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Abstract

A wealth of geometric and combinatorial properties of a given linear endomorphism X of
IRN is captured in the study of its associated zonotope Z(X), and, by duality, its associated
hyperplane arrangement H(X). This well-known line of study is particularly interesting in case
n := rankX ≪ N . We enhance this study to an algebraic level, and associate X with three
algebraic structures, referred herein as external, central, and internal. Each algebraic structure
is given in terms of a pair of homogeneous polynomial ideals in n variables that are dual to each
other: one encodes properties of the arrangement H(X), while the other encodes by duality
properties of the zonotope Z(X). The algebraic structures are defined purely in terms of the
combinatorial structure of X , but are subsequently proved to be equally obtainable by applying
suitable algebro-analytic operations to either of Z(X) or H(X). The theory is universal in
the sense that it requires no assumptions on the map X (the only exception being that the
algebro-analytic operations on Z(X) yield sought-for results only in case X is unimodular), and
provides new tools that can be used in enumerative combinatorics, graph theory, representation
theory, polytope geometry, and approximation theory.

1 Introduction

1.1 General

We are interested in combinatorial, geometric, algebraic and analytic properties of low rank linear
endomorphisms X of IRN . This setup is relevant in quite a few areas in mathematics from linear
algebra to algebraic graph theory to semi-simple group representations to approximation theory
(box splines), and underlies interesting connections among rather different mathematical problems.
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Consider X as a map from IRN to IRn, and identify it with the columns of its matrix represen-
tation. Important geometric information about X is captured by the image

Z(X) :={
∑

x∈X

txx : t ∈ [0, 1]X}

of the unit cube [0, 1]X under the action of X. The resulting polytope is known as a zonotope.
Zonotopes exhibit special symmetries that general polytopes lack. Underlying those special features
is the fact that their normal cone fan is linear, i.e., is a (central) hyperplane arrangement. The
duality between zonotopes and hyperplane arrangements is rich, and includes intriguing connections
between the different tilings of the zonotope into sub-zonotopes on the one hand, and the geometries
obtained by translating the hyperplanes in the hyperplane arrangement on the other hand (see [35],
[34], [43], [42], [49, Chapter 7], [8, Chapter 2], [39], [46]). While we briefly touch in Section 2 on
these known connections, the focus of this paper is neither on the linear algebra surrounding the
map X, nor on the geometry and combinatorics of the zonotope Z(X) per se.

The theory of zonotopal algebra that is developed in the current article is algebraic. At its
core one finds three pairs of zero-dimensional homogeneous polynomial ideals in n variables: an
external pair (I+(X),J+(X)), a central pair (I(X),J (X)), and an internal pair (I−(X),J−(X)).
The ideals within each pair are dual to each other; in particular, their Hilbert series are identical.
To keep this introduction brief, we do not describe in depth the actual ingredients of the theory that
is developed here. Instead, we present a number of results that capture the flavor of the general
theory and its many potential applications.

The definition of the I-ideals goes as follows. First, given y ∈ IRn, let py be the linear form

py : IRn → IR : t 7→ y · t :=

n∑

i=1

y(i)t(i).

Further, let
F(X)

be the set of facet hyperplanes of X, viz., H ∈ F(X) if and only if H is a subspace of IRn of
dimension n − 1, and span(X ∩ H) = H. Finally, for any facet hyperplane, let ηH be the normal
to H, and let m(H) be the cardinality of the vectors in X\H:

m(H) := mX(H) := #(X\H).

The three I-ideals are generated each by the polynomials

pm(H)+ǫ
ηH

, H ∈ F(X).

The external ideal I+(X) corresponds to the choice ǫ = 1, the central ideal I(X) corresponds to
the choice ǫ = 0, while the internal ideal I−(X) corresponds to the choice ǫ = −1.

The Hilbert series of these three ideals are closely related to the external activity variable of the
Tutte polynomial that is associated with X. We explain (and prove) this connection later. A more
rudimentary result is as follows (see Section 2.1 for the definition of unimodularity). We denote by

Π :=C[t1, . . . , tn]
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the space of polynomials in n variables, and by

Πk (Π0
k, respectively)

the subspace of Π that contains all polynomials of degree ≤ k (all homogeneous polynomials of
exact degree k, respectively). Also, for any homogeneous ideal I ⊂ Π, we denote

ker I :={p ∈ Π : q(D)p = 0, ∀q ∈ I} = {p ∈ Π : q(D)p(0) = 0, ∀q ∈ I}.

Our first result provides a very basic combinatorial connection between the I-ideals on the one
hand and the zonotope Z(X), the integer points in it, as well as the integer points in its interior
int(Z(X)).

Proposition 1.1 Let X ⊂ IRn be unimodular, and let Z(X) be the associated zonotope. Then:

(1) dim ker I+(X) = #(Z(X) ∩ ZZn).

(2) dim ker I(X) = vol(Z(X)).

(3) dim ker I−(X) = #(int(Z(X)) ∩ ZZn).

Another related result is that the number of (unbounded) n-dimensional regions in H(X) equals
dim ker I+(X) − dim ker I−(X); this result holds for a general X. As a matter of fact, far deeper
connections between the zonotope Z(X) and the I(X)-ideals are demonstrated in this paper: the
I-ideals can be derived, each, by applying suitable algebro-analytic operations to a suitably chosen
subset of Z(X) ∩ ZZn.

An important highlight of the I-ideals is that their associated kernels can be described cleanly
and explicitly in terms of the columns of X.1 Our second illustration moves in this direction and
considers, for a given X, the possible use of the polynomials

pY :=
∏

y∈Y

py, Y ⊂ X,

for the representation of the ring Π. For example, denote

P+(X) := span{pY : Y ∈ 2X}.

Proposition 1.2 With P+(X) as above, Π = P+(X) ⊕ I+(X).

The above result follows directly from the fact that P+(X) equals ker I+(X). Even more inter-
esting decompositions are obtained when using the J -ideals, since these ideals are generated by
polynomials of the form pY , with Y a (multi)subset of X (or of a slightly augmented version of
it). For example, one way to express the duality between I(X) and J (X) is via the direct sum
decomposition (cf. §3)

Π = J (X) ⊕ ker I(X).

This decomposition corresponds to a decomposition of the power set 2X : it will be shown that
ker I(X) is spanned by pY , Y ∈ S(X), with S(X) a suitable subset of 2X . The ideal J (X) is
generated by the remaining polynomials pY , Y ∈ 2X\S(X).

1Unfortunately, there are no known simple representations for the kernels of the J -ideals.
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Special types of zonotopal algebras are intimately connected to group representations. The con-
nection is particularly simple in the case of SLn+1-representations, since in this case the underlying
X is unimodular.2 Fixing n, we let Xk, k ≥ 1 be a k-fold multiset of the edge set3 of a complete
graph with n + 1 vertices (see Example 2.1). A basic result, which applies to all finite-dimensional
SLn+1 representations, is that the character (or more precisely the Fourier coefficients of the char-
acter) of the representation is piecewise polynomial (see, e.g., [47]), with the polynomial pieces all
lying in the kernel of the ideal J (X1). Here is a rather different result.

Example 1.3 Fix n ≥ 2 and a positive integer k, and let Γk be the irreducible SLn+1 representation
of highest weight (k, k, . . . , k). Then there exists a unique polynomial p ∈ P+(Xk) whose values on
the spectrum of Γk determine the character of Γk: at each eigenvalue α, p(α) equals the multiplicity
of the eigenvalue in Γk.

This result follows directly from the theory of this paper, thanks to the fact that the convex
hull of the spectrum of the above Γk is the zonotope Z(Xk). However, the connection between
zonotopal algebras and group representations extends beyond examples of this type, as the next
example makes clear. In that result, Xk retains its meaning from the previous one. Note that, in
general, the convex hull of the spectrum of an SL3-representation is not a zonotope.

Example 1.4 Let Γ be an irreducible SL3 representation of highest weight (k + j, k − j), for some
integers 0 ≤ j ≤ k. Then, with σ the spectrum of Γ, and for every c ∈ Cσ there exists a unique
(bivariate) polynomial p ∈ P+(Xk), such that:

(i) deg p ≤ 3k − j, and

(ii) p|σ = c.

Let us now illustrate connections with algebraic graph theory and with the notion of parking
functions from combinatorics (see [37], [48], [32]). For simplicity, we present the connection for the
edge set X of a complete graph X with n+1 vertices; similar results are valid for general graphical
X. Note that here and elsewhere

ZZ+

stands for the non-negative integers (including 0).

Definition 1.5 Set V :={1, . . . , n}. For r ∈ ZZV
+, and v ∈ V , set Vr,v :={v′ ∈ V : r(v′) ≥ r(v)}.

Then r is called:

(i) An external parking function if, for each v ∈ V , one of the following two conditions holds:

Either #Vr,v < n − r(v) + 1,

or #Vr,v = n − r(v) + 1, and r(v′) = r(v) for v′ = min Vr,v.

(ii) An internal parking function if, for each v ∈ V , one of the following two conditions holds:

2Group representations are connected with a discrete version of zonotopal algebras, that are not discussed in this
paper. In the unimodular case, however, the discrete version coincides with the continuous version, which is the
version studied here.

3One needs also to choose correctly the basis for IRn in the definition of the edge set.
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Either #Vr,v < n − r(v),

or #Vr,v = n − r(v), and r(v′) = r(v), for some v′ 6= maxVr,v.

Parking functions define a monomial set in Π whose monomial complement spans a monomial
ideal. This monomial ideal “monomizes” a corresponding zonotopal ideal, and the above holds for
every graphical X; this point was already made explicit in [37] (for the central zonotopal case).
Here is a pertinent statement concerning the external case. We use here R+(X) to denote the set
of external parking functions of X.

Example 1.6 Let X be the edge set of a complete graph with n + 1 vertices. Then there exists an
injection T : R+(X) → 2X such that

• The polynomials {pTr : r ∈ R+(X)} form a basis for P+(X).

• For each r ∈ R+(X), the monomial tr appears (with non-zero coefficient) in the monomial
expansion of pTr.

In particular, deg pTr =
∑

v∈V r(v), for every r ∈ R+(X).

Since parking functions are well known to be connected with other combinatorial aspects of
graphs, such as the number of inversions in its spanning trees, [45], results as the above draw
connections with graph theory beyond parking functions per se. We study connections of this type
in [30].

We now move in a completely different direction, and point out connections between zonotopal
spaces and special types of multivariate polynomial interpolation problems. Connections of this
type are at the core of zonotopal algebras, were fully developed before for the central case, and are
well explained in the body of this paper. Here is one illustration (cf. Section 4).

Proposition 1.7 Denote Z+(X) := Z(X) ∩ ZZn. Then the restriction map

f 7→ f|Z+(X)

is a bijection between P+(X) and CZ+(X), provided that X is unimodular.

Our final example is about connections of the theory developed here with approximation theory.
We recall that a (polynomial) box spline MX (with X ⊂ IRn the given multiset) is a smooth
piecewise polynomial function in n variables supported on the zonotope Z(X). It can be defined
as the convolution product of the measures Mx, x ∈ X, with the mass of each Mx uniformly
distributed on the line connecting 0 to x. One of the early key problems in box spline theory was
to understand the properties of the polynomial space

D(X)

(which is defined and reviewed in Section 3 here, and which is known to be) spanned by the
polynomials in the local structure of MX . The “mere” attempt to understand the dimension
of that space spawned an industry of techniques for estimating the dimension of joint kernels of
differential and other operators (see [41] and references therein). We present below a potential box
spline application of our results that is of a different flavor.
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Conjecture 1.8 Let X be unimodular, and let

Z−(X)

be the set of integer points in the interior of Z(X). Let f be any function defined on Z−(X). Then,
there exists a unique polynomial p ∈ ker I−(X) such that p(D)MX equals f on Z−(X).

This conjecture follows (albeit in a somewhat non-trivial way) from Conjecture 6.14, but may
be true even if the latter is disproved.

1.2 Historical context

Special zonotopal algebras (viz. spaces of the type D(X) for special maps X) appear implicitly
in Weyl’s character formulæ, and the connection is valid for representations of all semi-simple Lie
algebras, [47]. Zonotopal spaces associated with general maps X (viz. the spaces D(X)) made their
debut in [15]. The dimension formula for D(X) was established in [11] (continuous version) and
in [12] (discrete version). This result was extended to non-matroidal structures by multiple authors
and in multiple ways (see [41]). Our approach here, in Section 3, bypasses these developments,
but uses in an essential way methods for bounding dimensions of such spaces from below [6, 19].
The dual space P(X) was introduced independently in [1] and in [24], with the latter containing
the details concerning the construction of the homogeneous basis for P(X) (Section 3.2). The
identification of I(X) as the annihilating ideal of P(X) is found in [17]. A chapter in [16] is
devoted to the study of these and other related algebraic aspects of box spline theory. Newer
treatments of the central case are presented in [22] and the book [23], where several aspects of
the central algebra are re-explored and extended, including its relations with modules over the
Weyl algebra and D-modules, as well as with toric arrangements and their cohomology. A nice
connection between the space D(X) and the cohomology of toric hyperKähler varieties is described
in [28] via the so-called Volume Polynomials shown to span D(X) as a D-module (for subsequent
developments, see [27], [29]).

Our interest in extending the theory of zonotopal spaces beyond the central pair was stimulated
by discussions we had in the mid 1990’s with Nira Dyn and Uli Reif, concerning the possibility of
a result á la Conjecture 1.8, and was enhanced by discussions we had a few years later with Frank
Sottile, who pointed out to us connections between our external theory and the work of [38]. Our
delay in publishing this theory was primarily caused by inherent difficulties we encountered in the
internal study due to the absence of a “canonical” basis for ker I−(X). We believe that the theory
as presented here alleviates ramifications of this hurdle to the extent possible.

As we alluded to above, the novelty of this paper lies exclusively in the theory of the internal and
external algebra, whose foundations we develop here, as well as in pointing out various connections
of this theory with other fields – most notably, enumerative combinatorics and representation theory
(see Sections 4 and 5, also Section 1.1). It should be mentioned that our second task is by no means
completed in this paper, due to the multitude and richness of those connections. A description of
combinatorial connections alone is a subject of our forthcoming paper [30], currently in preparation.

We hope that this paper will offer a new perspective and new tools to researchers working in
algebra, analysis and combinatorics, along with a glimpse into exciting developments yet to come.

4We note that Conjecture 6.1 implies that point evaluation is well defined on p(D)MX .
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1.3 Layout of this article

The paper is organized as follows. Section 2 contains background results that will be used in the
rest of the paper. This section is subdivided into five subsections: Section 2.1 is devoted to linear
algebra and matroid theory, Section 2.2 to hyperplane arrangements, Section 2.3 to zonotopes,
Section 2.4 to polynomial interpolation and Section 2.5 to polynomial ideals and their kernels.

The bulk of the paper is in Sections 3, 4 and 5. Those three sections are made parallel to each
other, with two subsections in each, the first containing main theory and the second discussing
grading, the Hilbert series, and homogeneous bases for the polynomial spaces in question. While
the material in Section 3 is known, we feel it is crucial to present it in this way here, for the rest
of the paper to be much more easily understandable, as well as for the streamlined approach itself.
The paper ends with Section 6 containing a few additional remarks and conjectures.

2 Preliminary results

2.1 Linear algebra

Consider a finite multiset X ⊂ IRn\{0} of full rank n and of size #X. At times, we will associate
X with some full ordering. In this case, we may consider the vectors in X to comprise the columns
of an n-by-#X matrix, which we will still denote by X. Such a multiset (or a matrix) X gives rise
to a linear matroid (see, e.g., [36]) via the standard convention that the independent sets of the
matroid are exactly the linearly independent subsets of the columns of X.

We now single out three sub-collections of the power set 2X that will play a crucial role in this
paper. The reader may notice right away that all three are defined in purely matroidal terms. The
first of the three is the set IB(X) of all bases of X:

IB := IB(X) :={B ⊂ X : B is a basis for IRn}.

The second is the collection I(X) of all independent subsets of X:

I := I(X) :={I ⊂ X, I is independent in IRn}.

Note that the empty set is independent. The third is the set of internal bases, and is defined in the
sequel.

Clearly, IB(X) ⊂ I(X), and the inclusion is proper. Nonetheless, it is convenient to consider
the independent sets as full-rank bases, too. To this end, we choose a fixed basis B0 of IRn, and
append B0 to X:

X ′ :=X ∪ B0.

We then impose some arbitrary, but fixed, ordering ≺ on B0, and associate each I ∈ I(X) with
ex(I) ∈ IB(X ′) which is the greedy completion of I to a basis, using the elements of B0, i.e.,
b ∈ ex(I) if and only if b ∈ I or else b ∈ B0 and

b 6∈ span{I ∪ {b′ ∈ B0 : b′ ≺ b}}.

That creates a 1-1 map from I(X) into IB(X ′). The range of this extension map is denoted by
IB+(X):

IB+(X) :={ex(I) ∈ IB(X ′) : I ∈ I(X)}.
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We refer to the bases in IB+(X) as the external bases of X. Note that every basis of X is external
directly from the definition, but not every external basis of X is a basis of X.

Next, we define the notion of an internal basis. To this end, we assume to be given an order
≺ on X. A vector b ∈ B in a basis B ∈ IB(X) is said to be internally active in B if b is the last
element in X\H, where H := span(B\b):

b ≻ x, ∀x ∈ X\(H ∪ b). (1)

A basis B that contains no internally active vectors is said to be an internal basis. We denote

IB−(X) :={B ∈ IB(X) : B is an internal basis}.

It is obvious that the notion of an internal basis depends on the ordering. In fact, assuming that
the last n vectors of X form a basis B1, only the ordering within B1 counts here, since, whatever
B ∈ IB(X) we choose, only the vectors in B ∩ B1 can be internally active in B. Thus

IB(X\B1) ⊂ IB−(X) ⊂ IB(X) ⊂ IB+(X) ⊂ IB(X ∪ B0).

We will see later that the number of internal bases is independent of the ordering of X.
We say that X is unimodular if X ⊂ ZZn and

∀B ∈ IB(X), spanZZB = ZZn ( ⇐⇒ det(B) = ±1).

Example 2.1 [the edge set of a graph]. Let G be a connected undirected graph with n + 1
vertices V = {vi}

n
i=0. Let e0 := 0. Let (ei)

n
i=1 be a basis for IRn. Identify an edge eij that connects

the vertices vi and vj (i < j) with the vector ei − ej ∈ IRn. With this identification, one chooses
X to be the edge set of G. Note that the edge (multi)set X of a graph is always unimodular
(assuming, say, that (ei) is the standard basis. Otherwise, “unimodularity” here is with respect
to the lattice spanned by the basis.) The corresponding matroid is called graphical. A particular
interesting example is when G is chosen to be a complete graph, i.e., a graph in which every pair of
vertices is connected by exactly one edge.

Remark. Although it is not obvious, there is a certain level of symmetry in the definition of
external bases and internal ones. To demonstrate this point, let us assume that X is graphical,
and let B1 :=(ei)

n
i=1. Assuming that B1 ∈ IB(X) (which means that there is an edge between

v0 and each of the other vertices), we place B1 last in X, and order its vectors according to the
enumeration of the vertices (ei ≺ ej iff i < j). Using this order to define IB−(X), one finds that
B ∈ IB(X) is internal if B ∈ IB(X\B1). Otherwise, B\B1 defines a partition (V0, . . . , Vk), v0 ∈ V0,
on the vertex set V , with the k vectors in B ∩B1 connecting v0 to each of V1, . . . , Vk. The basis B
is then internal if and only if, for i = 1, . . . , k, the edge in B ∩ B1 that connects v0 and Vi is not
connected to the maximal vertex of Vi.

Now, let us append another copy of B1 to X. We call this copy B0, and denote X ′ := X ∪ B0.
We retain the order on B0 as above and use this external copy B0 to define IB+(X). We then
need to determine what the greedy extension ex(I) of I ∈ I(X) should be. Again, each such I
determines a partition (V0, . . . , Vk) as before. The greedy extension is performed by connecting, for
i = 1, . . . , k, the vertex v0 to the minimal vertex in Vi.
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2.2 Hyperplane arrangements

Recall from the introduction the definition

Π := C[t1, · · · , tn],

as well as the notations Πk and Π0
k. We first associate each direction x ∈ X with a constant λx ∈ IR,

and define an affine polynomial px,λ ∈ Π:

px,λ : IRn → IR : t 7→ x · t − λx.

The X-hyperplane arrangement H(X,λ) is determined by the zero sets of the above polynomials,
viz., by

Hx,λ :={t ∈ IRn : px,λ(t) = 0}, x ∈ X.

We will usually assume that λ is chosen generically, i.e., so that the intersection of any collection of
n+1 hyperplanes is empty. Note that different choices of λ may result in hyperplane arrangements
with different geometries. Of particular interest are the following three geometric characteristics of
the hyperplane arrangement:

1. V (X,λ): the set of vertices

2. CC(X,λ): the set of n-dimensional connected components

3. BCC(X,λ): the set of n-dimensional bounded connected components

As a reader of this article should observe, the set V (X,λ) is analyzed in Section 3; however,
the set CC(X,λ) appears nowhere in this paper past the current location. The reason is mainly
technical: the tools that we introduce and employ allow us to study zero-dimensional sets. We
bypass this limitation by associating CC(X,λ) and BCC(X,λ) with suitable supersets and/or
subsets of V (X,λ), and utilize to this end the notions of external and internal bases. It is thus
worth mentioning the following known facts.

Result 2.2 For any generic hyperplane arrangement determined by a multiset X,

#V (X,λ) = #IB(X),

#CC(X,λ) = #IB+(X) (= #I(X)),

#BCC(X,λ) = #IB−(X).

The result shows in addition that the number of objects of each type is a geometric invariant
of generic arrangements. In this connection, it is worthwhile to point out the relevance of the
(univariate) Ehrhart polynomial5 :

EX(t) :=
∑

I∈I(X)

t#I .

It is known that (see [5]) EX(1) = #I(X) = #IB+(X), and that EX(−1) = (−1)n#IB−(X).
The first equality is a triviality; the second one can be proved by induction on n. It shows that
#IB−(X), indeed, is independent of the order on X.

5Strictly speaking, this is the true Ehrhart polynomial of X only when X is unimodular (see, e.g., [44]).
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2.3 Zonotopes

Let us now consider X as a map:

X : IRX → IRn : t 7→
∑

x∈X

txx.

Then the zonotope of X is defined as the image of the unit cube under this map

Z(X) := X([0, 1]X ).

Assuming X to be unimodular, we have the following formulæ for the volume of Z(X), the number
of integer points in Z(X), and the number of integer points in the interior of Z(X), respectively:

1. vol(Z(X)) = #IB(X),

2. #(Z(X) ∩ ZZn) = #IB+(X) = #I(X),

3. #(int(Z(X)) ∩ ZZn) = #IB−(X).

Every zonotope Z(X) is a disjoint (up to a nullset) union of the translated parallelepipeds [44, 16]:

tB + Z(B), B ∈ IB(X).

The translation tB ∈ IRn equals
∑

x∈X(B) x, with X(B) a suitable subset of X\B. There are
multiple ways of choosing these translations, hence there are multiple tilings of the zonotope. A
canonical approach to obtaining a tiling is based on ordering X (in any way). Each such ordering
corresponds to a different geometry on the hyperplane arrangement. In this duality, the vertices
of the hyperplane arrangements are associated with the parallelepipeds that tile the zonotope,
the bounded regions of the arrangement correspond to the vertices of the parallelepipeds that
are interior to the zonotope, while the unbounded regions of the arrangement correspond to the
vertices on the boundary of the zonotope. Thus, for example, the number of vertices of a connected
region of the arrangement must agree with the number of parallelepipeds that intersect at the
corresponding “lattice point” of the zonotope. This geometric duality is well known and is discussed,
e.g., in [46, 45, 4, 5]. A reader who is interested in the above-mentioned geometric duality may wish
to revisit the discussion here after reviewing the construction of a homogeneous basis for P(X) in
Section 3.2.

2.4 The least map and polynomial interpolation

Given a power series f in n variables

f = f0 + f1 + f2 + · · · ,

where fj is a homogeneous polynomial of degree j, and define the least map via f 7→ f↓ by

f↓ := fj, fj 6= 0, fi = 0, ∀i < j.

In other words, f↓ is the first non-zero term in the above expansion of f . We adopt the convention
that 0↓ := 0. For a collection F of functions analytic at the origin, we define

F↓ := span{f↓ : f ∈ F}.
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The least map plays an important role in polynomial interpolation, as was shown in [17, 18, 19].
Here are the details. A pointset σ ⊂ Cn is called correct for a polynomial space P ⊂ Π if the
restriction map p 7→ p|σ is invertible (as a map from P to Cσ) i.e., if interpolation from P at the
points of σ is correct (the latter means that the interpolating polynomial exists and is unique).

With σ a finite subset of IRn, consider the point evaluation functional

δα : Π → C : p 7→ p(α),

and define
Λ := span{δα : α ∈ σ}.

Then Λ is a subspace of the dual space Π′ of Π. Given σ, the correctness of a space F ⊂ Π for
interpolation on σ is equivalent to the isomorphism

Λ|F ∼= F ′,

where F ′ is the dual space of F .
Now, associate p ∈ Π with a differential operator:

p(D) := p

(
∂

∂t1
, · · · ,

∂

∂tn

)
.

(In particular, if p(t) = x·t, x ∈ IRn\{0}, then p(D) is the directional derivative in the x-direction.)
Then, given a polynomial p and a formal power series f , define their pairing 〈p, f〉 as

〈p, f〉 :=(p(D)f)(0). (2)

The functional δα is represented using this pairing by the exponential

eα : IRn → IR : t 7→ eα·t, i.e., 〈p, eα〉 = p(α) = δαp.

Thus the space Λ is represented by the exponential space

Exp(σ) := span{eα : α ∈ σ}.

Finally, we define
Π(σ) := span{f↓ : f ∈ Exp(σ)}.

We now check that the dimension of Π(σ) is exactly #σ. Let Tj : Exp(σ) be the jth degree
Taylor expansion; i.e., for f ∈ Exp(σ), Tjf is the j-th degree Taylor expansion of f at 0. Note that
deg(f↓) = j if and only if f ∈ ker Tj−1\ ker Tj . Thus, with T ′

j the restriction of Tj to ker Tj−1,

dim span{f↓ : f ∈ Exp(σ), deg(f↓) = j} = rankT ′
j = dim ker Tj−1 − dim ker Tj.

Summing from j = 0 to ∞ (where T−1 := 0), we obtain

∞∑

j=0

(
dim(ker Tj−1) − dim(ker Tj)

)
= dim(ker T−1) = dim Exp(σ) = #σ.

Here we used the fact that every finite set of exponentials is linearly independent.
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Now, for any analytic function f 6= 0,
〈f↓, f〉 6= 0.

This means that there exists no f ∈ Exp(σ)\{0} that satisfies

〈p, f〉 = 0, ∀p ∈ Π(σ).

Thus, the spaces Exp(σ) and Π(σ) serve as duals of each other. In summary:

Result 2.3 ([18]) The map Exp(σ) → Π(σ)′ defined by f 7→ 〈·, f〉 is an isomorphism, and the set
σ is correct for the space Π(σ). In particular, dim Π(σ) = #σ.

Now, given any non-zero polynomial p ∈ Π, let p↑ be the highest degree homogeneous polynomial
in p, i.e., p↑ is homogeneous, and deg(p − p↑) < deg p. Likewise, define, for F ⊂ Π,

F↑ := span{f↑ : f ∈ F}.

This defines the so-called most map. The following result describes the interaction of the least map
(·)↓ and the most map (·)↑:

Result 2.4 ([18]) Let p ∈ Π be fixed. Then

(p(D) (Exp(σ)))↓ ⊃ p↑(D)(Π(σ)). (3)

Proof. Let p be a polynomial and let f be an analytic function. Set p =: p↑+q, then deg q < deg p.
For f ∈ Exp(σ), set f =: f↓ + g. Then we have

p(D)f = p↑(D)f↓ + q(D)f↓ + p↑(D)g + q(D)g.

Note that p↑(D)f↓ is the lowest order term in the right hand side. Hence p↑(D)f↓ = (p(D)f)↓
unless p↑(D)f↓ = 0. Applying this observation to an arbitrary function f ∈ Exp(σ), we conclude
that (3) holds. 2

This theorem can be used as follows: suppose that we have a homogeneous polynomial r, and we
would like to understand the action of r(D) on Π(σ). Then it makes sense to find an inhomogeneous
polynomial p such that (i) p↑ = r, and (ii) p vanishes at as many points of σ as possible. Indeed,
one easily verifies that

p(D)Exp(σ) = Exp(σ\Zp),

with Zp the zero-set of p. In particular, p(D) annihilates Exp(σ) iff p vanishes on σ. In that latter
case, we obtain the following corollary from the previous result:

Corollary 2.5 ([18]) If p vanishes on σ, then p↑ annihilates Π(σ).

Corollary 2.6 ([18]) Let σ ⊂ IRn be finite, and let P be a homogeneous subspace of Π. Then σ
is correct for P if the map

p 7→ 〈·, p〉

is a bijection between P and Π(σ)′.6

6The converse of this result is true, too, once we assume in addition that dim(P ∩Πj) ≥ dim(Π(σ)∩Πj), for all j.
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Proof. We may assume that dim P = #σ, since otherwise the bijection cannot hold. Now, if
dim P = #σ, and σ is not correct for P , then some p ∈ P vanishes on σ, hence p↑(D) annihilates
Π(σ), and, in particular, p↑ ⊥ Π(σ). Since P is homogeneous, p↑ ∈ P , hence the bijection does not
hold.

These results can be used to prove dimension formulæ for polynomial spaces of interest, which we
now introduce. Given a vector λ indexed by X, recall that we associate each x ∈ X with an affine
polynomial

px,λ : IRn → IR : t 7→ x · t − λx.

For simplicity, we denote the linear polynomial px,0 by px. For a multi-subset Y ⊂ X, define

pY,λ :=
∏

y∈Y

py,λ, pY := pY,0. (4)

Let V (X,λ) denote the vertex set of the corresponding X-hyperplane arrangement H(X,λ). Recall
that #V (X,λ) = #IB(X) for a generic λ. Moreover, if λ is generic, then there is a natural bijection
B 7→ vB between IB(X) and V (X,λ), where each B ∈ IB(X) is mapped to the unique common zero
vB of {py,λ : y ∈ B}. This implies that each subset IB′ of IB(X) is associated in a unique way with
V ′ ⊂ V (X,λ). We define

DIB′(X) :={f ∈ Π : pY (D)f = 0, ∀Y ⊂ X s.t. Y ∩ B 6= ∅, ∀B ∈ IB′}.

Then we have the following results, [19]:

Theorem 2.7 Let X ⊂ IRn\{0} be a finite multiset of full rank n. Then, for any subset IB′ of
IB(X),

Π(V ′) ⊆ DIB′(X),

with V ′ the vertices that correspond to IB′ in any generic X-hyperplane arrangement H(X,λ).

Corollary 2.8 In the setting of Theorem 2.7,

dimDIB′(X) ≥ #IB′.

Proof of Theorem 2.7 and Corollary 2.8. Let λ be generic. Note that, for Y ⊂ X and
B ∈ IB(X), pY,λ(vB) = 0 if and only if Y ∩ B 6= ∅. Now, set V ′ :={vB : B ∈ IB′}, and let Y be a
multi-subset of X such that

Y ∩ B 6= ∅ ∀B ∈ IB′.

Then we conclude that pY,λ vanishes on V ′. Then, by Corollary 2.5, we have

(pY,λ)↑(D)(Π(V ′)) = 0.

Since (pY,λ)↑ = pY , we conclude that

Π(V ′) ⊆ DIB′(X).

But,
dim Π(V ′) = #V ′ = #IB′.

We will apply these results three times in this paper: once with respect to IB′ := IB(X), then
with respect to IB′ := IB+(X), and finally with respect to IB′ := IB−(X). In all these cases, we will
show that equality holds in Corollary 2.8, hence that Π(V ′) = DIB′(X).
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2.5 Polynomial ideals and their kernels

Here we state, for the convenience of the reader, some basic results from commutative algebra,
which will be used in the rest of the paper. The majority of these results are standard and can
be found in commutative algebra textbooks, e.g., [26] or [31]. The fact that kernels of polynomial
ideals can be synthesized from finitely many localizations can be found in [33]; while this result
is non-trivial, we will need only the result for the simpler special case of zero-dimensional ideals.
Some of the actual presentation here follows [19].

Let I be an ideal in the ring Π := C[t1, · · · , tn]. If I is generated by a set L ⊂ Π, this will be
denoted as I = Ideal(L). The codimension of I is the dimension of the quotient space Π/I or,
equivalently, the dimension of its annihilator

{µ ∈ Π′ : µf = 0 ∀f ∈ I}.

Since the dual space Π′ can be realized as the space C[[t1, . . . , tn]] of formal power series, the
codimension of I is also the dimension of the orthogonal complement of I in C[[t1, . . . , tn]] with
respect to the pairing (2), i.e., 〈f, g〉 :=(f(D)g)(0). The variety Var(I) of I

Var(I) :={θ ∈ Cn : p(θ) = 0 ∀p ∈ I}

forms a subset of the annihilator of I, where evaluation at a point θ ∈ Var(I) is realized by the
exponential eθ. The kernel of I is defined as

ker I := span{eαp : α ∈ Var(I), p ∈ Π s.t. 〈eαp, q〉 = 0, ∀ q ∈ I}.

With that definition, the kernel ker I is total in the sense that

(ker I) ⊥ :={q ∈ Π : 〈k, q〉 = 0, ∀ k ∈ ker I} = I.

An ideal I is called zero-dimensional if its variety is finite. In that case, each of the multiplicity
spaces

(ker I)α :={p ∈ Π : eαp ∈ ker I}

is finite-dimensional, hence ker I is a finite-dimensional space of exponential polynomials:

ker I :=
∑

α∈Var(I)

(ker I)α.

Furthermore, we have then that
dim(ker I) = dim Π/I,

hence, in particular, I is of finite codimension. Defining

(ker I)↓ := span{f↓ : f ∈ ker I},

we have

Result 2.9 If I is a zero-dimensional ideal, then

Π = I ⊕ (ker I)↓.
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The homogenization of the kernel of an ideal via the least map (·)↓ is dual to the homogenization
of the ideal itself via the most map (·)↑. Here are the details. Given an ideal I, we define

I↑ := span{p↑ : p ∈ I}.

I↑ is a homogeneous ideal, i.e., is generated by homogeneous polynomials. We have:

Result 2.10 For a zero-dimensional ideal I, the following properties hold:

1. Var(I↑) = {0}.

2. ker(I↑) is a finite-dimensional polynomial space.

3. ker(I↑) = {p ∈ Π : q(D)p = 0, q ∈ L}, with L ⊂ Π any set that generates I↑.

4. ker(I↑) = (ker I)↓.

5. (I↑) ⊕ ker(I↑) = Π.

Finally, if I is 0-dimensional, and F is a polynomial space, then the relation F + I = Π implies
that dim F ≥ dim Π/I with equality iff the above sum is direct. Hence we have:

Result 2.11 Let I be a zero-dimensional ideal, and let F be a linear subspace of Π. If

F + I = Π, (5)

then dim F ≥ dim ker I. Moreover, if dim F = dim ker I, then the sum (5) is direct.

3 Central zonotopal algebra

3.1 Main results

We have mentioned the geometric duality between the hyperplane arrangement and the zonotope
that are associated with the multiset X. The focus of this paper is on an algebraic counterpart
of that duality. We discuss in the paper three pairs of finite-dimensional polynomial spaces, all of
which can be alternatively described as kernels of certain zero-dimensional ideals. Each polynomial
space will be shown to be a dual space of its pair-mate via the map p 7→ 〈p, ·〉 where 〈·, ·〉 is our
pairing (2).

The first pair will be referred to as the central pair of X. The space P(X) below is the
central space of the zonotope Z(X), while the space D(X) is the central space of the hyperplane
arrangement H(X, 0). The theory of this pair of polynomial spaces was developed in the 80s and
90s in [1, 2, 3, 6, 18, 19, 20, 21, 17, 10, 11, 13, 14, 9, 24, 25]. We have discussed some historical
aspects of this theory in the Introduction, and will discuss the history of specific results in more
detail towards the end of this section. The section contains a streamlined and abbreviated theory
of the central pair. To keep this paper close to being self-contained, we provide most proofs.

The polynomials spaces P(X) and D(X) are best described in terms of a partition of the power
set 2X into two disjoint sets of long subsets L(X) ⊂ 2X and short subsets S(X) = 2X\L(X):

L(X) := {Y ⊂ X : Y ∩ B 6= ∅, ∀B ∈ IB(X)},

S(X) := {Y ⊂ X : rank(X\Y ) = n}.
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Note that the elements of S(X) are exactly the independent sets of the matroid dual to X, and those
of L(X) are its dependent sets, as the independence of a set Y in the dual matroid is equivalent
to the set X \ Y being of full rank in the original matroid. Using the notation (4) for polynomials
pY , the spaces P(X) and D(X) are defined as follows:

D(X) := {f ∈ Π : pY (D)f = 0, ∀Y ∈ L(X)},

P(X) := span{pY : Y ∈ S(X)}.

Immediately, Theorem 2.7 and Corollary 2.8 imply as a special case the following two statements:

Theorem 3.1 Let V (X,λ) denote the vertices of a generic X-hyperplane arrangement associated
with X. Then Π(V (X,λ)) ⊆ D(X).

Corollary 3.2 dimD(X) ≥ #IB(X).

We now let J (X) denote the ideal generated by the long polynomials:

J (X) := Ideal{pY : Y ∈ L(X)}.

Then D(X) could also be defined as the polynomial kernel of J (X): D(X) = Π ∩ kerJ (X). It is
easy to check that the only common zero of the long polynomials is 0, i.e., that Var(J (X)) = {0}.
Since the ideal J (X) is homogeneous, this tells us (see Section 2.5) that the kernel of J (X) is
finite-dimensional and is a subspace of Π. Thus, D(X) is precisely the kernel of J (X):

kerJ (X) = D(X) ⊂ Π. (6)

Theorem 3.3 P(X) + J (X) = Π.

Proof, [24]. Set F :=P(X) +J (X), and assume that F is proper in Π. Since F is homogeneous,
its orthogonal complement F⊥ in Π (with respect to the pairing (2)) contains non-zero polynomials.
We will show that F⊥ is D-invariant, i.e., closed under differentiations. This will imply that F⊥
must contain the constants, which is absurd, since P(X), hence F , contains the constants.

We need thus to prove that, for p ∈ F⊥ and a ∈ IRn, Dap ⊥ F . First, since

p ∈ F⊥ ⊂ J (X)⊥ = kerJ (X),

it follows that Dap ⊥ J (X) (since J (X) is an ideal and the kernel of an ideal is always D-invariant).
It remains to show that Dap ⊥ P(X), i.e., that Dap ⊥ pY , for every short Y . Fix such Y and
choose B ∈ IB(X\Y ). Since we can write a =

∑
b∈B c(b)b, it suffices to prove that Dbp ⊥ pY (for

every b ∈ B). Now,
〈Dbp, pY 〉 = 〈p, pbpY 〉 = 〈p, pY ∪b〉.

Since Y ∪ b ⊂ X, and since F contains, by assumption, every polynomial pY ′ , Y ′ ⊂ X, it follows
that pY ∪b ∈ F , hence 〈p, pY ∪b〉 = 0.

Corollary 3.4 dimP(X) ≥ dimD(X).
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Proof. This inequality follows by applying Result 2.11 to the sum from Theorem 3.3 and by
recalling the formula (6) that identifies kerJ (X) with D(X).

Next, consider the set of facet hyperplanes of X:

F(X) :={H : H is a subspace of IRn, dim H = n − 1, span(X ∩ H) = H}. (7)

Note that these hyperplanes are in fact parallel to the facets of the zonotope Z(X), which explains
this terminology. Given any facet hyperplane H ∈ F(X), let ηH be a non-zero normal to H:
ηH ⊥ H. We also define

m(H) := mX(H) := #(X\H). (8)

Define
I(X) := Ideal{pm(H)

ηH
: H ∈ F(X)},

where, as above, px : t 7→ x · t. Then we have the following theorem:

Theorem 3.5 P(X) ⊆ ker I(X).

Proof. We only need to check that

Dm(H)
ηH

(pY ) = 0 ∀H ∈ F(X) ∀Y ∈ S(X),

i.e., that any generator of I(X) acting as a differential operator annihilates any generator of P(X).
Indeed, note that, for a single vector ξ ∈ X, we get DηH

(pξ) = 0 if and only if ξ ⊥ ηH or,
equivalently, ξ ∈ H. So, a polynomial of the form pY can survive m(H) differentiations in the
direction ηH only if #(Y \H) ≥ #(X\H), i.e., only if #(Y \H) = #(X\H) since Y ⊆ X. The last
equality is possible if and only if all vectors in X\Y belong to H. But Y is a short subset of X, so

its complement is of full rank. Contradiction! Hence pY is annihilated by D
m(H)
ηH

.

Corollary 3.6 dimP(X) ≤ dim ker I(X).

Theorem 3.7 ([17]) dimker I(X) ≤ #IB(X).

Sketch of proof. The proof is by induction on #X and n. Assuming that this statement is
correct for X, we define X ′ := X ∪ {ξ}, and consider for every facet hyperplane H ∈ F(X) the
space PH :=P((X ∩ H) ∪ {ξ}). If ξ ∈ H, then PH = 0; otherwise, PH has positive dimension.
Note that each B ∈ IB(X ′) lies either in IB(X) (in case it does not contain ξ), or else in a unique
(X ∩ H) ∪ {ξ}, H ∈ F(X). Therefore,

dimP(X) +
∑

H∈F(X)

dim PH = #IB(X ′).

We then define a map T as follows:

T : ker I(X ′) → ×H∈F(X)PH : f 7→ (Dm(H)
ηH

f)H∈F(X).

The kernel of this map is, directly from the definition, ker I(X), hence, by induction, P(X). Our
previous computation then shows that

dimker I(X ′) ≤ dimker T + dim ranT = #IB(X ′).
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The only missing item in the argument is to show that the map T is well-defined, i.e., that

D
m(H)
ηH

ker I(X ′) ⊂ PH . This is trivially true in case ξ ∈ H. Proving the above for the case
ξ ∈ H is the hard part of the proof, which is omitted here. Some of these missing details are
discussed as a part of the proof of Theorem 4.7 in the next section. See [17] for details.

We are now in a position to prove the main theorem of this section.

Theorem 3.8

(1) dimP(X) = dimD(X) = #IB(X).

(2) The map p 7→ 〈p, ·〉 is a bijection between D(X) and P(X)′.

(3) D(X) = Π(V (X,λ)) = kerJ (X).

(4) The point set V (X,λ) is correct for D(X) as well as for P(X).

(5) P(X) = ker I(X).

(6) P(X) ⊕ J (X) = Π.

Proof. Putting together the inequalities obtained in Corollaries 3.2, 3.4, 3.6 and in Theorem 3.7,
we get

#IB(X) ≤ dimD(X) ≤ dimP(X) ≤ dimker I(X) ≤ #IB(X).

This shows that equalities must hold throughout. Invoking Theorems 3.1, 3.3 and 3.5, along with
Result 2.3, Corollary 2.6 and Result 2.11, we obtain the remaining claims of this theorem.

Remark. Let us assume that X = B, with B some basis for IRn. Then S(X) = {∅}, hence
P(X) = span{1} = Π0

0. On the other hand, {b} ∈ L(X), for every b ∈ B, and hence J (X)
contains the linear polynomials {pb : b ∈ B}. Thus, J (X) is the maximal ideal {p ∈ Π : p(0) = 0},
and the decomposition P(X)

⊕
J (X) = Π becomes obvious. There are other cases when this

decomposition can be obtained directly: for example, when X is in general position. However, for
a general X, this decomposition is non-trivial.

As a by-product of Theorem 3.8, we obtain an additional result that characterizes the least
space obtained from integer points in the half-open half-closed zonotope in the case when X is
unimodular, i.e., when all vectors in X have only integer components and every basis of X is
invertible over ZZ (see Section 2.3). We recall that the zonotope Z(X) is defined as the image
Z(X) := X([0, 1]X ) of the unit cube [0, 1]X under the map X : IRX → IRn.

Thus assume that X is unimodular and consider its zonotope and associated hyperplane ar-
rangements. In the context of hyperplane arrangements, a set of interest is the vertex set V (X,λ)
of the arrangement, whose precise geometry depends on the vector λ ∈ CX . For a generic λ, the
vertex set V (X,λ) is of maximal cardinality #IB(X). The dual vertex set, Z(X, t), is parameter-
ized by t ∈ IRn. As we will shortly see, for a generic t this set is of minimal cardinality #IB(X).
Let us begin with a definition:

Z(X, t) :={α ∈ ZZn : t − α ∈ Z(X)}.

We consider t to be generic if it does not lie in any of the hyperplanes

ZZn + H, H ∈ F(X).
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If t is generic, then it is well known (see, e.g., [16]) that

#Z(X, t) = Vol(Z(X)) = #IB(X).

We will assume that t is fixed and generic and will occasionally denote Z(X, t) simply by Z(X).

Theorem 3.9 ([17]) Let X be unimodular. Then Π(Z(X)) = P(X) = ker I(X), hence Z(X) is
correct for P(X) as well as for D(X).

Proof. With Z(X) = Z(X, t), we already know that #Z(X) = Vol(Z(X)) = #IB(X). Recall that
for a given σ ⊂ IRn, we defined

Exp(σ)↓ =:Π(σ).

By Theorem 2.3, dim Π(σ) = #σ for any set σ, so, for a unimodular X, we get

dim Π(Z(X)) = #Z(X) = #IB(X).

Since both spaces Π(Z(X)) and P(X) have the same dimension, we only need to prove that one is
included in the other. We will show that Π(Z(X)) ⊂ ker I(X). To this end, we recall Corollary 2.5:
if f, g ∈ Π satisfy f↑ = g, and if f |σ = 0, then

g(D)(Π(σ)) = 0.

We choose g to be one of the generators of I(X), i.e.,

g : t 7→ (ηH · t)m(H) = pm(H)
ηH

(t), H ∈ F(X).

We need to find f such that f↑ = g and f vanishes on Z(X). Once we manage to do so for every
g as above, we are done. To this end, we fix H ∈ F(X), and will define f as (with η := ηH)
f :=(pη + c1)(pη + c2) · · · (pη + cm(H)), with (ci)i some constants. Obviously, for such f we always
have that f↑ = g. We need also to ensure that f vanishes on Z(X). In the argument below we
assume for convenience that all vectors X\H =:{y1, . . . , ym(H)} lie on one side of H. It is then
straightforward to see that the zonotope Z(X) lies between the hyperplane H, and the hyperplane

H ′ :=H +

m(H)∑

i=1

yi.

A simple consequence of the unimodularity is that there are exactly m(H)− 1 translates of H that
lie properly between H and H ′ and contain integers. Precisely, these are the hyperplanes

H +

j∑

i=1

yi =: H + cj , j = 1, . . . ,m(H) − 1.

Since t is generic, it does not lie on any of these hyperplanes, hence we may assume without loss
that it lies between H and H + y1. We conclude that

Z(X, t) ⊂ ∪
m(H)−1
j=0 (H + cj), c0 := 0,
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hence that the polynomial

f :=

m(H)−1∏

j=0

(pη + cj)

vanishes on Z(X, t) = Z(X). This proves that Π(Z(X)) = P(X) = ker I(X), the second equality
by Part (5) of Theorem 3.8.

The correctness of Z(X, t) for P(X) follows then from Result 2.3, while its correctness for
D(X) follows from the duality between P(X) and D(X) proved in Part (2) of Theorem 3.8 and
from Result 2.6.

Additional historical remarks. The space D(X) was introduced in [15]. The inequality
dimD(X) ≥ #IB(X) was first proved by Dahmen and Micchelli in [11] by induction on #X and on
n. A non-inductive analytic argument is given in [6]. The equality dimD(X) = #IB(X) is also due
to Dahmen and Micchelli [11]. They subsequently provided, in [13], a very elegant proof for the
inequality dimD(X) ≤ #IB(X), which uses the matroidal structure of X. In [24], the space P(X)
is proved to be dual to every space of the form D(X,λ), with the definition of the latter obtained
from the definition of D(X) by replacing each px by px,λ; here λ need not be generic. The space
D(X,λ) plays an important role in the theory of exponential box splines, [40], but not in this paper.

3.2 Homogeneous basis and Hilbert series for P(X)

Let Π0
j be the space of homogeneous polynomials of degree j (in n variables). Since both P(X)

and D(X) are graded or homogeneous, i.e., are spanned by homogeneous polynomials and since the
pairing (2) respects grading, the isomorphism shown in part (2) of Theorem 3.8 implies that, for
every j,

dim(Π0
j ∩ D(X)) = dim(Π0

j ∩ P(X)).

We refer to the homogeneous dimensions of the space P(X) as the central Hilbert series of X:

hX : IN → ZZ+ : j 7→ dim(Π0
j ∩ P(X)).

Note that ∑

j

hX(j) = #IB(X).

The adjective “central” is chosen in anticipation of the introduction of two other Hilbert series that
will be labeled “internal” and “external” respectively.

We focus now on building a homogeneous basis for P(X), which will enable us to compute the
homogeneous dimensions hX(j) of P(X). We will see soon that hX can be computed directly by
studying the dependence/independence relations among the vectors in X.

Example 3.10 Let

X =




1 0 0 1 1 0
0 1 0 −1 0 1
0 0 1 0 −1 −1


 .

Then #IB(X) = 16, and
hX = (1, 3, 6, 6).

2
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An algorithm for computing hX . First, we impose an arbitrary order ≺ on X. Then we
associate each B ∈ IB(X) with the homogeneous polynomial pX(B), where

X(B) :={y ∈ X : y /∈ span{b ∈ B : b � y}}. (9)

Note that X(B) ∈ S(X), since B ⊂ (X\X(B)). Define

val B :=#X(B).

Then
hX(j) = #{B ∈ IB(X) : val B = j}.

This assertion follows from the stronger assertion in Theorem 3.12 below. The algorithm, inciden-
tally, draws an intimate relation between the Tutte polynomial of X [7] and the central Hilbert
function.

Example 3.11 Let X :=

[
1 1 0 1
0 0 1 1

]
=:[x1 x2 x3 x4] be an ordered multiset. Then

X([x1, x3]) = ∅, X([x2, x4]) = {x1, x3}.

The algorithm easily produces the Hilbert series

hX = (1, 2, 2, 0, 0, . . .)

2

Theorem 3.12 ([24]) The set

{QB := pX(B) : B ∈ IB(X)} (10)

is a basis for P(X).

Proof. It is clear that pX(B) ∈ P(X), since X(B) ∩ B = ∅, i.e., X(B) ∈ S(X). Since dimP(X) =
#IB(X), it is sufficient to show that {QB : B ∈ IB(X)} is linearly independent. We will prove this
by induction on #X, with the case #X = n being trivial.

Assume, thus, the set in (10) to be linearly independent. Let X ′ = X ∪ {ξ} where ξ is the last
element in X ′. The induction step requires us to show that, given p ∈ P(X) and B0 ∈ IB(X ′)\IB(X),
if, for some constants (a(B))B ,

p +
∑

B∈IB(X′)\IB(X)

a(B) pX(B) = 0,

then a(B0) = 0. To this end, we define

B0 =:B′
0 ∪ {ξ}, H := spanB′

0 ∈ F(X).

Let η be a non-zero vector such that η ⊥ H. Then

0 = Dm(H)
η 0 = Dm(H)

η p +
∑

B∈IB(X′)\IB(X)

a(B)Dm(H)
η pX(B), (11)
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where m(H) := #(X\H). Since D
m(H)
η P(X) = 0 by Theorem 3.5, we conclude that D

m(H)
η p = 0.

Next, consider
Dm(H)

η pX(B), B ∈ IB(X ′)\IB(X).

We know that #(X ′\H) = m(H) + 1. If #(B ∩ H) < n − 1, then X ′\X(B) contains at least 2
vectors from X ′\H. So, #(X(B) ∩ (X ′\H)) < m(H). Consequently,

Dm(H)
η pX(B) = 0.

If #(B ∩ H) = n − 1, then #(X(B)\H) = m(H) so that

Dm(H)
η pX(B) = c(B) pX(B)∩H ,

for some non-zero coefficient c(B). From equation (11), we get

0 =
∑

B∈K

a(B)c(B) pX(B)∩H ,

where K :={B ∈ IB(X ′)\IB(X) : #(X(B)\H) = m(H)}. Now, it is easily observed that, with
W := ξ ∪ (X ′ ∩ H), the polynomials

pX(B)∩H , B ∈ K,

are exactly the polynomials in the homogeneous basis for P(W ), with the order on W being the
order induced from X. Our induction hypothesis implies (since #W < #X ′) that those polynomials
are independent, hence that a(B0) = 0.

Remark. The construction provides us with the direct sum decomposition

P(X ∪ {ξ}) = P(X)
⊕

(
⊕

ξ 6∈H∈F(X)

pX\HP((X ∩ H) ∪ {ξ}).

The decomposition allows us to compute the Hilbert series hX′ by summing the Hilbert series of
the various summands:

hX∪ξ(j) = hX(j) +
∑

ξ 6∈H∈F(X)

mX(H) + hXH
(j),

with XH :=(X ∩ H) ∪ ξ. This means that we do not need to impose one fixed order on X: once
ξ is known to be placed last, the order of the remaining elements can be chosen separately (hence
independently) for each summand. This is consistent with the known invariance of the Tutte
polynomial, [7].

4 External algebra

4.1 Main results

Recall that, in Section 2.1, we let I(X) denote the collection of all independent subsets of X and
let B0 ⊂ IRn be a fixed ordered basis. We also denoted

X ′ := X ∪ B0
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and defined a bijection ex : I(X) → IB+(X) ⊂ IB(X ′) to the set IB+(X) of all external bases of X.
We now define

L+(X) := {Y ⊂ X ′ : Y ∩ B 6= ∅, B ∈ IB+(X)},

P+(X) := span{pY : Y ⊂ X},

D+(X) := {f ∈ Π : pY (D)f = 0, ∀Y ∈ L+(X)}.

Our goal is to show that D+(X) and P+(X) are dual to each other, and to determine their anni-
hilating ideals. The main result will be established in several steps, analogously to Section 3.1.

Let V (X ′, λ) be the set of vertices of a generic X ′-hyperplane arrangement. With a slight abuse
of notation we denote by V+(X,λ) the subset of V (X ′, λ) that corresponds to IB+(X) ⊂ IB(X ′).
Applying Theorem 2.7 and its Corollary 2.8 to this case (i.e., with X there replaced by X ′ here,
and IB′ there being our IB+(X)) we obtain the following results.

Theorem 4.1 Π(V+(X,λ)) ⊆ D+(X).

Corollary 4.2 dimD+(X) ≥ #IB+(X).

Define
J+(X) := Ideal{pY : Y ∈ L+(X)}.

Note that, (almost) directly from the definition of D+(X), kerJ+(X) = D+(X).

Theorem 4.3 P+(X) + J+(X) = Π.

Proof. We start with the fact that P(X)+J (X) = Π, which is established in Theorem 3.3. Since
P+(X) ⊃ P(X), we conclude that

P+(X) + J (X) = Π.

So, we need to prove that
J (X) ⊂ P+(X) + J+(X).

Let Y ∈ L(X), f ∈ Π. Since every polynomial in J (X) is a combination of polynomials of the
form pY f , it suffices to prove that

pY f ∈ P+(X) + J+(X),

a claim that we prove by reverse induction on #Y . Thus, assume that the claim is correct for every
Y ′ ∈ L(X) such that #Y ′ > #Y . Put S := span(X\Y ). Then dim S < n, since Y is long. Let
I ⊂ X\Y be a basis for S and B := ex(I). Since B is a basis for IRn,

Ideal{pb : b ∈ B} + Π0
0 = Π.

So, we can write f in the following form:

f = c0 +
∑

b∈B

pbfb, fb ∈ Π.

Consequently,

pY f = c0pY +
∑

b∈B

pY ∪{b}fb.
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We claim that each term above belongs to P+(X) + J+(X). Since Y ⊂ X, it is clear that pY ∈
P+(X). Now, for pY ∪{b}, we have either b ∈ I or b ∈ B0.

Case I. If b ∈ I ⊂ X, then Y ′ :=Y ∪ {b} ⊂ X. By induction,

pY ∪{b}fb ∈ P+(X) + J+(X).

Case II. Let b ∈ B0. We show that

pY ∪{b}fb ∈ J+(X),

and to this end it is enough to show that Y ∪ {b} ∈ L+(X). Let B′ ∈ IB+(X). If Y ∩ B′ = ∅,
then B′ ∩ X ⊂ X\Y ⊂ S. Hence B′ = ex(I ′), for I ′ ⊂ S. Thus spanI ′ ⊂ spanI, and the definition
of the extension map implies that in such case we always have that B0 ∩ ex(I) ⊂ B0 ∩ ex(I ′).
Consequently, b ∈ B′, and thus

(Y ∪ {b}) ∩ B′ 6= ∅.

We conclude that Y ∪ {b} ∈ L+(X), hence that, directly from the definition of J+(X), pY ∪{b}fb ∈
J+(X); a fortiori pY ∪{b}fb ∈ P+(X) + J+(X).

Remark. Note that the only property of the extension ex that was used is that once spanI ′ ⊂
spanI, then B0 ∩ I ⊂ B0 ∩ I ′. It is probably easy to show that every extension of such type is a
greedy extension with respect to some ordering of B0. 2

Invoking Result 2.11, we obtain

Corollary 4.4 dimP+(X) ≥ dimD+(X).

The corollary implies that dimP+(X) ≥ #IB+(X). This last estimate can be proved directly:
Order X ′ so that B0 is placed after X, and the internal order within B0 is retained. Then follow
the construction of a homogeneous basis for P(X ′) from Section 3.2. Observe that a polynomial in
that basis is of the form pX′(B), X ′(B) ⊂ X ′, and that X ′(B) is then a subset of X if and only if
B ∈ IB+(X). Thus

{pX′(B) : B ∈ IB+(X)} ⊂ P+(X),

and we get the desired bound from the linear independence of these polynomials. We will come
back to this issue later, since the polynomials above form a basis for P+(X), and we will use the
cardinality of the sets X ′(B), B ∈ IB+(X), in order to provide an algorithm for computing the
forthcoming external Hilbert series hX,+ of X.

Recalling (7) and (8), we define

I+(X) := Ideal{pm(H)+1
ηH

: H ∈ F(X), ηH ⊥ H}.

Theorem 4.5 P+(X) ⊆ ker I+(X).

Proof. Given any Y ⊂ X and any facet hyperplane H, we have that DηH
(pY ) = pY ∩HDηH

pY \H .
The result then follows from the fact that #(Y \H) ≤ m(H).

Corollary 4.6 dim P+(X) ≤ dimker I+(X).
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Theorem 4.7 dim ker I+(X) ≤ #IB+(X).

Before we embark on a proof of this theorem, we must make a few auxiliary statements first. For
our next result, we will use the symbol

P0
N (S) := span{pY : Y ⊂ S,#Y = N}

to denote the space of homogeneous polynomials of degree N in the variables S, for any (possibly
infinite) set S and any nonnegative integer N .

Proposition 4.8 Let I be an ideal of Π and let S be a subspace of IRn of dimension d ≥ 2. Let
S1, . . ., Sk be distinct subspaces of S, each of dimension d − 1. Suppose that, for n1, . . ., nk ∈ IN,
the ideal I contains all homogeneous polynomials in variables Si of degree ni:

P0
ni

(Si) ⊂ I.

Then

P0
N (S) ⊂ I whenever (N + 1)(k − 1) ≥

k∑

i=1

ni.

Proof. Pick l ∈ S. We need to show that the polynomial pN
l lies in the ideal I. Choose a subspace

V ⊂ S of dimension 2 such that l ∈ V but V 6⊂ Si for all i = 1, . . . , k. The dimension formula

dimV + dimSi = dim(V ∩ Si) + dim(V + Si)

immediately implies that dim(V ∩Si) = 1 for each i = 1, . . . , k. So, for each i, there exists a nonzero
vector hi ∈ V ∩ Si. By the assumption of the Proposition,

pni

hi
∈ I, i = 1, . . . , k.

Observe that
Hi := pni

hi
P0

N−ni
(V ) ⊂ I ∩ P0

N (V ), i = 1, . . . , k.

We will now argue that
∑k

i=1 Hi = P0
N (V ). Indeed, if not, then there exists a nonzero polynomial

q ∈ P0
N (V ) such that 〈q, p〉 = 0 for all p ∈ Hi. This means

0 = 〈q, pni

hi
p〉 = 〈p(D)q, pni

hi
〉 (12)

for any p ∈ P0
N−ni

(V ). But the last expression in (12) is, up to the factor ni!, equal to (p(D)q)(hi).
Our last setup can therefore be reformulated as a univariate problem: there exists a nonzero
polynomial q ∈ PN (IR) and distinct points hi ∈ IR, i = 1, . . . , k such that

(p(D)q)(hi) = 0, i = 1, . . . , k for all p ∈ PN−ni
(IR). (13)

But this is a Vandermonde linear homogeneous system of
∑k

i=1(N − ni + 1) equations in N + 1
unknown coefficients of q, which has a nontrivial solution if and only if

k∑

i=1

(N − ni + 1) < N + 1 iff Nk −
k∑

i=1

ni + k < N + 1 iff (N + 1)(k − 1) <
k∑

i=1

ni,

contrary to the assumption of this Proposition. Thus pN
l ∈ I for all nonzero vectors l ∈ S, hence

every homogeneous polynomial in S of degree N is in I and therefore P0
N (S) ⊂ I.
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Corollary 4.9 Let Y ⊂ X, and let 0 6= η ⊥ spanY . Then p
#(X\spanY )+1
η ∈ I+(X).

Proof. We run the proof by induction on n − dim(span Y ). When Y spans a hyperplane, we

have p
#(X\ span Y )+1
η ∈ I+(X) by definition of I+(X). When dim(span Y ) ≤ n − 2, we denote

S :=(span Y )⊥ and consider all possible ways to add one more vector to the set Y to increase the
dimension of span Y . Call the orthogonal complements of the spans of these sets S1 through Sk.
Note that addition of different vectors x to Y may produce the same subspace span(Y ∪ {x}) and
therefore the same orthogonal complement. If that is the case, we list such a subspace Si only once.

With η ∈ S and S1 through Sk subspaces of S of codimension 1, we are now in the setting of
Proposition 4.8, so may conclude that

pN
η ∈ I+(X)

whenever (N +1)(k−1) ≥
∑k

i=1 ni, where ni = #(X\(Si⊥))+1 by the inductive hypothesis. Note
that the count #(X\(Si⊥)) performed for all i accounts for every vector of (X\(S⊥)) = X\spanY
exactly k − 1 times, hence

k∑

i=1

#(X\(Si⊥)) = (k − 1) · #(X\spanY ), hence

(k − 1)(N + 1) ≥ (k − 1) · #(X\spanY ) + k, or, equivalently,

N ≥ #(X\spanY ) + 1/(k − 1).

The last inequality is satisfied whenever N ≥ #(X\spanY ) + 1, so we are done.

We are now in a position to give a proof of Theorem 4.7.

Proof of Theorem 4.7. Step I. We append to X an auxiliary basis B0, and obtain X ′ := X∪B0.
We choose B0 to be in general position with respect to X. Note that

I(X ′) ⊂ I+(X).

Indeed, let H ∈ F(X ′) be a facet hyperplane of X ′ and let η be normal to H. Then

#(X ′\H) = #(X\H) + #(B0\H) ≥ #(X\H) + 1 = #(X\spanY ) + 1,

where Y := X ∩ H. Applying Corollary 4.9, we see that p
#(X′\H)
η ∈ I+(X). Thus all generators of

I(X ′) are in I+(X) and therefore I(X ′) ⊂ I+(X). Consequently,

ker I+(X) ⊂ ker I(X ′) = P(X ′).

Step II. We order X ′ in a way that B0 is placed after X, we let {QB := pX′(B) : B ∈ IB(X ′)} be
the homogeneous basis for P(X ′) (per the given order). We define

IB′ := IB(X ′)\IB+(X), F := span{QB : B ∈ IB′}.

We will now prove that F ∩ ker I+(X) = {0}, hence that the quotient map P(X ′) → P(X ′)/F is
an injection on ker I+(X), and

dim ker I+(X) ≤ dimP(X ′) − dim F = #IB+(X) = #I(X).
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Let
f :=

∑

B∈IB′

a(B)QB ∈ F.

Assume f ∈ ker I+(X). We claim that a(B) = 0, ∀B ∈ IB′. To this end, we grade the bases in
IB′ according to the location in B0 of their maximal element, with respect to our fixed order. Note
that the maximal element must be in B0, since otherwise B ∈ IB(X). Assume that there exists
B1 ∈ IB′ such that a(B1) 6= 0. Assume further, without loss of generality, that a(B) = 0 for every
basis B ∈ IB′ with higher grade. We then choose H := span(B1\max{B1}), let η be normal to H,
and consider the differential operator Dk

η , with

k := #{x ∈ X ′\H : x 6∈ span{b ∈ B1 : b � x}}.

Recall that the basis B1 is not obtained by a greedy completion of an independent subset of X and
that B0 is in general position with respect to X. This implies

k ≥ #(X\Y ) + 1, where Y := X ∩ H.

By Proposition 4.8, pk
η ∈ I+(X), therefore Dk

η annihilates ker I+(X) and, in particular, f .
Finally, consider the set IB′′ ⊂ IB′ of bases B such that (i) their grade does not exceed the grade

of B1, and (ii) Dk
ηQB 6= 0. These are the bases with the property #(X ′(B)\H) ≥ k or, equivalently,

#{x ∈ X ′\H : x /∈ span{b ∈ B : b � x}} ≥ #{x ∈ X ′\H : x /∈ span{b ∈ B1 : b � x}}.

Since no element of such a basis B is located further than the maximum element max{B1} of B1,
each such basis B must consist of a basis for H augmented by the vector max{B1} itself. Hence,
the set

{Dk
ηQB : B ∈ IB′′}

consists of (nonzero multiples of) elements of the homogeneous basis of P(X ′ ∩ H). This implies
that a(B) = 0 for each B ∈ IB′′, which leads to a contradiction, since B1 ∈ IB′′.

We now state formally the main theorem of this section.

Theorem 4.10

(1) dimP+(X) = dimD+(X) = #I(X).

(2) The map p 7→ 〈p, ·〉 is a bijection between D+(X) and P+(X)′.

(3) D+(X) = Π(V+(X)) = kerJ+(X).

(4) The set V+(X,λ) is correct for the space D+(X), as well as for the space P+(X).7

(5) P+(X) = ker I+(X).

(6) P+(X) ⊕ J+(X) = Π.

7Note that the set V+(X, λ) depends on X, on λ and on the augmented order basis B0. The space D+(X) depends
on X and B0, but not on λ. Finally, P+(X) depends only on X.
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Proof. The proof is analogous to that of Theorem 3.8. We put together inequalities obtained in
Corollaries 4.2, 4.4, 4.6 and in Theorem 4.7 to get

#IB+(X) ≤ dimD+(X) ≤ dimP+(X) ≤ dimker I+(X) ≤ #IB+(X).

This shows that equalities must hold throughout. We then invoke Theorems 4.1, 4.3 and 4.5, along
with Results 2.3 and 2.11 and Corollary 2.6, to prove the remaining claims of this theorem.

Theorem 4.11 Let Z+(X) be the integer points in the closed zonotope Z(X). Then

Π(Z+(X)) = P+(X) = ker I+(X),

provided that X is unimodular.

Proof. We first recall that, according to Result 2.2,

#Z+(X) = #I(X)

in case X is unimodular. That implies, by invoking Theorem 4.10, that

dim Π(Z+(X)) = #IB+(X) = dimP+(X).

Hence our claim follows from the fact that

Π(Z+(X)) ⊂ ker I+(X).

The proof of this latter inclusion follows closely that of Theorem 3.9, hence is merely outlined: we

need to show that, given any generator q := p
m(H)+1
ηH

, H ∈ F(X), of I+(X), there exists p ∈ Π
that vanishes on Z+(X) and satisfies p↑ = q. The existence of such p follows from the fact that,
whatever facet hyperplane H we choose, the set Z+(X) lies in the union

∪
m(H)
j=0 (aj + H),

with aj :=
∑j

k=1 yk, and where {yj}
m(H)
j=1 :=X\H. It is the unimodularity that guarantees that the

above hyperplanes do not depend on the order, and that the entire set Z+(X) lies in their union.
(The description above assumes that X\H all lie on the same side of H; the modifications that are
needed for the general case are notational.)

4.2 Homogeneous basis and Hilbert series for P+(X)

As before, we order X, and define, for each I ∈ I(X),

X(I) :={x ∈ X : x /∈ span{b ∈ I : b ≤ x}}.

Our goal now is to show that the set

{QI := pX(I) : I ∈ I(X)}

is a basis for P+(X).
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Theorem 4.12 The set {QI := pX(I) : I ∈ I(X)} is a basis for P+(X).

Proof. Since the cardinality of the given set of polynomials is #I(X) = #B+(X) = dimP+(X),
and since obviously each one of these polynomials lies in P+(X), we only need to show that the
set {QI : I ∈ I(X)} is linearly independent. For the proof of this part, we order the augmented
set X ′ := X ∪B0 such that X retains its internal order, and B0 is placed after X. Recall that each
I ∈ I(X) has a well-defined extension to a basis ex(I) ∈ IB(X ′):

I(X) → IB+(X) ⊂ IB(X ′) : I 7→ ex(I).

We therefore examine the known homogeneous basis for P(X ′). The polynomials in that latter
basis are pX′(B), B ∈ IB(X ′), with

X ′(B) :={x ∈ X ′ : x 6∈ span{b ∈ B : b � x}}.

Now, given I ∈ I(X), since ex(I) ∈ IB(X ′) is a greedy extension of I, it easily follows that

X(I) = X ′(ex(I)),

hence that
QI := pX(I) = pX′(ex(I)).

Thus, the set {QI}I∈I(X) is a subset of the basis {pX′(B) : B ∈ IB(X ′)} for P(X ′), and the requisite
linear independence thus follows.

Note that the basis we just constructed is a homogeneous extension of the homogeneous basis
that was constructed for P(X) in Section 3.2. Moreover, the valuation val that was defined there
on IB(X) has just been extended also in the most natural way to I(X):

val(I) := #X(I), I ∈ I(X).

This motivates us to associate X with an external Hilbert series:

h+ := hX,+ : IN → IN : j 7→ #{I ∈ I(X) : val(I) = j}.

h+(j) equals thus to the dimension of P+(X)∩Π0
j and, by duality with D+(X), also to the dimension

of D+(X) ∩ Π0
j . The external Hilbert function is very special, in the sense that its last non-zero

entry always equals one. This fact is not easy to observe by examining either of I+(X), J+(X)
or D+(X). However, it trivially follows from the structure of P+(X): the unique polynomial of
maximal degree of the form pY , Y ⊂ X, is pX . One can use the above construction of a basis
for P+(X) to conclude that hX,+(#X − 1) is the number of equivalence classes of X under the
equivalence (x ∼ y iff {x, y} is a dependent set).

Example 4.13 Let

X = [x1, x2, x3] :=

[
1 0 1
0 1 −1

]
.

This X corresponds to a complete graph of three vertices, and is unimodular, as is every graphical
X. The zonotope Z(X) has 7 vertices in its closure. A basis for P+(X) is given by

{pY : Y ∈ 2X\{{x3}}}.
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The external Hilbert series is hX,+ = (1, 2, 3, 1). With x4 :=x3⊥ = (1, 1)′, the ideal I+(X) is
generated by the three polynomials

p3
xi

, i = 1, 2, 4.

It is clear that hX,+ is indeed the correct Hilbert series for this ideal.
In contrast, the space D+(X) and its ideal J+(X) are not unique, and depend on the choice of

the augmented basis B0. If we choose B0 = (y, z) with y, z in general position with respect to X,
then the generators of J+(X) become

pX∪z, and p(X\x)∪y , x ∈ X.

Theorem 4.10 yields the following characterization P+(X):

Theorem 4.14
P+(X) =

⋂

B∈IB(X)

P(X ∪ B).

Proof. The fact that P+(X) ⊂ P(X ∪ B), for any fixed basis B for IRn follows trivially from the
definitions of P(X) and P+(X) (and was used multiple times). We prove that every polynomial p in
the intersection lies in ker I+(X) (= P+(X)). Let p be such a polynomial, and let H ∈ F(X). We

need to show that, with ηH ⊥ H, D
m(H)+1
ηH

p = 0, with m(H) := #(X\H). To this end, we choose
a basis B ∈ IB(X) such that span(B ∩H) = H (such a basis exists, since H is a facet hyperplane.)

Then, with X ′ := X ∪B, p ∈ P(X ′) = ker I(X ′), hence is annihilated by D
#(X′\H)
ηH

. Since only one
vector of B lies outside H, we get that #(X ′\H) = m(H) + 1, and the result follows.

5 Internal algebra

5.1 Main results

We first recall the definition of internal bases. We impose an (arbitrary but fixed) ordering ≺ on
X. Let B ∈ IB(X). If, for each b ∈ B,

b 6= max{X\H}, H := span{B\b} ∈ F(X),

then B is called an internal basis. We denote the set of all internal bases by IB−(X).
For each B ∈ IB(X), we define the dual valuation as follows:

val∗(B) := #{b ∈ B : b 6= max{X\span(B\b)}}.

Then,
IB−(X) = {B ∈ IB(X) : val∗(B) = n}.

We remind the reader about the fact mentioned in Section 2.2:

#IB−(X) =
∑

I∈I(X)

(−1)n−#I .
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Remarks. (i) In matroid theory, b is said to be internally active in B in the situation encountered
above, i.e., if, for b ∈ B and H := span{B\b}, we have that b = max{X\H}. The number n−val∗(B)
is known as the internal activity of B. (ii) The valuation val∗ is then (matroid-)dual to the valuation
val in the sense that it coincides with the valuation val on the dual matroid of X. We make no use
of this duality since we do not develop zonotopal spaces on the dual matroid within this paper.

With a given order on X, we define the set of barely long subsets of X:

L−(X) :={Y ⊂ X : Y ∩ B 6= ∅, B ∈ IB−(X)}.

The corresponding ideal is defined as

J−(X) := Ideal{pY : Y ∈ L−(X)},

and the notation for its kernel is
D−(X) :=kerJ−(X).

It is clear that J−(X) ⊃ J (X) hence that D−(X) ⊂ D(X). As is the case with external theory,
one easily finds that D−(X) depends on the ordering of X. (To recall, D(X) does not depend on
any ordering.)

Given a generic X-hyperplane arrangement H(X,λ), we pick those vertices of it that are asso-
ciated with the internal bases B ∈ IB−(X) and call the resulting set V−(X,λ). Then Theorem 2.7
and its Corollary 2.8 apply to the space D−(X) and its associated vertex set V−(X,λ) to yield the
following two results.

Theorem 5.1 Π(V−(X,λ)) ⊆ D−(X).

Corollary 5.2 dimD−(X) ≥ #IB−(X).

We now define a polynomial space and its ideal that will serve as duals to the space D−(X)
and its ideal.

P−(X) := ∩x∈XP(X\x),

I−(X) := Ideal{pm(H)−1
ηH

: ηH ⊥ H, H ∈ F(X)}. (14)

Note that P−(X) and #IB−(X) are independent of the order ≺. Needless to say, the set IB−(X)
itself depends on that order.

Theorem 5.3
P−(X) = ker I−(X).

Moreover, for every B ∈ IB(X),
P−(X) = ∩x∈BP(X\x).

Proof. We prove this result by examining the corresponding ideals: since P(X\x) = ker I(X\x),
Theorem 3.8, the stated result is proved once we show that (i) I(X\x) ⊂ I−(X), for every x ∈ X,
and (ii) Given any B ∈ IB(X), I−(X) ⊂ Ideal{∪b∈BI(X\b)}.

For the proof of (i), fix x ∈ X, and denote X ′ := X\x. A generator Q in the ideal I(X ′) is of

the form Q := p
#(X′\H)
ηH

, with H ∈ F(X ′). Then H is also a facet hyperplane of X, and obviously
#(X ′\H) ≥ #(X\H) − 1, and hence Q ∈ I−(X), and (i) follows.
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For (ii), we fix B ∈ IB(X), and pick a generator of I−(X): Q = p
m(H)−1
ηH

, H ∈ F(X), (14). We
then choose x ∈ B\H, and denote X ′ := X\x. Since x 6∈ H, it is clear that H ∈ F(X ′), and then
#(X ′\H) = #(X\H) − 1 = m(H) − 1. Thus the polynomial Q lies in I(X ′), and (ii) follows.

Going back to the order we impose on X (which is required for the definition of J−(X)), we
recall the homogeneous construction of a basis (QB)B∈IB(X) for P(X) (see Theorem 3.12), per that
order. Since IB(X) is decomposed into internal and non-internal bases, it makes sense to decompose
P(X) accordingly, viz.,

Pin(X) := span{QB : B ∈ IB−(X)}, Pex(X) := span{QB : B ∈ IB(X)\IB−(X)}.

Then
P(X) = Pin(X) ⊕ Pex(X),

with the “internal summand” Pin(X) having the “right dimension”, i.e., #IB−(X). However, in
general that space differs from P−(X) (whose dimension will be shown to equal #IB−(X), too).
On the other hand, the complementary inclusion is true:

Lemma 5.4 Pex(X) ⊂ J−(X), hence

codim J−(X) ≤ #IB−(X).

Proof. Fix B ∈ IB(X)\IB−(X). Then B contains an internally active b: with H := span(B\b) ∈
F(X), b is the last vector in X\H. Examining the definition (9) of the set X(B), it is then clear
that X\(X(B) ∪ B) ⊂ H. (Indeed, if x ∈ X\(H ∪ B), then x ≺ b, hence it is impossible that
x ∈ span{b′ ∈ B : b′ ≺ x}, since the latter span lies in H.) Next, it easily follows that b belongs to,
and is internally active in every basis B′ ⊂ X\X(B). Thus X\X(B) does not contain an internal
basis, hence X(B) ∈ L−(X).

Recall now that Π = P(X) ⊕ J (X) according to Theorem 3.8, and since J (X) ⊂ J−(X), we
conclude that Pex(X) + J (X) ⊂ J−(X), hence

Π = Pin(X) ⊕ Pex(X) ⊕J (X) = Pin + J−(X).

Consequently,
codimJ−(X) ≤ dimPin(X) = #IB−(X).

Theorem 5.5
dimD−(X) = #IB−(X),

and Π(V−(X,λ)) = D−(X).

Proof. Since D−(X) = kerJ−(X), by definition, we have that dimD−(X) = codimJ−(X). How-
ever, by Corollary 5.2, dimD−(X) ≥ #IB−(X), while by Lemma 5.4, codimJ−(X) ≤ #IB−(X).
Thus:

dimD−(X) = #IB−(X).

But then, Π(V−(X,λ)) is a subspace of D−(X) (Theorem 5.1) of dimension #IB−(X), so we have
that Π(V−(X,λ)) = D−(X).
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Corollary 5.6 J−(X) = J (X) ⊕ Pex(X).

Theorem 5.7 P−(X) + J−(X) = Π. In particular, dimP−(X) ≥ #IB−(X).

Proof. Since we already know that codimJ−(X) = #IB−(X), the second claim in the theorem
follows from the first. Let us thus prove the first.

From Lemma 5.4, we know that Pin(X) + J−(X) = Π. Thus, it is enough to show that
Pin ⊂ P−(X) + J−(X). We achieve this latter relation by showing that every polynomial QB ,
B ∈ IB−(X), lies in P−(X) +J−(X), and use the following general approach. Fixing B ∈ IB−(X),
we know that QB = pX(B), for suitable X(B) ⊂ X. We decompose X(B) in a certain way
X(B) = Z ∪ W . Thus

QB = pZpW .

We then replace each w ∈ W by a vector w′ (not necessarily in X), to obtain a new polynomial

Q̃B := pZpW ′,

and prove that (i) Q̃B ∈ P−(X), and (ii) QB − Q̃B ∈ J−(X).
So, let QB = pX(B) be given. If QB ∈ ker I−(X) = P−(X), there is nothing to prove. Otherwise,

let H ⊂ F(X) be the collection of all facet hyperplanes for which D
m(H)−1
ηH

QB 6= 0. The set H is not
empty, since otherwise QB ∈ ker I−(X). Given H ∈ H, we conclude that #(X(B)\H) ≥ m(H)−1,
hence that, with Y := X\X(B), #(Y \H) ≤ 1. Since B ⊂ Y , the set Y \H must be a singleton
xH ∈ B. We denote

XH :={xH : H ∈ H}.

Define
W :={max{X\H} : H ∈ H}.

We index the vectors in W according to their order in X: W = {w1 ≺ w2 ≺ . . . ≺ wk}. For each
1 ≤ i ≤ k, we define

Xi :={xH : H ∈ H, max{X\H} = wi}, Hi :={H ∈ H : xH ∈ Xi}.

Thus, XH =
⋃k

i=1 Xi.
Setting all these notations, we first observe that W ∩XH = ∅, i.e., wi does not lie in Xi. Indeed,

the set XH is a subset of every B′ ∈ IB(Y ), with span(B′\xH) = H for each xH ∈ XH. If some xH

is max{X\H}, it will be internally active in every B′ ∈ IB(Y ), which would imply that IB(Y ) does
not contain internal bases, which is impossible since B ∈ IB(Y ). Thus, W ⊂ X(B), and we define
Z := X(B)\W , to obtain

QB = pZpW .

Define further:
Si :=∩{H : H ∈ ∪i

j=1Hj}, S0 := IRn.

Then, for i = 1, . . . , k, Si−1 = Si ⊕ spanXi, and wi ∈ Si−1\Si. Thus, for i = 1, . . . k, the vector wi

admits a unique representation of the form

wi = w′
i +

∑

x∈Xi

axx, w′
i ∈ Si, ax ∈ IR\{0}. (15)
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Define
W ′ = {w′

1, . . . , w
′
k}, and Q̃B := pZpW ′ .

We prove first that
Q̃B − QB = pZ(pW ′ − pW )

lies in J−(X). To this end, we multiply out the product

pW ′ =

k∏

i=1

pw′
i
=

k∏

i=1

(pwi
−

∑

x∈Xi

axpx). (16)

Every summand in the above expansion is of the form pΞ, with Ξ a suitable mix of W -vectors and
XH-vectors. The summand pW in the above expansion in canceled when we subtract QB. Any other
Ξ is obtained from W by replacing at least once a wi vector by some vector in Xi, which we denote
by xi. Let wi1 ≺ wi2 ≺ . . . ≺ wij be all the w-vectors in W\Ξ, and let H1 be the facet hyperplane
that corresponds to xi1 (H1 := span(B\xi1).) Then, we have that wi1 ∈ X\(Z ∪ Ξ) =: Y ′, and
we claim that Y ′\wi1 ⊂ H1. To this end, we write Y ′\H1 = ((Y ′ ∩ Y )\H1) ∪ (Y ′\Y )\H1. Now,
Y \H1 = xi1 , and since xi1 6∈ Y ′ (as it was replaced by wi1), the term (Y ′ ∩ Y )\H1 is empty.
The second term consists of (wim)jm=1\H1. However, wim ∈ Sim−1 ⊂ Si1 ⊂ H1, for every m ≥ 2.
Thus, wi1 is the only vector in Y ′\H1. Being also the last vector in X\H1, we conclude that wi1

is internally active in every B ∈ IB(Y ′), hence that pZ∪W ∈ J−(X). This being true for every
summand in Q̃B − QB , we conclude that this latter polynomial lies in J−(X).

We now prove that Q̃B = pZ∪W ′ ∈ ker I−(X). To this end, we need to show that, for every
H ∈ F(X), #((Z ∪ W ′)\H) < m(H) − 1. We divide the discussion here to three cases. As before,
Y := X\X(B).

Assume first that H ∈ Hi for some 1 ≤ i ≤ k. Then, for X(B) = Z ∪ W we had that
#((Z ∪ W )\H) = m(H) − 1. Now, xH is the only vector in Y \H, and xH ∈ Xi. Thus, the
subset Xj ⊂ Y , must lie in H for every j 6= i, which means that we conclude that, wj ∈ H iff
w′

j ∈ H (since wj − w′
j ∈ spanXj ⊂ H). Finally, while wi 6∈ H, w′

i ∈ Si ⊂ H, hence, altogether,
#(W ′\H) < #(W\H), and we reach the final conclusion that

#((Z ∪ W ′)\H) < #((Z ∪ W )\H) = m(H) − 1.

Secondly, assume that S′ := Sk ∩ H 6= Sk. Then, necessarily, U :=(Y ∩ S)\S′ contains at least
two vectors (otherwise, all the vectors of Y but one lie in the rank deficient set (Y ∩S′)∪ (Y \Sk)).
Now, with

m1 := #{w ∈ W : w ∈ H ∧ w′ 6∈ H}, and m2 := #(∪k
i=1(Xi\H)),

we know that #((Z ∪ W ′)\H) = m(H) − #U + m1 − m2. However, we must have that m1 ≤ m2:
if w′

i 6∈ H, while wi ∈ H, then, since wi − w′
i ∈ spanXi, we have that #(Xi\H) > 0.

Finally, we assume H ∈ F(X)\H, and Sk ⊂ H. Let j ≥ 1 be the minimal index i for which
Si ⊂ H. We modify the definition of m1 and m2 from the second case by replacing W by W\wj

in the definition of m1, and removing Xj from ∪k
i=1Xi in the definition of m2. We still have that

m1 ≤ m2, by the same argument as above. However, the set U that we used in the previous case
is not available for us. Instead, we examine the relation

wj − w′
j ∈ spanXj .
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We know a priori that Sj ⊕ spanXj = Sj−1. Since Sj ⊂ H, while Sj−1 6⊂ H, we must have that
Xj\H 6= ∅. But, w′

j ∈ H, hence, with U :=(wj ∪Xj)\H, #U ≥ 2, hence the argument used for the
previous case works here, with U , m1 and m2 modified as explained.

We now establish our second non-trivial theorem in this section.

Theorem 5.8
P−(X) ∩ Pex(X) = {0}.

In particular, dimP−(X) ≤ #IB−(X).

Proof. The second claim follows from the first: since P−(X) ⊂ P(X) = Pin(X) ⊕ Pex(X), the
first claim implies that

dimP−(X) ≤ dimP(X)/Pex(X) = dimPin(X) = #IB−(X).

In order to prove the first claim, we denote

IB′ := IB(X)\IB−(X).

Then, with QB the polynomial in the homogeneous basis for P(X) that corresponds to B ∈ IB(X),
we pick a generic function f ∈ Pex(X):

f =
∑

B∈IB′

a(B)QB,

and assume that f ∈ ker I−(X). The proof that f = 0 will be done as follows. In addition to the
existing order ≺ on X, we will impose a full order ≺ on the bases in IB′. Assuming f 6= 0, we will
then select B′ ∈ IB′ which is minimal (in the full order ≺) with respect to the condition a(B) 6= 0.
Thus

f − a(B′)QB′ =
∑

B∈IB′, B≻B′

a(B)QB. (17)

We will then select a facet hyperplane H ∈ F(X), and, with η ∈ IRn a normal to that hyperplane,

apply to both side of (17) the differential operator D
m(H)−1
η . Since f ∈ ker I−(X), by assumption,

D
m(H)−1
η f = 0. Therefore,

−Dm(H)−1
η a(B′)QB′ =

∑

B∈IB′, B≻B′

a(B)Dm(H)−1
η QB .

The key of the proof will be to show, with the proper selection of the full order, and with proper

selection of the hyperplane H, that the polynomial D
m(H)−1
η QB′ is independent of the polynomials

D
m(H)−1
η QB, B ∈ IB′, B≻B′. This will imply that a(B′) = 0, hence will provide the sought-for

contradiction.
Here are the details. We start with the introduction of the order on IB′. To this end, given

B ∈ IB′, and b ∈ B, we recall that b to is said to be internally active in B if b is the maximal vector
in X\ span{B\b}. We denote by α(B) the number of internally active vectors in B. Note that
B ∈ IB′ if and only if α(B) > 0. We choose the order on IB′ to respect the number of internally
active vectors, i.e.,

B≺ B̃ =⇒ α(B) ≤ α(B̃).

35



Next, let B ∈ IB′ and x ∈ B. Set H := span(B\x). We say that x is an H-shield of B if
X\{X(B) ∪ x} is not full rank (hence lies in H), but x is not the maximal vector in X\H.

Now, in order to show that a(B′) = 0, we select any internally active b′ ∈ B′ (there must
be at least one, since B ∈ IB′), define H ′ := span(B′\b′), and take η to be normal to H ′. With

G := D
m(H′)−1
η , we know that Gf = 0 (since f ∈ ker I−(X), by assumption). Moreover, since

m(H ′) = #(X\H ′), and since, for any B ∈ IB(X), X(B) is disjoint of B (while B contains at
least one vector from X\H ′), we have #(X(B)\H ′) < m(H). If #(X(B)\H ′) < m(H) − 1, then
GQB = 0. Otherwise, up to a non-zero multiplicative constant, GQB = pX(B)∩H′ . Note that, with
X ′ := X ∩H ′, we get X(B)∩H ′ = X ′(B∩H ′), i.e., the set B∩H ′ spans H ′ (otherwise, GQB = 0),
hence lies in IB(X ∩H ′); with X ′ retaining its X-order ≺, the construction of a homogeneous basis
for P(X ∩H ′) associates the basis B ∩H ′ with the polynomial pX(B)∩H′ , i.e., with the polynomial
GQB (up to the aforementioned constant). The selection of H ′ clearly implies that GQB′ 6= 0,
hence, in particular, that GQB′ = c′pX(B′)∩H′ for some c′ 6= 0. Set

IB′′ :={B ∈ IB′ : B≻B′, #(X(B)\H ′) = m(H ′) − 1}.

We get

−c′a(B′)pX(B′)∩H′ =
∑

B∈IB′′

c(B)a(B)pX(B)∩H′ . (18)

By our argument above, all the polynomial summands on both sides of (18) belong to the homoge-
neous basis of P(X ′). However, a priori we cannot conclude that all the coefficients in (18) equal 0,
since we have not excluded the possibility that polynomials from the aforementioned homogeneous
basis make multiple appearances in (18). Since we only need to prove that a(B′) = 0, we need
only to show that pX(B′)∩H′ is not one of the summands in the right hand side of (18). This is
equivalent to proving that, for each B ∈ IB′′, B′ ∩ H ′ 6= B ∩ H ′.

Let us assume that B ∈ IB′′ and B′ ∩ H ′ = B ∩ H ′ =: A. Obviously, b := B\A 6= b′ (otherwise,
B = B′), hence b is an H ′-shield of B. We will show that the existence of H ′-shield in B implies
that α(B) < α(B′), which will contradict the assumption that B′≺B.

It remains to prove the crucial thing: that α(B) < α(B′). The argument for that is as follows:
We recall that B\b = B′\b′ =: A, and A is a basis for H ′. We already know that b is not internally
active in B, while b′ is internally active in B′: b′ is the last vector in X\H ′, and b ≺ b′. We will
show that if x ∈ A is internally active in B then it is also internally active in B′. Then, all the
internally active vectors in B are internally active in B′, while B′ contains an additional internally
active element, viz., b′.

So, let x ∈ A be internally active in B. Set S := A\x. Note that rankS = n − 2. If x is not
internally active in B′, then there exists y ≻ x such that y 6∈ span{S∪b′}. Assume y to be maximal
element outside span{S ∪ b′}. We get the contradiction to the existence of such y by showing that
it is impossible to have y ≻ b′, and it is also impossible to have y ≺ b′.

If y ≻ b′, then, since b′ is maximal outside span{B\b′} = spanA = span{S ∪ x}, we have that
y ∈ span{S ∪ x}. Also, since y ≻ x, and x is maximal outside span{B\x} = span{S ∪ b}, we have
y ∈ span{S ∪ b}. But S ∪ b ∪ x = B, and B is independent, hence y ∈ span S, which is impossible
since we assume y to be outside span{S ∪ b′}.

Otherwise, y ≺ b′. The maximality of y then implies that x ≺ y ≺ b′. The maximality of x
outside span{S ∪ b} implies that b′ ∈ span{S ∪ b}. Since b′ 6∈ S, we obtain that span{S ∪ b} =
span{S ∪ b′}, which is impossible since y lies in exactly one of these two spaces.
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We now state formally the main theorem of this section.

Theorem 5.9

(1) dimP−(X) = dimD−(X) = #IB−(X).

(2) The map p 7→ 〈p, ·〉 is a bijection between D−(X) and P−(X)′.

(3) D−(X) = Π(V−(X,λ)) = kerJ−(X).

(4) The vertex set V−(X,λ) is correct for D−(X) as well as for P−(X).

(5) P−(X) = ker I−(X).

(6) P−(X) ⊕ J−(X) = Π.

Proof. This proof is not directly parallel but still quite similar to that of Theorem 3.8. We put
together inequalities and equalities obtained in Corollary 5.2 and Theorems 5.3, 5.5 and 5.8 to get

#IB−(X) = dimD−(X) ≤ dimP−(X) = dimker I−(X) ≤ #IB−(X).

This shows that equalities must hold throughout. We then invoke Theorems 5.3, 5.5 and 5.7, along
with Result 2.3, Corollary 2.6 and Result 2.11, to obtain the remaining claims of this theorem.

Theorem 5.10 Let Z−(X) be the integer points in the interior of the zonotope Z(X). Then

Π(Z−(X)) = P−(X) = ker I−(X),

provided that X is unimodular.

Proof. The proof is analogous to the proofs of Theorems 3.9 and 4.11 before. We first recall the
count

#Z−(X) = #IB−(X),

which is true for a unimodular X. That implies, by invoking Theorem 5.9, that

dim Π(Z−(X)) = dimP−(X).

Hence our claim follows from the fact that

Π(Z−(X)) ⊂ ker I−(X).

The proof of this latter inclusion requires us to show that, given any generator q := p
m(H)−1
ηH

, H ∈
F(X), of I−(X), there exists p ∈ Π that vanishes on Z−(X) and satisfies p↑ = q. The existence of
such p follows from the fact that, whatever facet hyperplane H we choose, the set Z−(X) lies in
the union

∪
m(H)−1
j=1 (aj + H),

with aj :=
∑j

k=1 xk, and where {xj}
m(H)
j=1 = X\H; the hyperplanes in the above union do not

depend on the order we impose on X\H. As before, we can assume without loss of generality that
X\H all lie on the same side of H.
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5.2 Homogeneous basis and Hilbert series for P−(X)

The internal Hilbert series hX,− records the homogeneous dimensions of P−(X):

h−(j) := hX,−(j) := dim(P−(X) ∩ Π0
j ) = dim(D−(X) ∩ Π0

j ), j ∈ IN.

While it is not true in general that the polynomials QB := pX(B), B ∈ IB−(X), form a basis for
P−(X), they can be used for computing hX,−:

hX,−(j) = #{B ∈ IB−(X) : val(B) = #X(B) = deg QB = j}.

In other words, the homogeneous dimensions of the (order-dependent) space Pin(X) coincide with
those of P−(X):

dim(Pin(X) ∩ Π0
j ) = dim(P−(X) ∩ Π0

j), ∀j.

The simplest way to observe this fact, is to follow the proof of Theorem 5.7: Every QB there was
proved to be writable as

QB = Q̃B + fB

with fB ∈ J−(X) and Q̃B ∈ P−(X). The fact that Q̃B, B ∈ IB−(X), are independent follows
directly from the independence of QB , B ∈ IB−(X), and the fact that the sum Pin(X) + J−(X) is
direct. Since we know by now that dimP−(X) = #IB−(X), we conclude that

Corollary 5.11 The polynomials Q̃B, B ∈ IB−(X), from the proof of Theorem 5.7 form a basis
for P−(X).

Now, each Q̃B is obtained by replacing some of the factors pw, w ∈ X of QB, by polynomials
pw′ , w′ ∈ IRn\0. Thus, trivially, deg QB = deg Q̃B , hence we may indeed compute hX,− via the
polynomials (QB)B∈IB−(X).

The fact that the spaces Pin(X) and P−(X) are different is somewhat less trivial. For example,
in two dimensions they are actually the same. In three dimensions, however, they may not be the
same, as the following example shows:

Example 5.12 Let

X = [x1, . . . , x5] :=




1 0 0 1 1
0 1 0 2 1
0 0 1 1 1


 .

Then
IB−(X) = {[x1, x2, x3], [x1, x3, x4], [x1, x2, x4]}=:(B1, B2, B3).

Our theory asserts, then, that dimP−(X) = 3. Indeed, one verifies directly that

P−(X) = span{1, px2
, px4

}.

The polynomials QB1
= 1, QB2

= px2
and QB3

= px3
span the space Pin(X) = span{1, px2

, px3
}.

The two spaces, P−(X) and Pin(X) are different, but they produce the same Hilbert series:

hX,− = (1, 2, 0, 0, . . .).

2
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6 Concluding remarks

A key component of the theory of zonotopal algebra is the explicit use of the polynomials pY ,
Y ⊂ X, in the construction of the J -ideals, as well as in the construction of the P-spaces. In
the context of the J -ideal, the only deviation is the use of the external basis B0 for defining
J+(X): a generator of J+(X) is of the form pY pb, with Y ⊂ X, and b ∈ B0. For example, if
rank(X\Y ) = n − 1, then b is the first vector in B0\span(X\Y ).

In the context of the P-spaces, the deviation from a direct use of polynomials pY occurs in the
case of P−(X). In an earlier formulation of the internal theory, we defined the internal P-space as

P̃−(X) := span{pY : Y ∈ S−(X)},

with the subset of very short X-sets defined as

S−(X) :={Y ⊂ X : rank(X\(Y ∪ x)) = n, ∀x ∈ X\Y }.

While this variant is spanned by polynomials of the form pY , Y ⊂ X, and while it is straightforward
to check that this space is a subspace of P−(X), we did not prove that the two variants coincide.
We conjecture, however, that the two spaces do coincide:

Conjecture 6.1 For every X, P−(X) = span{pY : Y ∈ S−(X)}.

Note that proving the above conjecture is tantamount to showing that the polynomials pY ∈
P−(X), Y ⊂ X, span P−(X): a polynomial pY , Y ⊂ X lies in P−(X) iff Y is very short. In any
event, the proof of Theorem 5.7 reveals the following information about P−(X):

Corollary 6.2 The space P−(X) is spanned by polynomials of the form pY , Y ⊂ IRn. Moreover,
there exists a basis for P−(X) such that each polynomial in that basis is of the form

pY pZ ,

with Y ⊂ X, Z ⊂ IRn, and #Z ≤ n − 2.

A second remark concerns the I-ideals and D-spaces. While the I-ideals admit a simple set of
generators, we do not know of any simple algorithm for constructing an explicit basis of a D-space.
Another remark, of a different flavor, concerns a special property of the central D(X) space: D(X)
is the smallest translation-invariant subspace of Π that contains D(X) ∩ Π0

#X−n. This property

does not extend to other D-spaces. For example, with N :=#X, dim(D+(X) ∩ Π0
N ) = 1, while

dim(D+(X) ∩ Π0
N−1) > n, unless X is a tensor product, i.e., consists of n different vectors, each

appearing with arbitrary multiplicity.
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