design for iris featureoeling instead of searching all possible
filters [122], and (3) more general realization of the filtesigh arbitrary dimensionality (1D, 2D,
or higher for other kinds of data). It may be interesting teestigate 1D DoS filters (see Figure
4.17) with scaling for iris encoding, similar to Masek’s apach of 1D log-Gabor filtering [84].
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455 Summary

We presented a new method for iris feature encoding usirigrdifce-of-sum (DoS) filters.
A special design of the DoS filter bank was proposed to chariaetthe iris pattern at multiple
scales. One of the nice properties of DoS filters is that fiitecan take advantage of the integral
image representation, and thus all filtering takes a cohitae no matter how big the filters are.
DosS filters are conceptually simple and computationally. f&xperimental results demonstrated

that DoS filters also give higher recognition accuracy thanddnan'’s iris code method.
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Chapter 5

Spatial Resolution Enhancement of Video Using Still Images

In this chapter we describe an extension of the two cametarsyf®r automatic iris capturing,
i.e., combining images from digital still cameras and vidameras, to generate a video sequence
with higher resolution than the original video.

The two-camera design for automatic iris acquisition tekeégantage of both cameras: the
video camera can capture both spatial and temporal infeematientifying where the object is
at each time, but its spatial resolution is low. On the othemd) the digital still camera has
high spatial resolution, but cannot capture extended teahr@formation. We now consider the
guestion: can the information from the video camera antl stiinera be combined to capture
image data with high resolution in both space and time. Tdwé#nis goal, we have developed a
method for increasing the spatial resolution from a viden@a for a planar scene [45] where a
homography can be computed based on detecting and matdhsegle-invariant feature points
[73].

5.1 Motivation

Visual information includes the dimensions of space, tis@gctrum, and brightness [87].
However, a camera cannot capture all this information simmelously. As a result, there are always
trade-offs between the dimensions. For example, color casrteade-off spatial resolution [87].
Among the multiple dimensions of images we are interesteldarspace-time interaction.

Digital still cameras capture the world at 5-10 times thetigpaesolution of digital video

cameras, while video cameras have denser temporal samplimngxample, the Kodak DCS-760
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professional digital still camera has a resolutioB@$2 x 2008 (6 megapixels), while the JVC JY-
HD10U (high definition) digital video camera records framésize1280 x 720 (0.9 megapixels).
For consumer products, 5 megapixel digital cameras (e.qrol€&owershot G5) are common
today, while most digital camcorders has#) x 480 resolution (0.4 megapixels).

Why do digital still cameras and camcorders have such diftespatial resolutions? One
reason is the physical restriction. Charge-coupled de\i€£Ds) are the most common image
sensors used in digital cameras [23]. CCDs capture lighiallsphotosites on their surface and
the charge is read after an exposure. For example, chargdsdast row are transferred to a
read-out register. From there, the signals are fed to anigen@nd then to an analog-to-digital
converter. Once the row has been read, its charges in theotga@gister row are deleted, the
next row enters the read-out register, and all of the rowse@bmarch down one row. The charges
on each row are “coupled” to those on the row above so when @wesrdown, the next moves
down to fill its old space. In this way, each row can be read,romeat a time. In digital video
cameras, to capture 25 or more frames per second, thereangeajuantity of charges to transfer
per second. In order to keep the temporal sampling rate uimdar of charges used for each frame
has to be small enough. This is a space-time tradeoft.

One way to break through this physical restriction is to usdtiple cameras such as both
digital still cameras and digital camcorders. Then combireeinformation from both kinds of
cameras to enrich each other. In practice, one may not needrtmore cameras in order to reach
this goal. Nowadays, many digital still cameras can capghoet video segments and many digital
camcorders can capture digital stills. Because of thisgntgpone can use, for example, a single
digital camera to capture high quality digital stills an@vloesolution video sequences. However,
still cameras can only capture short temporal sequencesidad cameras cannot capture very
high resolution still images. So, even these “combined cagiedo not adequately solve this
space-time tradeoff.

Here we consider the goal of combining the best qualitiesachdype of camera. Specifi-
cally, using high resolution still images to enhance theigpeesolution of a video sequence. The

framework of the approach is shown in Figure 5.1. This pnobierelated to, but different from,
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existing super-resolution work that is based on signalmstraction or example-based learning. In
reconstruction-based super-resolution [58] [33] [137d[L[15], multiple low-resolution images
are registered to create a higher resolution image. Seaeawe¥ approaches to super-resolution
image reconstruction in [8]. In learning methods [40] [B}ages and their size-reduced images are
used as training pairs to learn high frequency informatiOther recent work [105] aligns video

sequences to increase resolution by assuming the videaasimave the same optical center.

_| Registration of images and video

{

Warping viewing planes

High-resolution
. . e
still images

High-resolutior
V GO
video
Correction of skew and translation

Low-resolution
video V
Scaling for digital zooming

Figure 5.1 The framework of our approach.

We present a recognition-based scheme to align high-résoimages with video sequencesin
Section 5.2, and robustly estimate the mapping betweemnthgeas and videos in Section 5.3. Then
we describe a factorization technique to rotate and cothechigh-resolution images in Sections
5.4 and 5.5. Experimental results are shown in Section Sd6faher issues are discussed in

Section 5.7.

5.2 Imageand Video Alignment via Recognition

In order to use high-resolution still images to enhance lesolution video frames, one has
to first establish the relationship between them. That ignair register the images coming from

different sources.



92

Video registration is a challenging problem [114]. Becaokeamera motion, the viewpoints
of a video sequence may change continuously and be diffémntthe digital still images’ view-
points. Furthermore, the illumination and camera autorrgdin may also change. However, the
biggest variation in our problem is the difference in sgagaolution.

If two images to be matched have very different spatial rggwis in addition to viewpoint and
illumination changes, traditional direct methods usingjaa flow or local feature (e.g. corner)
matching cannot be used because these features are usedhendssumption that local image
patches between two images do not change significantly iaaappce. These features especially
lack invariance to scale [72]. For example, corner feataresusually computed using the same
template size for two images to be matched. When two images Wexy different scales, the
computed values will be different in the two images. In ortiealign still images with video
sequences, we have to find some new matching techniques.

One possible way to deal with image matching with very défdrscales is to formulate it as a
one-to-many matching problem [31]. The high-resolutioagm is size-reduced by various scales
and some local features are extracted at each scale. Anadlyas to extract scale-invariant fea-
tures. Lowe [72] proposed a scale-invariant feature t@ans{SIFT) operator and used it success-
fully for object recognition. Using the SIFT operator, scalformation is automatically encoded
at each extracted key point, and there is no need to extraittréss at various scales of the image.
Here, we use SIFT feature matching as the first step for owgra@solution method, and show
that the SIFT operator can deal with large resolution dffees.

The SIFT operator identifies key locations in scale spaceobkihg for locations that are
maxima or minima of a difference-of-Gaussian function. liepoint is used to generate a feature
vector that describes the local image region sampled vel#tiits scale-space coordinate frame.
The features achieve partial invariance to local variaiby blurring image gradient locations.
The resulting feature vectors are called SIFT keys. A néamghbor criterion is then used to find

similar keys in both images. For more details on the SIFT atoersee [72].
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5.3 Homography Estimation

After using the SIFT operator for feature extraction andrtbarest-neighbor criterion for fea-
ture matching, there are usually a large number of incoffiestiure correspondences. Robust
methods such as RANSAC [37] [55] can be used to remove outleggches and estimate the ho-
mography between the two images.

There are three cases in which a planar homography is apgt@it5] [55]: (1) images of a
planar scene viewed under arbitrary camera motion, (2) @mafjan arbitrary 3D scene viewed by
a camera rotating about its optical center and/or zooming (3) a freely moving camera viewing
a very distant scene. To demonstrate our approach, in thexr pge assume the scene is planar and
so a planar homography is sufficient to describe the reldtéiween a high-resolution image and

a low-resolution image.

54 MakingImage Planes Parallel

Assumeq = Hp, wherep = (z,y, w)? are the homogeneous coordinates of a point in the low-
resolution image, ang is the corresponding point in the high-resolution imaffas a3 x 3 matrix,
mapping the low-resolution image to the high-resolutiomg®. For super-resolution purposes,
knowing only the mappind? is not enough. The goal is to obtain an image pattern in a high-
resolution image with the same viewpoint and illuminati@ntlaat in the low-resolution image,
mimicking a virtual camera with only a spatial scale diffece.

To accomplish this, the high-resolution image must firstdiated so that it is parallel to the
low-resolution image, as shown in Figure 5.2 where the hegolution imageB is rotated into
B’ so thatB'’ is parallel to the low-resolution image We use QR decomposition to estimate the

required rotation.
541 QR Factorization
The3 x 3 homography matri¥{ can be decomposed into two matrices via QR factorization,

o= RU, [5.1]
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Figure 5.2 Two cameras (with cent&rd andC?2 respectively) are used to capture the
low-resolution imageS and high-resolution imagB which is rotated intd3’ so that the viewing
planeB’ is parallel toS. Note that this rotation is different from image rectificatin stereo

where both images are warped parallel to the basélide.

where R, is a rotation matrix and/; is an upper triangular matrix. Then, the inversg;!, is
defined as

H™' = (RU) ™ =U 'Ry = Uz Ry [5.2]

whereR, = R; ' is also a rotation matrix and, = U; ' is another upper triangular matrix.

Fromp = H 'q and Eq. (5.2), we get
p = U2Ryq = Uhq [5.3]

whereq' = R,q is the corresponding point in the rotated high-resolutimage plane that is
parallel to the low-resolution image frame. Pginin the low resolution image is mapped to point
q by

q=U;'p [5.4]



95

andU; ' has the form
oy S 1
U'=10 o t [5.5]
0 0 1
wheres is the skewpy,, o, are scale factors in the andy directions respectively, angd andt,
are translations. In practice, the skewmay or may not be 0. I§ # 0, we need to decompose
Uy ! further by
a, 0 t, 1 =0
U'=10 o t, |0 1 0]|=TuTx [5.6]
0 0 1 0 0 1
whereT}, is the skew transform matrix, ari, is the transform of scale and translation. For the

purpose of analyzing resolution difference, it is bettefiutther decomposg;; as

a, 0 0 1 0 &=

Qg

To=1]10 o 0[]0 1 2 |=TT [5.7]

Qy

0O 0 1100 1

so we havd/; ' = T,T,T}. LettingT,, = T, R,, one can apply}, to the high resolution image

by
q" =Tud =Thq [5.8]

and applyZ’; ! to the low resolution image by
T,'p=4q" [5.9]

Eq. (5.8) warps the high-resolution image so that it is pelréd the low-resolution frame and
has no skew or translation difference. The remaining difiee between” andp is just the scale
factor, which is encoded iit;. Eq. (5.9) is used to scale the low-resolution image and fied t
corresponding position in the rotated, skew-corrected, taanslation-corrected high-resolution
image for any poinp. Note that there is only a scale transformatidn;, betweerp andq”. To

summarize, all mappings are shown in Figure 5.3.
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Figure 5.3 The relation between the low-resolution inpages, high-resolution input image
B, rotated image3’, and skew and translation corrected imdgje p, q, q/, andq” are
corresponding points in each image.

5.4.2 ScaleCoherencein Two Directions

The pixels in the images may be square or non-square, asrdeéel by the physical CCDs.
The pixel aspect ratiqAR) is the ratio of horizontal and vertical sizes of a pix&his term also
refers to an image’s display resolution. For instance, agignwith a640 x 480 resolution has an
aspect ratio of 4:3, while @20 x 480 resolution has an AR of 3:2. The standard aspect ratio for
traditional television sets and computer monitors is 4:3evihe aspect ratio for high-definition,
wide-screen digital systems is 16:9. In our super-resmutiork, the high-resolution still images
may have a different AR than the low-resolution video framé®n two different cameras are
used. Different ARs may result in different scale factorghiex andy directions, i.e.q, # o, in
Egs. (5.5), (5.6), and (5.7). While the goal is to enhanceplaial resolution of each video frame,
it is not a good idea to change the aspect ratio of the lowtlnéea frames after enhancement. To
avoid this, the two scale factors, and«,, should be normalized to a common value, analogous

to digitally zooming the low-resolution images by a givemgasmtage. Assuming, > «,, Ts can
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be decomposed as
a, 0 0 1 0 O
Te=|0 a, 0|0 2 0 |=T,T [5.10]
0 0 1 0 0 1

Let T,’l = T..T;T. R, and apply it to the high-resolution image, and only apply' to the
low-resolution images. The scale factor between the I@eltgion and high-resolution images is
equal to the first element @', i.e.,T.(1, 1), assuming the last elemefit;!(3, 3), equals 1.

In practice, even if the aspect ratios of the two cameradwareame, or only one digital camera
is used to capture both the high-resolution still images landresolution videos, the estimated
scale factorsy, andq,,, may still be different because of the image and video reglish accuracy,
and possibly the manufacturing precision. So, the scateffse, anda, should be normalized to

a common value in all cases.

5.4.3 Non-Uniqueness

QR decomposition is not unique. Thus when we use the comphitéal warp the high-
resolution image, it may result in an “invalid” rotationge.the rotated points have negative coordi-
nates). To prove the non-uniqueness of QR decompositibf, e RU = (RD)(D~'U) = R'U,
given thatD is orthogonal with determinant 1 ardd = /. Since bothR and D are orthonormal,
RD is also orthonormal, anf)~'U is upper triangular.

In practice, we can check if, anda, (in Eq. (5.6)) are both negative. If so, we can choose

~1 0 0
D=|0 -1 0 [5.11]
0 0 1

and useld = R'U’ instead ofRU. Note thato, anda, cannot have different signs because we

cannot capture an image with positive scale in one dimersidmegative scale in the other.
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5.5 Photometric Correction

Besides the geometrical differences between the low arld deigolution images, there may
also be differences in the intensities between the imagesuse of global illumination variation
and/or camera automatic gain differences. To cope withgwhetric variation, we use a simple
linear method to align the intensities of the warped higlolkggn image with the low resolution
image, )

;%%(SW — Smin) + Swmin [5.12]

max

Enew =

whereB, . andB, . are the maximum and minimum intensities in a region in thepedrhigh-
resolution imagey, ... and S,,;, are the maximum and minimum intensities in the correspond-
ing region in the low-resolution image is the given pixel’s intensity il3”, and E,,.,, is the
photometrically-corrected value. Eq. (5.12) is applieddach pixel in each color channel sepa-
rately.

The whole procedure presented in Sections 5.2 to 5.5 cangbea@po each frame of the video

sequence using each high-resolution still image.

5.6 Experiments

A Canon PowerShot A70 digital camera was used to capture thettigh-resolution still
images (of siz2048 x 1536) using the “auto mode,” and the video sequences (each frasizeo
320 x 240) with the “video mode.” The scene is a rug containing mangitketFor display purposes
only, the still images were reduced 1880 x 960, which has no influence on demonstrating the
basic idea.

In Figure 5.4 one image extracted from the video sequendeoisrs at the top-left, and one
high-resolution image is shown in the middle. Using the Stig€rator for feature detection, 5,834
points were extracted from the high-resolution image, ad&7 points from the low-resolution
image. Using nearest neighbor matching, 471 correspoedenere found. However, there are
many outliers (i.e., mismatches) there. Using RANSAC tinestie the homography, 173 inliers

were selected, from which only 30 are displayed in both isgg@p-right and middle in Figure
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5.4) to avoid confusion in this visualization. The conditimumber of the x 3 homography matrix
H is large, but the estimate is accurate. We also used the hipati@n approach, but it did not
improve the results significantly. QR factorization anétetl manipulations were performed, Eq.
(5.8) was used to warp the high-resolution image paralldieédow-resolution image frame and to
correct skew and translation. Eq. (5.9) was used to zoomeitoth-resolution image. The scales
were estimated using Eq. (5.10) and the scales inrt@dy directions are the same without
changing the aspect ratio of the low-resolution images.tdthetric correction using Eq. (5.12)
was then done. For the low-resolution image shown at thédfbjn Figure 5.4, its enhanced high-
resolution image (of siz&392 x 1044) is shown at the bottom. The estimated scale difference is
4.35, which is bigger than the image size difference (four tinmesdach direction) between the input
high-resolution imagel@80 x 960, middle in Figure 5.4) and the low-resolution image x 240).

To see the result clearly, it is better to look closely at s@@lected regions in the images. A
100 x 100 window was cropped from the low-resolution image (at therigpt in Figure 5.4) and
shown in the top of Figure 5.5. The small patch was re-scatetyilinear interpolation (middle
left) and bicubic interpolation (middle right) as shown iilglre 5.5. Clearly, many details were
lost and the image patch looks vague. Image interpolaties dot add new information although
the image size is bigger. The corresponding patch in theeddnmh resolution image is cropped
and shown at the bottom-left in Figure 5.5, which is muchraearhe flowers in the middle and
the stripes at bottom-left can be seen clearly. Finallytpmetric correction using Eq. (5.12) was
performed and the new image is shown at the bottom-rightgarféi 5.5. From this experimental
result we can see that the low-resolution image can be gresatiched using the information from

the input high-resolution image.

5.7 Discussion

We have demonstrated an approach for using high-resoldigital still images to enhance
low-resolution video sequences. There are several qusst@maining to be answered: 1) How

many high-resolution images are needed? Currently, we niseome high-resolution image to
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enhance the whole video sequence. Some regions in the But®n images cannot be “en-
hanced” because the corresponding parts do not exist inigherésolution image. Hence more
high-resolution images may be necessary. 2) How far apartheaviewpoints be when capturing
the videos and high-resolution images? If they are too fartaphere will be distortions when
warping the images. 3) How should the high-resolution insafge a more general, non-planar,
scene be warped? In our experiments, we assunteck & homography, which is not general
enough to deal with all possible scenes. 4) How should phetaeocorrection be done for more
complex illumination conditions? We believe that all theseblems deserve investigation based

on the results here.

58 Summary

We have proposed enhancing the spatial resolution of vidgoences using higher resolution
digital still images. A recognition-based method usingamant features was presented to regis-
ter the high-resolution images with the low-resolutioneddsequences. A simple, robust method
based on QR factorization was used to warp the high-resolirtiages in order to mimic a digital
“zooming” effect. The procedure realizes the basic ideaufstill-image-based video enhance-
ment framework. Many extensions of the method are possibteder to build a real system for

practical use.
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Figure 5.4 Top Left: One frame from a video sequence with &ame320 x 240; Top right: a
few features detected by the SIFT operator; Middle: A higlohetion still image of size
1280 x 960. Bottom: The resolution-enhanced image of si282 x 1044.
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Figure 5.5 Top row: The image block of size0 x 100 cropped from the square shown in the top
right image of Figure 5.4; Middle-left: Cropped square eydal using bilinear interpolation with
the estimated scale 4.35; Middle-right: Enlarged usinglhicinterpolation; Bottom-left:
Corresponding high resolution block extracted and warpeah the bottom image in Figure 5.4;
Bottom-right: Photometrically corrected image of the boitleft image.
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Chapter 6

Conclusions

This thesis investigated some problems of facial imageyaigltargeting face recognition,
face expression recognition, and iris recognition. Leggrhased methods are used to attack these

computer vision problems.

6.1 Contributions
The major contributions of this dissertation are:

e Aface cyclograph representation was developed for engamtintinuous views of faces. The
face cyclograph is compact and multiperspective. For neitiog using the face cyclograph
representation, a method was presented based on dynamrapnming. Experimental eval-
uations on a face video database with 102 videos showedthaétognition accuracy was
99.01%. We also developed a method for normalizing faceogyapbhs with slightly lower

recognition accuracy.

¢ A linear programming technique was used for face expreggicognition. The advantage
of this method is that a small number of features, e.g., ks 0O versus the original 612
features, can be selected simultaneously with classifimig, even in the small sample

case. The recognition accuracy was as high as 91% on a pabéekpression database.

e A two-camera system was designed and implemented for atitoiria capture. A “face
camera” with wide field of view is used to control a narrow fieldview “iris camera” for

automatic iris acquisition. The system can track users’pmgtions, maintaining the eyes
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in the center of the iris cameras’ image. A prototype systess wilt and evaluated on

capturing about 20 people’s eyes without failure.

e A novel method was presented for iris localization. By intthg features describing the
texture difference between the iris and sclera and betweiris and pupil, in addition to
image gradient features, the performance of iris locabrawas improved significantly. For
example, our method extracted iris boundaries precisel97%% of the eye images in the

CASIA database, in contrast to 85.6% for Wildes’ and 88% fau@man’s methods.

e A new method was proposed for iris encoding. A set of filteedled difference-of-sum
filters, was designed for iris feature extraction. TheserSlican take advantage of a pre-
computed integral image, which makes the filtering procals tonstant computation time
no matter how big the filters are. Experimental evaluaticowshthat the new method has
higher recognition accuracy and is faster than Daugmag’s@ide method. The false accep-

tance rate was reduced by 7% in comparison with the iris costaoal.

6.2 Limitationsand Future Work

The face cyclograph representation is obtained when apsregead rotates in front of a sta-
tionary video camera. Our focus was to develop a conciseseptation of faces given such face
image sequences. In order to extend the face cyclograpbesemation to face videos containing
arbitrary head motions, a pre-processing step is requiféet is, manipulate a face video with
arbitrary head motion to synthesize a face video correspgnd single-axis head rotation starting
and ending at designated poses. This pre-processing stdyecaewed as an image-based render-
ing problem [108]. Then, a face cyclograph can be generatdduaed for recognition based on
the techniques presented in this thesis. We will investigais issue in the future.

The two-camera system for automatic iris acquisition hanbevaluated successfully for a
small number of people. The key idea is to use learning methad computer vision techniques
to design an automatic system replacing human adjustmémtgeopositions. In order to make

a real product, more evaluation work has to be done for mooplpe Furthermore, we have not
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considered use of infrared illumination in the current egst For black eyes, infrared light is
necessary in order to capture rich iris texture.

The methods for iris localization and encoding were evaldaising the CASIA database [17]
which was the only publicly available iris database avadadt the time. Recently, NIST has
created a new iris database called ICE [89]. We may evaluatmethods using the ICE database
in the future.

Learning for visionis a promising research direction. A wide variety of compuwtsion prob-
lems can benefit from learning techniques, not just objexigsition problems. We have applied
support vector regression (SVR) [121] for outlier detettamd removal in affine motion tracking
[48]. The problem is to detect and remove outliers in feapomt trajectories given by a track-
ing method such as the KLT tracker [106]. Clean feature ¢tajges are of great importance for
computer vision problems such as video sequence alignrsientture from motion, and motion
segmentation. The key idea of our approach [48] is to developear combination representation
to characterize the relation of four image frames or foutuesatrajectories, and then the SVR
method can be applied directly to estimate the linear coatluin coefficients and remove the
outliers. Experimental results show that the SVR technigagks slightly better than the RAN-
dom SAmple Concensus (RANSAC) method [37] which is used lyigecomputer vision [39].
One experimental result is shown in Figure 6.1. Our futuseaech will investigate new learning

techniques for a wider range of computer vision problems.
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Figure 6.1 The first frame (a) and the KLT tracked traject(l® of the hotel sequence. Inliers
(c) and outliers (d) computed by our trajectory-based limeanbination and SVR method.
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