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Abstract. This article is devoted to the study of wavelets based on
the theory of shift-invariant spaces. It consists of two, essentially dis-
joint, parts. In the �rst part, the �berization of the analysis operator of
a shift-invariant system is discussed. That �berization applies to wavelet
systems via the notion of quasi-wavelet systems, and leads to the theory
of wavelet frames. Highlights in this theory are the unitary and mixed
extension principles, and the MRA construction of framelets. The sec-
ond part of the article is devoted to the study of the cascade/transfer
operators and the subdivision operator associated with a re�nable func-
tion. The analysis there is primarily based on the interpretation of the
cascade operator as a special quasi-interpolation scheme. This leads to
a surprisingly simple analysis of certain properties of re�nable functions,
including their smoothness and the convergence of the cascade and sub-
division algorithms. In particular, it follows that these latter algorithms,
if handled properly, always converge.

1. Preface: Wavelets and Their Associated Operators

This article advocates the analysis of wavelet systems via the study of their
associated operators. The goal is neither to survey the current state-of-the-art
in this area, nor to provide the reader with in-depth comprehensive analysis
of any of the issues addressed. Rather, my attempt is to provide a glimpse
into various contemporary aspects of wavelets, in a way that may whet the
reader's appetite for further reading. Based on this philosophy, I have chosen
setups that simplify the discussion even in cases when the simpli�cation is
purely notational.

The notion of `the operators associated with a wavelet system' is so broad
that it allows me to discuss two essentially disjoint topics. The �rst topic
concerns the intrinsic operators of the wavelet system: analysis and synthesis,
with the main aim being to review the recent developments in the area of
wavelet frames (cf. [66], [67], [68], [69], [70], [71], [72], [34], [22], [30]). The
second topic is the analysis of the corresponding re�nable/scaling function(s),
a topic that is also pertinent to the area of uniform subdivision algorithms
(cf. [56], [33], [15], [32]). The relevant operators in this discussion are the
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subdivision and the cascade. This second part is written as a short monograph,
aiming to single out the few underlying principles, and to demonstrate the
elegance and the simplicity of the resulting theory.

The analysis and synthesis operators are the two basic operators related
to any setup where one represents functions in some function space with the
aid of a basis or, more generally, a countable subset (referred to hereafter as
a `system') from that space. The study of the structure of the synthesis and
analysis operators of a wavelet system is, probably, the most basic one. We
show how the analysis operator of a wavelet system can be �berized, i.e., rep-
resented and thereby understood and analyzed with the aid of a collection of
much simpler operators (`�bers'). It leads to a complete characterization of
wavelet frames in terms of a certain collection of in�nite-order non-negative
de�nite matrices. The theory is based on an interplay between the wavelet
system and a new (special) type of shift-invariant system: the quasi-wavelet
system. As a result, simple extension techniques for constructing a wavelet
system from a given MRA (multiresolution analysis, cf. [54], [55], [27], and
[48]) become possible: the highlight of this part is that the re�nable function
need not satisfy any particular property, i.e., its shifts need neither form a
Riesz basis nor form a frame. The wavelet frames constructed by these princi-
ples are termed framelets and the example of B-spline framelets is discussed.

Another pair of operators associated with a wavelet system are the cas-
cade/transfer operator and the subdivision operator. In contrast with the gen-
eral synthesis/analysis operators, these operators are not associated directly
with the wavelet system but rather with the underlying re�nable function
(known also as the scaling function, which may be either a scalar function or a
vector-valued function). Thus, one assumes that the wavelets are constructed
via MRA and wishes to understand �rst the properties of the generator(s)
of the MRA. Of relevance here are the stability and linear independence of
the shifts of the scaling function, its smoothness, and the convergence of the
corresponding subdivision and cascade algorithms. The goal in this part is to
demonstrate the relative simplicity of the theory that is obtained by using this
approach: in fact, a single identity that involves the cascade operator, when
combined with the existing knowledge concerning quasi-interpolation schemes
provides a uni�ed approach for the study of all these aspects!

I forgo discussing and treating the approximation orders of the scaling
functions and wavelets. There are general treatments of approximation orders
of shift-invariant spaces (cf. [4], [7]), and applying these theories to the case
of a single scaling function is quite straightforward, hence does not require a
special exposition. The technique for dealing with the vector case is primarily
based on superfunction theory (cf. [5], [7], and [60]), a technique that does
not invoke, at least not in an explicit way, any operator-based approach. The
approximation orders of framelets are also derived from the general theory (cf.
[30]), and while they do rely on the structure of the synthesis operator of a
shift-invariant system, they seem to be a bit beyond the scope of this article.
The relations between the approximation orders of the scaling function and
its smoothness are discussed in [64].
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2. The Analysis and Synthesis Operators

2.1. The Analysis and Synthesis Operators: General

Let X be a countable set in a Hilbert space H. We can use X either in order to
decompose or to reconstruct other elements in H. Here, reconstruction means
that we assemble functions from discrete data with the relevant operator, then
the synthesis operator:

TX : `2(X)!H : c 7!
X
x2X

c(x)x:

When this operator is well-de�ned and bounded we say that the system X is
a Bessel system. The complementary use of X is for decomposition, i.e., using
X as a collection of linear functionals. The corresponding operator is then
the analysis operator T �X which is the adjoint of TX :

T �X : H ! `2(X) : f 7! T �Xf := (hf; xi)x2X:

Being the adjoint of TX , the analysis operator is well-de�ned and bounded if
and only if X is a Bessel system. There are situations when we restrict T �X to
a closed subspace H � H, and there is no need to assume then that X � H.

For most examples of interest, the Bessel property of the system X is
easily veri�ed. For example, if � � L2(IR

d) is a �nite set of functions, and if
we let E(�) be the collection of shifts of �:

E(�) := (E�� : � 2 �; � 2 ZZd); E� : f 7! f(� � �); (2:1:1)

then E(�) is always Bessel, provided, say, that the bracket product

[b�; b�] := X
j22�ZZd

Ej(jb�j2)
is continuous for every � 2 �. That continuity is implied by a mild decay
condition on � at 1: since the Fourier coe�cients of [b�; b�] are given by the
inner products (hE��; �i)�2ZZd , it su�ces, for example, to require that these
coe�cients lie in `1(ZZ

d).
However, one almost always would like to boundedly invert the analysis

and synthesis operators, and these additional requirements turn out to be
highly non-trivial. For example, even if we require the sequence � in the
previous example to belong to the space of compactly supported C1 test
functions, we cannot conclude that any of the two operators of interest is
boundedly invertible.

De�nition 2.1.2. Let X be a Bessel system in Hilbert space H, and let H
be a closed subspace of H. We say that:
1) X is a stable system in H (or that X forms a Riesz basis in H) whenever

the synthesis operator TX is boundedly invertible;
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2) X is a frame for H if the restriction of T �X to H is boundedly invertible.

The frame bounds are the numbers kT �Xk
2 (upper frame bound, may be

referred to as the `Bessel bound' ifX is merely a Bessel system) and kT �X
�1k�2

(lower frame bound).

It is not hard to see that, given a stable basis X in H and a closed
subspace H � H, X is a frame for H if (and only if) T �X is injective on H.

Some of the basics concerning stable bases and frames are collected in
the following proposition:

Proposition 2.1.3. Let X be a Bessel system in H. Then:
1) X is a stable basis in H if and only if there exists a map R : X !H such

that RX is a dual basis: it is a Bessel system, and T �RXTX = id, i.e.,

hx0;Rxi = �x;x0 ; 8x; x0 2 X:

2) X is a frame for H � H if and only if there exists a map R : X ! H
such that RX is a dual system: it is a Bessel system and TRXT

�
X = id on

H, i.e., X
x2X

hf;Rxix = f; 8f 2 H:

As said, the Bessel property of a system X is usually easy to obtain and
analyze. In contrast, the frame and Riesz basis properties are by far more
demanding, and are also more challenging for mathematical analysis. There
are two di�erent possible approaches here: (a) an intrinsic analysis of the
system X, and (b) an analysis of a pair (X;RX). The above proposition
indicates that the second approach may be simpler: an intrinsic analysis of X
requires one to check whether a certain operator is bounded below, while an
analysis of the pair (X;RX) requires one to know whether a certain operator is
the identity. On the other hand, the second approach requires one to augment
�rst the given system X by a suitable system RX, i.e., a system which is a
`good candidate' for being dual to X, something that may not be simple at
all. It is then important to emphasize the case a dual system is given for free:

De�nition 2.1.4. Let X be a system in a Hilbert space H. We say that X
is a tight frame for H if the analysis operator T �X is unitary, or equivalently, if
the condition

TXT
�
X = id

holds (in H).

The advantage of tight frames over other frames is obvious: the same
system X may be used for reconstruction and for decomposition. That may
be attractive for two di�erent reasons: �rst, it eliminates the need to �nd a
dual system. Second, even in the case when a dual system is easy to �nd, its
properties may not as good as those of the original X. For example, if H is the
subspace of L2(IR) consisting of cardinal splines of order 2 (i.e., continuous
piecewise-linear functions with integer breakpoints), then, with B the hat
function, E(B) is a stable basis for H. However, the dual basis in H for E(B)
lacks the compact support.
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In fact, our �rst example of a tight frame involves piecewise-linear func-
tions as well.

Example 2.1.5. Let � be the set of the two piecewise-linear functions de-
picted in Figure 1 (the support of each is [�1; 1], and the max-norms are 1

for the function on the left and
p
2
2 for the function on the right.) Let

X := [k2ZZDkE(2k=2�);

with D the dyadic dilation operator:

D : f 7! f(2�):

Then X is a tight (wavelet) frame for L2(IR).

Figure 1. The generators of the piecewise-linear tight frame.

I do not believe that it is straightforward to verify that the system in
the above example is indeed a tight frame. It is my intent in the rest of this
section to brie
y review the theory that leads to this construction as well as
to many other more involved ones: the theory of wavelet frames. That theory,
which is detailed in [68], [69], is based on the �berization of shift-invariant
systems, [5], [66].

Fiberization. The idea behind �berization is to analyze a complicated oper-
ator S with the aid of a collection (S!)!2
 of operators of simpler structure
(each of which is a `�ber'). For the �berization to be useful, the �ber operators
need, at least, help in determining whether S is bounded and/or invertible,
and need also be of help for computing or estimating the norms of S and S�1.

Example 2.1.6. The �berization of the analysis and synthesis op-
erators of a shift-invariant system, [66]. Let � be a countable subset
of L2(IR

d), and let X be the collection E(�) of all the shifts of �. For (al-
most) every ! 2 IRd, let J! be the pre-Gramian of X: the matrix whose
rows are indexed by 2�ZZd, whose columns are indexed by �, and whose
(�; �) 2 2�ZZd � � entry is

J!(�; �) :=
b�(! + �):

The pre-Gramian J! is considered as a map from `2(2�ZZ
d) into `2(�).
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The collection (J!)!2IRd �berize the synthesis operator TX of X. The
reference [66] contains detailed information as to the exact meaning and the
possible value of such �berization. In particular, we have that, with X :=
E(�), and c 2 `2(X), dTXcj

!+2�ZZd
= J!bc(!);

where bc(!) := ( bc�(!))�2�; bc�(!) := X
j2ZZd

c(Ej�)e�ij�!:

If follows, [66], that
kTXk

2 = k kJ!k kL1(IRd); (2:1:7)

kTX
�1k2 = k kJ!

�1k kL1(IRd): (2:1:8)

In a similar manner, the Gramian matrices (J�!J!)! �berize the self-adjoint
operator T �XTX . Note that J

�
!J! is an operator from `2(�) into itself, and its

�� ' 2 �� � entry is the bracket product [b'; b�](!):
[b'; b�] := X

j22�ZZd
b'(�+ j)b�(�+ j):

Consequently, we can study the Bessel property and the Riesz basis property
of a shift-invariant X = E(�) via the above Gramian �bers.

Fiberization of the analysis operator of X = E(�) is also possible, but
is signi�cantly more complicated (than that of the synthesis operator) unless
we assume that X is fundamental in L2(IR

d) (i.e., that the �nite span of X is
dense in that space). With the fundamentality assumption in hand, however,
we get results as simple as in the synthesis case. Speci�cally, the matrices
(J�!)! provide now �berization for T �X , the dual Gramian matrices (J!J

�
!)!

�berize TXT
�
X , and results similar to (2.1.7) and (2.1.8) hold. Note that each

dual Gramian �ber is a non-negative operator from `2(2�ZZ
d) into itself, and

its (�; �)-entry ((�; �) 2 2�ZZd � 2�ZZd) isX
�2�

b�(! + �)b�(! + �):

Fiberizations of the analysis operator are useful in the study of the Bessel
property and the frame property of the original X.

Here is an example that demonstrates the usefulness of the �berization
approach. Suppose that we would like to determine whether a system X =
E(�) is a tight frame for L2(IR

d). X is a tight frame i� TXT
�
X = id i� J!J

�
! =

id for almost every ! 2 IRd. After suppressing some obvious repetitions (e.g.,
di�erent �bers that represent essentially the same operator), we obtain that
X is a tight frame for L2(IR

d) if and only if, for every j 2 2�ZZd,X
�2�

b� Ej b� = �j ; a:e: (2:1:9)
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Some readers may be able to �nd a simple direct proof for this result.
Indeed, the tool of �berization in the study of tight frames (as well as in the
study of orthonormal bases and system-dual system setups) is not so essential:
the �ber matrices in these cases are identity matrices, hence entrywise charac-
terizations analogous to (2.1.9) are available. It is then plausible to claim that
such characterizations can be obtained directly without assembling �rst the
�ber matrices. Fiberization, however, is a powerful tool whenever the �ber
matrices do not have an especially simple structure.

Here is a striking example for the utility of the above �berization. It
is the simplest example of the so-called duality principle of Weyl-Heisenberg
systems, [67].

Example 2.1.10. Self-adjoint Weyl-Heisenberg systems. Given g 2
L2(IR

d), let

X := (eijE
kg : (j; k) 2 2�ZZd � ZZd); eij : ! 7! eij�!:

We have then that X = E(�), with � := (eijg)j22�ZZd . Indexing � by 2�ZZd,
we obtain that the pre-Gramian �ber J! has the entries

J!(k; j) = bg(! + k + j):

This means that the pre-Gramians are self-adjoint (up to conjugation), hence
that the condition that characterizes stability in terms of (J!)! is identical to
the condition that characterizes frames for L2 in terms of (J

�
!)!. This recovers

the fact (cf. e.g., [26], [1]) that the above X is a stable basis if and only if it
is a fundamental frame.

Wavelets. We want to focus now on the main theme of the discussion:
wavelet systems. In order to simplify notation, we will mostly assume that
we employ dyadic dilations (the general theory allows arbitrary dilations, for
as long as the entries of the dilation matrix are integers, and the spectrum of
the dilation matrix lies outside the closed unit disc). To recall, given a �nite
	 � L2(IR

d) of mother wavelets, the wavelet system X(	) generated by 	 is
the collection of all dyadic dilations of the shift-invariant E(	):

X(	) := [k2ZZDkE(2kd=2	); D : f 7! f(2�): (2:1:11)

One observes that a wavelet system is not shift-invariant: the k-scale DkE(	)
of X(	) is invariant under 2�kZZd-shifts, and these shifts become inde�nitely
sparse as k! �1.

The attempt to apply the shift-invariant �berization techniques to the
almost shift-invariant wavelet system led in [68] to the introduction of a link
between wavelet systems and shift-invariant systems in the form of quasi-

wavelet systems.
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De�nition 2.1.12. Quasi-wavelet systems. Given a collection of mother
wavelets 	, the quasi-wavelet system generated by 	 is

Xq(	) := [1k=0D
kE(2kd=2	)

[
[�1k=�1E(2

kdDk	):

As one observes, the quasi-wavelet system is obtained from the wavelet
system by oversampling the negative scales of the latter. For instance, in
the (�1)-scale, the even shifts of the function 2�d=2 ( �2) are replaced by the
integer shifts of the re-normalized function 2�d ( �2).

Theorem 2.1.13. [68], [69]. Let X := X(	) be a wavelet system, Xq its
quasi-wavelet system counterpart.
1) X is a Bessel system i� Xq is a Bessel system. The two systems have the

same Bessel bound.
2) X is a frame for L2(IR

d) if and only if Xq is a frame for that space. The
two systems have the same frame bounds.

3) Suppose X;Xq are frames for L2(IR
d), and let R : 	! L2(IR

d) be some
map. Then Y := X(R	) is a frame dual to X if and only if Y q is a frame
dual to Xq.

We remark that a smoothness assumption (a mild one: it is satis�ed, e.g.,
by the univariate and multivariate Haar functions) is imposed on 	 in [68],
[69]. In [22] it is shown that the �rst two statements in the above result hold
even without that assumption.

Since the quasi-wavelet system Xq is shift-invariant, it admits a �ber-
ization. Thanks to the above theorem, the so-obtained �bers can be used to
characterize the Bessel property and the frame property of the original wavelet
system X.

The �berization of wavelet systems. In order to describe the dual Gramian
�bers of X := X(	) (more precisely: the dual Gramian �bers of the shift-
invariant Xq), we introduce �rst the a�ne product:

	[!; !0] :=
1X

k=�(!�!0)

X
 2	

b (2k!) b (2k!0); (2:1:14)

where

�(!) := inffk 2 ZZ : 2k! 2 2�ZZdg: (2:1:15)

(Thus, for example, � = 1 o� the 2�-dyadic numbers, � � 0 on 2�ZZd, and
�(!) = �1 i� ! = 0.) Then, the (�; �) 2 2�ZZd � 2�ZZd-entry of the dual
Gramian �ber J!J

�
! of Xq is [68],

	[! + �; ! + �]:

Thus we have the following fundamental result:
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Theorem 2.1.16. [68]. Let X(	) be a wavelet system. For each ! 2 IRd,
let S! be the operator from `2(2�ZZ

d) to `2(2�ZZ
d) de�ned by

(S!c)(�) =
X

�22�ZZd
	[! + �; ! + �]c(�):

Then:
(a) X(	) is a Bessel system if and only if the function ! 7! kS!k is essentially

bounded. Furthermore, kT �Xk
2 = k kS!k kL1(IRd).

(b) Assume that X(	) is Bessel. Then X(	) is a frame for L2(IR
d) if and

only if the map ! 7! kS�1! k is essentially bounded. Also, the lower frame
bound is then 1=k kS�1! k kL1(IRd).

(c) X(	) is a tight frame for L2(IR
d) if and only if almost all the �bers S!

are the identity operators.

We conclude this section with a variety of examples.

Example 2.1.17. Tight frames. In view of the above result, X(	) is a
tight frame if and only if 	[! + �; ! + �] = ��;� for every �; � 2 2�ZZd, and

almost every ! 2 IRd. Replacing ! by !+�, we may assume � = 0. Since the
a�ne product is also dilation-invariant (i.e., 	[2!; 2!0] = 	[!; !0]), we may
assume that, unless � = 0, �(�) = 0, i.e., that � 2 2�(ZZdn2ZZd). We then
obtain that X(	) is a tight frame if and only if, for a.e. !,

	[!; !] = 1; 	[!; ! + �] = 0; 8� 2 2�(ZZdn2ZZd):

This result was established independently by others (cf. [38] where the uni-
variate dyadic case of the above is proved, and [35] where the general case is
established.)

Example 2.1.18. Univariate band-limited diagonal wavelets.
Assume that supp b � [�2�; 2�]n(��; �), for every  2 	. Then one easily
con�rms that 	[!+�; !+�] = 0 (for �; � 2 2�ZZd) unless � = �. This means
that the �ber matrices S! are all diagonal with diagonal entries

	[!; !] =
X

 2	;k2ZZ
j b (2k!)j2: (2:1:19)

It follows that X(	) is a frame if and only if the function P : ! 7! 	[!; !] is
essentially bounded together with its reciprocal. This recovers a well-known
result.

Moreover, given an arbitrary wavelet systemX(	), since the values of the
above P comprise the diagonal entries of the �bers matrices, and since each
�ber matrix is non-negative de�nite, the boundedness of P and 1=P is always
a necessary condition for X to be a frame (since the norm of any non-negative
operator is bounded below by the largest element on its diagonal, while the
norm of its inverse is bounded below by the reciprocal of the smallest element
on that diagonal). Again, this recovers a known result (cf. [26], [27], [19]). In
fact, almost all the results that provide estimates on the frame bounds of a
wavelet frame can be in retrospect understood as attempts to estimate norms
and inverse norms of non-negative de�nite matrices in terms of their entries.
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Example 2.1.20. Univariate band-limited block diagonal systems
with 2� 2 blocks.
We assume that, for each  2 	, supp b � [�8�=3; 8�=3]n(�2�=3; 2�=3), and
examine the a�ne product 	[! + �; ! + �], � 6= �. A direct computation
shows that if j! + �j < 2�=3 all the summands in the a�ne product vanish;
otherwise, due to symmetry considerations and to the invariance properties of
	[�; �], we may assume that 2�=3 � ! < 4�=3, that � = 0, and that � 2 2�ZZ.

This implies that b (2k!) = 0, unless k = 0; 1 and that, for � 2 2�ZZn0 and

k 2 f0; 1g, b (2k(! + �)) 6= 0 only if � = �2� (the `magic' in this example is
the fact that it is the same � for the two di�erent values of k). As a result,
it follows that S! is block diagonal, with all the blocks being (at most) 2� 2,
and with each block of the form�

jaj2 + jbj2 ha; ci+ hb; di
hc; ai+ hd; bi jcj2 + jdj2

�
; (2:1:21)

with a := ( b (!)) 2	, b := ( b (2!)) 2	, c := ( b (! � 2�)) 2	, d := ( b (2(! �
2�))) 2	, and with j � j being the `2-norm, and ! 2 [2�=3; 4�=3). Thus, such

a wavelet system is a frame for L2(IR
d) if and only if each matrix of the form

(2.1.21) is invertible, and, in addition, the norms as well as inverse norms of
these matrices are bounded independently of !. Of particular interest is the
case when 	 is a singleton f g. In this case, each matrix in (2.1.21) is of the
form BB�, with B the square matrix

B =

� b (!) b (2!)b (! � 2�) b (2! � 4�)

�
:

Obviously, the result can now be stated directly in terms of the norms and
inverse norms of the matrices of the form B. This case was studied in [75],
where it was observed that the frame property is equivalent here to the (seem-
ingly stronger) Riesz basis property. (From the point of view of the current
discussion, that can be attributed to the fact that each B is square, hence the
norms and inverse norms of BB� are identical to those of B�B).

Example 2.1.22. Oversampling. In order to explore this case we need
also to consider systems that are shift-invariant with respect to a superlattice
of ZZd. For simplicity, we consider only lattices that are scalar scales of an
integer lattice (see [68] for the general case). Thus, we let

En(�) := (E�� : � 2 �; � 2 ZZd=n);

with n some integer, and de�ne the wavelet systemXn(	) similarly to (2.1.11),
with E(	) there replaced by En(	) here. Following [18], we consider the new
system as an oversampling of X(	). The study of relations between properties
of X(	) and properties of Xn(	) was originated in the work of Chui and Shi
(cf. [18], [20], [21]).
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In order to analyze the oversampling via the �berization theory, we need
to know the �bers of the oversampling system. These �bers are simple (and
straightforward) variants of the �bers in the integer case: this time, each �ber
Sn;! is indexed by 2�nZZd � 2�nZZd, and its (�; �)-entry is

nd	n[! + �; ! + �];

with the only di�erence between 	n[; ] and 	[; ] in the de�nition of the valu-
ation �: here � is replaced by

�n(!) := inffk 2 ZZ : 2k! 2 2�nZZdg:

One then observes that �n = � on 2�nZZd whenever n is odd. This means
that for an odd n, n�dSn;! is a submatrix of S!. Since S! is non-negative
de�nite, it follows that

kSn;!k � ndkS!k:

Hence, the �berization theory yields that

kT �Xn(	)k � nd=2kT �X(	)k;

and a similar argument provides an analogous estimate on the other frame
bound. It follows then that Xn(	) is tight if X(	) is.

The particular oversampling result above is due to Chui and Shi (and was
proved originally by di�erent means). We note that the situation is di�erent
if the oversampling rate is even (cf. [18] and [68]).

2.2. Wavelets: Extension Principles, Framelets, B-Spline Framelets

The �berization of wavelet systems, when combined with the vehicle of mul-
tiresolution analysis (MRA), leads to new ways for constructing wavelet frames.

To recall, a function � 2 L2(IR
d) is (dyadically) re�nable if there exists a

2�-periodic mask function �0 such thatb�(2�) = �0b�: (2:2:1)

We assume that b�(0) = 1, but do not impose any other standard assumption;
in particular, the shifts of � need not form a Riesz basis. For notational
convenience, we set  0 := �.

Let V0 be the PSI space generated by �, i.e., the smallest closed sub-
space of L2(IR

d) that contains E(�). The re�nability assumption (2.2.1) is
equivalent to the condition that V1 := DV0 is a superspace of V0 (cf. [6]). We
then attempt to construct a wavelet frame that is generated by �nitely many
mother wavelets from V1:

	 := ( 1; : : : ;  n) � V1:

This means that each  i, i = 1; : : : ; n satis�es a relation of the formb i(2�) = �i b i;
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for some 2�-periodic wavelet mask �i. Since the wavelet system X(	) is com-
pletely determined by choice of the wavelet masks, we attempt to construct
the wavelet frame by an appropriate selection of the wavelet masks. As one
encounters in the Riesz basis case (cf. [55], [48]), the construction is based on
matrix extensions. However, in stark contrast with Riesz bases constructions,
no a priori assumption need be imposed on the re�nable �.

We start with the discussion of tight wavelet frames. [68] contains a
complete characterization of all tight wavelet frames that can be constructed
by using the above MRA approach. That characterization easily leads to the
following unitary extension principle.

Theorem 2.2.2. The unitary extension principle [68]. Let X(	) be
a wavelet system constructed by the above MRA recipe, and assume further
that all the masks involved are bounded. Then X(	) is a tight frame for
L2(IR

d) if the following condition holds: for almost every ! 2 IRd, and for
every 
 2 f0; �gd,

nX
i=0

�i(!)�i(! + 
) =

�
1; 
 = 0,
0; otherwise.

Discussion. One may interpret the condition in Theorem 2.2.2 as a matrix
extension. Let vi be the row vector vi = (�i(� + 
))
2f0;�gd; and let V be
the matrix whose rows are v0; : : : ; vn. The re�nable � determines the vector
v0, and selecting the wavelets ( 1; : : : ;  n) is tantamount to selecting the
additional rows v1; : : : ; vn. The above extension principle asserts that X(	)
is a tight frame once the columns of V are orthonormal for almost every
!. Since the number of columns is �xed (viz. 2d), then by selecting in an
appropriate manner a large number of wavelets, it is plausible that we can
�nd a suitable unitary extension without imposing any further condition on
the re�nement mask �0.

B-spline framelets. We refer to a wavelet frame that is constructed from
MRA by a matrix extension principle (either the above unitary one, or the
mixed extension principle detailed in the sequel) as framelet. The simplest
construction of framelets are those derived from the B-spline MRA. For nota-
tional convenience, we discuss here the construction of B-spline framelets of
even order; the odd case is treated similarly.

The mask of a centered B-spline of order n, n even, is

�0(!) = cosn(!=2):

Thus, �20 is the �rst term in the binomial expansion of

1 = (cos2(!=2) + sin2(!=2))n: (2:2:3)

Let �j, j = 1; 2; : : : ; n, be the squareroots of the other terms in this expansion,
i.e.,

�j(!) =

s�
n

j

�
cosj(!=2) sinn�j(!=2):
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Setting � := (�j)
n
j=0, (2.2.3) ensures that �(!) is a unit vector for every !.

The only other required condition is that, for every !, �(!) be orthogonal to
�(!+�): since �j(!)�j(!+�) = (cos(!=2) sin(!=2))n

�
n
j

�
(�)j ; that additional

requirement follows from the fact that (1� 1)n = 0:
One can now verify that the mother wavelet set in Figure 1 corresponds

to the case n = 2. In Figure 2 we show the case n = 4.

Figure 2. The generators of the cubic B-spline tight framelet.

We refer the reader to [70], [34], and [30] for further construction methods
that are based on the unitary extension principle. It is worth mentioning
that in more than one variable, dyadically re�nable functions may not be the
prime candidates for framelet constructions. The re�nement mask on the one
hand has a relatively large spectrum, and the relevant extension matrix has,
on the other hand, 2d columns, forcing one to use many mother wavelets in
the construction. Thus, dilation matrices with small determinants may be
preferred. For example, the Powell-Zwart element � (which is a bivariate C1

piecewise-quadratic spline supported in an octagon that lies in [0; 3]2, cf. [9])
is re�nable with respect to the dilation matrix�

1 �1
1 1

�
:

The mask has only four terms (and is identical to the dyadic mask of the
support function of [0; 1]2), and there are only two columns in the extension
matrix. In [70], two di�erent wavelet systems are derived from that function:
one with three mother wavelets and the other with two mother wavelets. It
is worth mentioning that the shifts of this � do not form a Riesz basis, and
this explains the essential lack of prior constructions based on this function
(the only exception I know is the 4-direction frames that were constructed in
[17] by oversampling. However, the dual systems of those frames do not have
compact support).

An added 
exibility to the construction of framelets is obtained when
one uses MRA to construct bi-frames i.e., a wavelet frame together with a
dual wavelet frame. The setup and development is similar to the `tight case.'
One starts with two re�nable functions � and ' with re�nement masks �0
and t0, and attempts to extend each �0 and t0 to an n-column vector (�
and t, respectively). Two wavelet systems are then constructed. The �rst is
X( 1; : : : ;  n) with b i(2�) := �ib�; i = 1; : : : ; n;
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and the second is X(R 1; : : : ;R n), where

dR i(2�) := bti b':
The mixed extension principle: Constructing bi-framelets. Suppose
that we construct two wavelet systems X(	) and X(R	) via the extensions of
�0 and t0 as above. Assuming that both X(	) and X(R	) are Bessel systems
(and imposing a mild smoothness condition on � and '), it is proved in [69]
that (X(	); X(R	)) forms a bi-framelet (i.e., a framelet together with a dual
framelet) if the following bi-orthogonality relation holds: for every 
 2 f0; �gd

nX
i=0

�i ti(�+ 
) =

�
1; 
 = 0,
0; otherwise.

See [69], [71], and [30] for more details as well as speci�c examples of bi-
framelets.

Quasi-wavelet systems may not be a mere theoretical tool. These
systems were introduced in [68] for the sole purpose of the eventual �beriza-
tion of the wavelet operators. However, experiments that were done (inde-
pendently) with `translation-invariant' wavelet systems [14] revealed superior
results compared to the standard wavelet systems. Since those latter systems
are (essentially) dilations of quasi-wavelet systems, there might be intrinsic
promise in quasi-wavelet systems. At present, we lack a theory that explains
the results of [14].

Framelets and their extension principles possess great potential in several
areas of applications: feature detection, noise removal, image compression, and
possibly for solving PDEs. All these applications require the implementation
of the system with the aid of a fast transform. Most of these applications re-
quire the system to have good approximation order. These aspects of framelets
are dealt with in [30].

It is worthwhile to note that a di�erent type of wavelet �berization tech-
nique appears in [75], [76]. The results there appear helpful in analyzing
oversampling systems, when the oversampling ratio is even.

3. The Cascade/Transfer and the Subdivision Operators

This part is devoted to the study of re�nable functions via the exploitation
of two relevant operators: the cascade and the subdivision (with the transfer
operator being the `Hermitian form' of the cascade operator, hence suitable
for e�cient treatment of L2-problems; cf. Section 3.4 for the precise meanings
of that). There is already a very rich literature devoted to this approach,
and it is beyond the scope of this section to review that literature to any
extent. Instead, my goal here is to highlight a speci�c approach: a treatment
that is based on the existing tools from and the acquired knowledge in the
theory of shift-invariant spaces: �rst and foremost, quasi-interpolation basics
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(cf. [77], [10], [2], [3], [11], [46], [9]). I do not claim any of the results in this
part to be novel, although assume that some of them are new. The proofs
given (whenever given) are not borrowed from elsewhere, but, again, similar
arguments might already exist somewhere in the literature.

As stated before, we prefer to carry out the analysis under simplifying
assumptions:

1) The dilation is dyadic. The extensions of the results to other dilations
are almost entirely notational. If a general dilation matrix s is employed, one
should use dilation by s on the original domain, and by s� on the Fourier
domain. The group � = f0; 2�gd = 2�(ZZd=2ZZd) should be replaced by
2�(ZZd=s�ZZd), and the dyadic lattices

Zk := ZZd=2k (3:0:1)

should be replaced by the s-adic lattices s�kZZd. The only place I am aware
of where the results do not carry over to general dilations is in the context of
smoothness: there, one needs to assume that the dilation is isotropic, i.e., that
all the eigenvalues of s have the same modulus. Without this assumption, one
can only get upper and lower bounds on the smoothness (cf. [16]).

2) The re�nable � is scalar-valued (rather than vector-valued). This as-
sumption simpli�es substantially the notations; however, it should be stressed
that many of the arguments here can be easily carried over to that setup
(speci�cally, the treatment of convergence and the treatment of smoothness).

3) The re�nable � is compactly supported. Some of the results are valid
without this assumption; however, one then loses a major component of the
analysis, viz. that the underlying spaces of interest are �nite dimensional. So,
this assumption should be regarded as essential.

Unless explicitly stated, we do not assume that the mask � (cf. (3.1.1))
is a trigonometric polynomial. With rare exceptions, such an assumption
leads neither to improved results nor to simpler arguments. It is worth noting
that, since we assume � to have compact support, the mask � is necessarily a
rational trigonometric polynomial (cf. [63]). Throughout the entire analysis

we do assume (without further mentioning) that � is bounded, and that b�(0) =
�(0) = 1.

3.1. The Transfer Operator: Stability and Related Properties

Let � be a compactly supported re�nable distribution, i.e.,b�(2�) = � b�; (3:1:1)

for some 2�-periodic � . Set
m := j� j2:

The (Fourier transform version of the) transfer operator T := Tm is de�ned as

T : f 7!
X

2�

E
D�1(mf);
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with
� := f0; 2�gd; Et : f 7! f(� � t); D�1f = f(�=2):

Thus, in one variable, for instance,

T f = (mf)(
�

2
) + (mf)(

�

2
+ �):

Before we begin the discussion, we remind the reader the following basic
consequence of Poisson's summation formula:

Lemma 3.1.2. Let f be a function in the Wiener algebra A(IRd), i.e., bf 2
L1(IR

d). Then the 2�-periodization
P

j22�ZZd E
j bf of bf lies in the span of

fei� : f(�) 6= 0g: Here,
e� : ! 7! e��!: (3:1:3)

Proof: The Fourier coe�cients of the 2�-periodization of bf are, up to a
multiplicative constant, the values of f at the integers.

The most useful property of the transfer operator in wavelet analysis is
the following lemma. It is somewhat awkward to state its most general case,
hence I put instead two separate statements (that together su�ce for the
subsequent applications):

Lemma 3.1.4. Let T be the transfer operator of a re�nable compactly sup-
ported distribution �.
1) Let � be a compactly supported distribution, and assume that b�jb�j2 2

L1(IR
d). Let �� 2 L1(TT

d) be the 2�-periodization of b�jb�j2
�� :=

X
j22�ZZd

Ej(b�jb�j2): (3:1:5)

Then, for every k, T k(��) is the 2�-periodization of b�( �
2k )j

b�j2:
2) Assume � 2 L2(IR

d). Let t 2 L1(IRd). Then, with Ft the 2�-periodization

of tjb�j2, the function T k(Ft) is the 2�-periodization of t( �
2k
)jb�j2.

3) Assume � 2 L2(IR
d). Let � be the 2�-periodization of jb�j2. Then (1;�)

is an eigenpair of T .

We omit the simple proof of the �rst part; the second part is merely
another variant of the �rst (with the same proof). Of course, the third part
is the special case of the �rst one corresponding to the choice � := �.

Here are some illustrations of the power of the above lemma:

Corollary 3.1.6. [73]. Let T be the transfer operator of the compactly
supported re�nable distribution �. Let Z� := ZZd \ supp', with ' the au-
tocorrelation of �, i.e., the compactly supported distribution whose Fourier
transform is jb�j2. Set (cf. (3.1.3))

H := spanfei� : � 2 Z�g: (3:1:7)
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Then, given a function of the form �� (as de�ned in (3.1.5)) there exists k0
(that depends only on diamsupp �) such that T k(��) 2 H for every k � k0.

Proof: By Lemma 3.1.4, T k(��) is the 2�-periodization of b�( �
2k
)jb�j2. Note

that the inverse transform of that latter function is (up to a constant) the
convolution Dk� � '. By choosing a su�ciently large k, we can ensure that
the support of Dk� lies in a su�ciently small neighborhood of the origin. The
result then follows from Lemma 3.1.2.

We will use in the next result, as well as in some subsequent results, the
following de�nition:

De�nition 3.1.8. The E-condition and the weak E-condition. We say that
a linear endomorphism S on a �nite dimensional space satis�es the weak E-

condition if the spectral radius of S is 1, and all its eigenvalues on the unit
circle are non-defective. We further say that S satis�es the E-condition if, in
addition, 1 is the unique eigenvalue on the unit circle and is simple.

Under the polynomiality assumption on the mask, the next result can be
found in [52].

Theorem 3.1.9. Let T be the transfer operator of a compactly supported
re�nable distribution �. Let

H� (3:1:10)

be the largest T -invariant subspace of H, and let

T�

be the restriction of T to H�. If T� satis�es the weak E-condition then � 2

L2(IR
d).

Remarks. 1) Note that the result does not assume the mask to be a (trigono-
metric) polynomial. 2) The non-defectivity assumption on the dominant eigen-
values is necessary: The �rst derivative �0 of Daubechies' �rst scaling function
� [25], [27] is a suitable example (� 62W 1

2 (IR), while the spectral radius of T�0
is 1. The `culprit' is the eigenvalue 1 which is defective). 3) We also note that
the converse of this statement is false. [73] shows that the spectral radius
of the transfer operator T� of a compactly supported re�nable � 2 L2(IR)
can be as large as one wishes (the corresponding masks in the examples there
are polynomial; in the case where the mask is polynomial and the dilation is
dyadic, we have that H = H�).
Proof: Note that the weak E-condition guarantees that, given any f 2 H�,
the sequence (T kf)k is bounded (in any norm, since H� is �nite dimensional).

Let � be a compactly supported function such that (i) b�jb�j2 2 L1(IR
d),

(ii) b�(0) = 1, (iii) b� � 0 everywhere, (iv) b� 2 L1. Then, as k !1,

kb�( �
2k
)jb�j2kL1(IRd) ! kb�k2L2(IRd):
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However, Lemma 3.1.4 together with the non-negativity of b� implies that

kb�( �
2k
)jb�j2kL1(IRd) = kT k(��)kL1(TTd);

while Corollary 3.1.6 guarantees T k(��) to lie, for all su�ciently large k, in
the domain H� of T�. Hence, by the weak E-condition, (T k��)k is bounded

in H� (say, in the L1(TT
d)-norm). Thus kb�kL2(IRd) <1.

The next result was proved �rst in [51], under the assumption that the
mask is polynomial; see also [16]. We remind the reader that, for a compactly
supported � 2 L2(IR

d), the stability of E(�) is characterized by the positivity
everywhere of the function � from Lemma 3.1.4 (cf. [77], [24], [47], [48], [5]).

Theorem 3.1.11. [65]. Let � be a compactly supported re�nable distribu-
tion. Then the following conditions are equivalent:
(i) � 2 L2(IR

d) and the shifts E(�) of � are stable.
(ii) T� satis�es the E-condition, and there is an eigenvector of the eigenvalue

1 which is positive everywhere.
(iii) T� satis�es the weak E-condition, 1 is a simple eigenvalue of T�, and an

eigenvector of it is positive everywhere.

Proof: We prove that (i)=)(ii)=)(iii)=)(i).
The implication (ii)=)(iii) is trivial. Also, assuming (iii), we conclude

from Theorem 3.1.9 that � 2 L2(IR
d); hence (Lemma 3.1.4) that (1;�) is an

eigenvector of T . In view of the assumption in (iii), this implies that c� > 0
for some constant c, which must be positive since � � 0.

Now, assume (i) and let f be any trigonometric polynomial such that
f(0) = 0. Since � > 0 everywhere, we can write f = t�, with t 2 C(TTd) and

t(0) = 0. By Lemma 3.1.4, T kf is the 2�-periodization of t( �
2k )j

b�j2, the latter
converges to 0 pointwise (since t is continuous at the origin and vanishes there).

The dominated convergence theorem then implies that kt( �
2k
)jb�j2kL1(IRd) ! 0,

hence that kT kfkL1(TTd) ! 0. Since the subspace of all trigonometric poly-
nomials that vanish at 0 has co-dimension 1 in the space of all trigonometric
polynomials, this implies that at most one eigenvalue of T� lies outside the
open unit disc, and that this eigenvalue, if it exists, must be algebraically
simple. The E-condition then follows from the fact that, Lemma 3.1.4, (1;�)
is an eigenpair of T�. The positivity of the eigenvector follows directly from
the stability assumption.

3.2. The Cascade and Subdivision Algorithms Always Converge

Let

Qk

be the space of all complex-valued sequences de�ned on Zk := ZZd=2k (i.e.,
Qk = CZk). Also set

Q := Q0:
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Given a sequence � de�ned (at least) on the lattice Zk, and a compactly
supported distribution f , we de�ne the k-scale semi-discrete convolution as

f �0k � :=
X
j2ZZd

�(2�kj)f(2k � �j):

Note that f �0k � is actually a linear combination of the Zk-shifts of Dkf , with
coe�cients �. Also,

f �0 � := f �00 �:

We have preferred in the previous section to carry out the analysis on the
Fourier domain. Since the results of this section target Lp-norms for p 6= 2,
we must switch to the time/space domain. Thus, the re�nability assumption
now reads as

� = � �01 a; (3:2:1)

with a a sequence de�ned on the half-integers Z1, still referred to the mask

(and which essentially comprises the Fourier coe�cients of the previous mask
�).

The transfer operator is a `folded version' of another operator (the con-
nection is made explicit in Section 3.4). Since the iterations of the latter
operator form the cascade algorithm (see below), we have chosen to name the
operator the cascade operator.

The cascade algorithm. The cascade algorithm aims at computing the
re�nable � much in the same way the power method computes an eigenvector
of a matrix. Starting with some initial compactly supported function f0, it
generates a sequence of functions (fk)k by applying the �xed point iteration

fk := Ckf0 = Cfk�1 := fk�1 �01 a;

with a the mask of �. The cascade operator is then the map

C : f 7! f �01 a:

Given 1 � p � 1 and � > 0, we say that the cascade algorithm converges in

the p-norm on the function set F at a rate � if, for every f 2 F ,

kCkf � �kLp(IRd) � constf 2
��k:

In order to analyze the cascade algorithm, I �nd it convenient to assume
that the initial function f above is of the form f := g �0u, with u some �nitely
supported element of Q and g some �xed function. For example, g can be
taken to be the support function of [0; 1]d, or a tensor product spline, a box
spline, etc. The cascade algorithm is intimately tied to the issue of quasi-
interpolation from shift-invariant spaces (cf. [11], [9]). It is not hard to see
that

Ck(g �0 u) = g �0k C
ku; (3:2:2)
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with

C : u 7! a � Du;

i.e., Cu(j=2) =
P

n2ZZd a(n=2)u(j � n) and C(Qk) � Qk+1. Approximation
theory basics then tell us that, in order for (3.2.2) to approximate � at a rate
�, three conditions should be satis�ed:

(i) The shifts E(g) of g should provide high approximation order. For
convergence only, approximation order 1 (i.e., partition of unity) su�ces. If
we are interested in an �-rate of convergence, we should choose g to provide
approximation order � �.

(ii) We can get approximation rate � in the p-norm only if � 2 W�
p (IR

d).
We discuss the smoothness of re�nable functions in the next subsection. (Warn-
ing: for general anisotropic dilations, the rate of convergence may only be a
fraction of the smoothness parameter).

(iii) The coe�cient sequence uk in the approximation � � g �0k uk should
be selected according to a quasi-interpolation rule, [11], [9]. One selects a
compactly supported � such that 1� b�bg has a zero at the origin of order � �
and that � is su�ciently smooth (so that Dk� � � 2 A(IRd)), and de�nes uk
as the restriction to Zk of 2kdDk� � �.

The �rst condition is entirely benign: after all, the selection of g is within
our control. The second condition belongs to another topic, viz., the smooth-
ness of re�nable functions; it establishes the actual upper bound on any at-
tempt to get fast convergence with the cascade algorithm. The interesting
condition is the last one, and one may initially look at this requirement with
utmost despair. After all, the sequence uk is determined by the cascade algo-
rithm as Cku, and we can only control the initial u. Fortunately, the counter-
part of Lemma 3.1.4 changes despair into joy: the cascade iterations respect
the rules of quasi-interpolation.

Lemma 3.2.3. Let � be a re�nable distribution with mask a. Let � be a
compactly supported distribution such that � � � 2 A(IRd), and set u :=
(� � �)j

ZZd
. Then Cku is the restriction to Zk of 2kdDk� � �.

Thus we have the following result:

Theorem 3.2.4. [59]. The cascade algorithm always converges fast.
Let � be a re�nable function that lies in W�

p (IR
d) for some 1 � p � 1

and some � > 0. Let � be some compactly supported distribution so thatb� b� 2 L1(IR
d), and set u := (� � �)j

ZZd
. Let g be a compactly supported

bounded function whose shifts provide approximation order n � �, and let �
be the order of the zero 1 � b�bg has at the origin. Then, choosing the initial
seed to be g �0 u, the cascade algorithm converges in the p-norm to � at a
rate minf�; �g. Moreover, given any m < � and assuming g 2 Wm

1(IRd), the
cascade algorithm converges on g �0 u to � in the Wm

p (IRd)-norm at a rate
minf��m;�g.
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The usefulness of the above result depends on the ability to compute a
good initial sequence u. If, for example, � is continuous, we can choose � to
be supported on ZZd, in a way that 1� bgb� has a zero of order n at the origin
(and with n, say, any number � �). Then, in order to implement the above
theorem we need to �nd u0 := �j

ZZd
. Note the (1; u0) is an eigenpair of the

operator
C0 : u 7! (Cu)j

ZZd
;

(this eigenpair is analogous to the eigenpair (1;�) in Lemma 3.1.4).

Discussion 3.2.5. The idea that the convergence of the cascade iterations
can be accelerated by a `smart' choice of the initial function is not entirely
new. First, in [58], it is shown how, for a box spline �, the convolution of
Ck� with (Dk�)j

ZZd
removes undesired artifacts from the surface obtained (the

actual discussion there is in terms of the subdivision operator). Second, in
[28], [29], it was shown that if an initial seed f for the cascade algorithm
is chosen in a way that f � � vanishes to order n at the integers, then the
cascade algorithm converges to � at a rate n (provided that f and � are
smooth, and that E(f) provide approximation order n). That technique is
more restrictive. As Theorem 3.2.4 asserts, given any g whose shifts provide
high enough approximation order, one can accelerate the convergence of the
cascade iterations by replacing g by a suitable element in the span of E(g).
In contrast, only for exceptional examples of (necessarily smooth) g, one can
�nd in the span of E(g) a function f that interpolates � at the integers to a
high order.

We close the discussion here with the following results in which we use

K� := ker(��0) := f� 2 Q : � �0 � = 0g: (3:2:6)

Proposition 3.2.7. Let � be a compactly supported distribution (not nec-
essarily re�nable) and let u 2 Q be �nitely supported. Then the following
conditions are equivalent:
(i) u �K� = 0.
(ii) There exists a smooth compactly supported function � that (���)j

ZZd
= u.

Theorem 3.2.8. Let 1 � p � 1, and let � 2 W�
p (IR

d). Let g be a bounded

compactly supported function for which b�� bg = O(j � jn) near the origin. Let
u 2 Q be a �nitely supported sequence such that u � K� = 0 and 1 � bu =
O(j � j�). If the shifts of g provide approximation order � �, then the cascade
algorithm converges at rate minf�; ng on g �0 u. Moreover, if g 2 Wm

1(IRd)
for some positive m, then (Ck(g �0 u))k converges in Wm

p (IRd) to � at a rate
minf��m;ng.

Note that, if K� = 0 (e.g., if the shifts of � are orthonormal, or form
a Riesz basis with a compactly supported dual basis), then we may choose
u := � in the above theorem.

The subdivision algorithm. Given the mask a of a re�nable function � and
a sequence � 2 Q, the main aim of the subdivision algorithm is to produce
fast a good approximation for � �0 � without computing � �rst.
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The subdivision algorithm involves the iterations of the subdivision oper-
ator. The subdivision literature usually assumes that the subdivision operator
is an endomorphism on Q, with the only advantage in this description that
the same operator S is employed in all the iterations. I �nd it more convenient
to align the subdivision iterations with the cascade iterations, and to assume
that after k iterations the sequence obtained lives on Zk = ZZd=2k. This en-
tails that the kth order subdivision operator is not exactly the kth power of
the 1st order one.

The kth order subdivision operator Sk. That operator maps Q into Qk
and is de�ned inductively as follows: S0 is the identity, and

Sk� := Dk�1a � Sk�1�; (3:2:9)

i.e., Sk�(j) :=
P
n2Zk�1 a(2

k�1(j � n))Sk�1�(n):
The standard de�nition for `convergence of subdivision' [32] is also some-

what inconvenient for analysis. I prefer the following (equivalent, at least for
p =1) de�nition, in which we use

G�

for the collection of all compactly supported functions g whose shifts provide
approximation order � �, and whose Fourier transform is �-
at at the origin:
1 � bg has a zero at the origin of order � �. Examples of functions in G�
include functions whose shifts are orthonormal, and cardinal interpolants, but
there are many others. In fact, given any compactly supported f whose shifts
provide approximation order � �, there exists g 2 G� which is �nitely spanned
by E(f). Given g 2 G�, it is well-known that, if � 2W �

p (IR
d)\C(IRd) and if

� � �, then k�� g �0k �kLp(IRd) � const 2��k.

De�nition 3.2.10. Convergence of subdivision. Let � be re�nable with
mask a, and let 1 � p � 1 and � > 0. Given a subset Q of Q, we say that
the subdivision converges on Q in the p-norm at � rate if for any g 2 G�,
for every q 2 Q, and for every compact set K,

k(� �0 q)� (g �0k Skq)kLp(K) � constq;K 2��k:

Note that Sk commutes with (integer) shifts, and hence Skq = Sk� �0 q.
Thus, the subdivision converges on the entire Q (for some �xed p and �) i�
it converges on �. As to the convergence of the subdivision on �, we have the
following simple observation:

Proposition 3.2.11. Let � be re�nable with mask a. Then, for every k,
Ck� = Sk�, and hence the subdivision converges in the p-norm at �-rate on
the entire Q if and only if the cascade converges at that norm and at that rate
on � (i.e., on G�).

The above proposition has one immediate consequence: since we can force
the cascade algorithm to converge, and even at fast rates, we can do the same
with the subdivision:
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Theorem 3.2.12. [59]. The subdivision always converges, and con-
verges fast. Let � be a re�nable function that lies in W�

p (IR
d) for some

1 � p � 1 and some � > 0. Let � be some compactly supported distribution
so that b� b� 2 L1(IR

d). In addition, let u := (� � �)j
ZZd

and � be the order of

the zero that 1 � b� has at the origin. Then, (Dku � Sk�)k converges in the
p-norm at a rate minf�; �g.

The theorem implies, in particular, that for p =1,

k(� �0 q)jZk �Dku � Skqk`1(Zk) � const 2��k;

provided that � 2 W�
1(IRd), and that u is selected as in the theorem (and

that � � �). A highlight here is that the sequence u depends only on � and
not on the initial sequence q of the subdivision.

Note that if the subdivision algorithm converges on � (for some p and �),
it converges on each � 2 Q (in that norm and rate); in particular, it converges
on each � 2 K� to � �0 � = 0. One of the main result of [59] provides a
converse for this result:

Theorem 3.2.13. Let � be a compactly supported re�nable function with
�nitely supported mask a. Let 1 � p � 1, and let 0 < � � 1. Assume that
� 2W�

p (IR
d). Then the following conditions are equivalent:

(a) The cascade algorithm converges in the p-norm at an �-rate on any com-
pactly supported initial seed f whose shifts provides approximation order
1.

(b) The subdivision algorithm converges in the p-norm at an �-rate on all
sequences in Q.

(c) The subdivision converges in the p-norm at an �-rate to zero on K�.

The theorem leads to several important consequences. For instance, if
� 2W�

1(IR) for some � > 0, and if the subdivision converges (on all sequences)
in some norm at some rate, it must converge in all other p-norms (albeit at
possibly di�erent rates). We refer to [59] and [13] for further discussions.

3.3. Smoothness of Re�nable Functions

Lemma 3.1.4 and Lemma 3.2.3 are key tools in almost any analysis of re�nable
functions that is based on the transfer operator. Here is a very brief discussion
of one of the major implications of the latter lemma: smoothness of re�nable
functions.

De�nition 3.3.1. Let � be a compactly supported distribution. Given 1 �
p � 1, we de�ne the p-smoothness parameter of �, �p(�), as follows:

�p(�) := supf� 2 IR : � 2W�
p (IR

d)g:

Note that �p(�) may be negative.
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Many articles in the literature exploit the cascade/transfer operator for
the analysis of smoothness. The early, univariate, results were based on the
idea of factorization (cf. e.g., [39], [78]). Riemenschneider and Shen were prob-
ably the �rst to provide lower bounds on the L2(IR

d)-smoothness without fac-
torization, and Jia [43] used that approach to characterize the L2-smoothness
of a single scaling function � in several variables, under the assumptions that
E(�) are stable, that the dilation is isotropic, and that the mask is a trigono-
metric polynomial. The treatment of L2-smoothness for single � 2 L2(IR

d)
and for non-isotropic dilations (still under the stability and polynomiality
assumptions) is contained in [16]: as said, one cannot compute exactly the
smoothness parameter in that general setup. That Cohen et al. article stim-
ulated [73] where the L2-smoothness parameter was completely characterized
(several variables, isotropic dilations, positive/negative smoothness, a vector
�, no stability and/or polynomiality assumptions). An algorithm (and soft-
ware) that implements the results of [73] is contained in [74]. There are fewer
treatments of Lp-smoothness, p 6= 2, and, in particular, I could �nd only one

reference that characterizes the Lp(IR
d)-smoothness, d > 1, [53]. The reader

is referred to [73], [49], and [45] for further references and discussions.

In this section, I merely wish to explain in the simplest possible terms
the natural connection between the cascade iterations and the smoothness of
the re�nable �. The treatment here is purely theoretical, and one must keep
in mind, [78], [74], [80], that implementing results of this type in practical
situations is non-trivial.

The connection between the cascade iterations and smoothness is clear
once we compare the basic Lemma 3.2.3 with the de�nition of smoothness in
terms of di�erence operators (cf. e.g., [31]). Speci�cally, the following is one
of the possible equivalent de�nitions of smoothness:

Proposition 3.3.2. Let � be a compactly supported distribution. In addi-
tion, let 1 � p � 1 and � be some positive number. Then the following
conditions are equivalent:

(a) The smoothness exponent �p(�) is � �.

(b) Let n be any integer � �. Then, for any su�ciently smooth compactly
supported �, if b� has a zero at the origin of order n, then, for every � < �,
2kdkDk� � �kLp(IRd) = O(2�k�):

The smoothness problem can now be e�ciently attacked by combining
the above proposition with Lemma 3.2.3 and Proposition 3.2.7. As said, the
result is also valid in the FSI (vector) case, as well as for general isotropic
dilations (the technique handles also negative smoothness parameters). It is
convenient here to normalize the `p-norm of sequences de�ned on Zk, so that
the total mass of the points in the unit cube always equals 1:

kckp`p(Zk) := 2�kd
X
j2Zk

jc(j)jp:
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We recall [11], [12], [4], [41], [50] that if � is compactly supported and
its shifts provide approximation order n, then it satis�es the Strang-Fix con-
ditions of order n, i.e., b� has a zero of order n at each j 2 2�ZZdn0. It follows
then from Poisson's summation formula that, if � is a smooth compactly sup-
ported function, and if b� has a zero of order n0 at the origin, then, with
u := (� � �)j

ZZd
, bu has a zero at the origin of order � minfn; n0g. Moreover, if

n0 is the exact order of the zero of b� at the origin, and if n0 � n, then n0 is
also the exact order of the zero bu has at the origin (provided b�(0) 6= 0).

Theorem 3.3.3. Let � be a compactly supported re�nable distribution with
mask a and cascade operator C. Assume b�(0) = 1. Let 1 � p � 1 be given,
and let N be the approximation order provided by E(�). Let K be a compact
set that contains supp �, and let U � Q be the space of all sequences u that
satisfy the following conditions:

(i) supp u � K.
(ii) bu has an N -fold zero at the origin.
(iii) u �K� = 0:
Let e� be the supremum of all � that satisfy the following condition: `kCkk =
O(2�k�) as a map from U to `p(Zk)'. Then e� = �p(�).

Proof: We prove �rst the lower bound inequality (�p(�) � e�). Let n be
any number larger than maxfN;�p(�)g. Also, let � be a smooth compactly
supported function of small support, whose Fourier transform has a zero of
order n at the origin. By Proposition 3.2.7 and the discussion preceding the
current theorem, the sequence ut := (Et� � �)j

ZZd
lies in U (provided that t

lies in small neighborhood of the origin). Now, suppose that kCkk = O(2�k�)
as a map from U to `p(Zk) (note that U is �nite dimensional hence the choice
of its norm is immaterial here). Since � � � is continuous, the sequences (ut)t
lie in some bounded subset of U , hence kCkutk`p(Zk) = O(2�k�), uniformly
in t 2 [0; 1]d. But Lemma 3.2.3 asserts that Ckut = 2kd((DkEt�) � �)jZk , and
thus Ckut is the restriction to t=2k + Zk of 2kdDk� � �. So we can integrate
our estimate over [0; 1]d=2k to conclude that 2kdkDk� � �kLp(IRd) = O(2�k�):
Thus, by Proposition 3.3.2, �p(�) � �.

For the converse, assume that � 2 W�
p (IR

d) for some � > 0. Since
`smoothness implies approximation orders' (cf. [15], [64], [44]), we know that
� < N . We need to show that � � e�, too. Since U is �nite dimensional, it
su�ces to prove that, for each u 2 U ,

kCkuk`p(Zk) = O(2�k�):

Fix such u, and let � be a smooth compactly supported function for which
u = (� � �)j

ZZd
(Proposition 3.2.7). By the remarks preceding this theorem,

since u 2 U , b� must have an N -fold zero at the origin. Let B be a compactly
supported function whose shifts provide approximation order N , and let � be
a compactly supported smooth function such that 1� bBb� has an N -fold zero
at the origin. Then, quasi-interpolation basics tell us that the approximation
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scheme f � B�0k (2
kdDk��f) provides approximation order N (cf. [9]), hence,

by standard interpolation arguments (and since N � �), we have that

k��B �0k (2
kdDk� � �)kLp(IRd) = O(2�k�):

The above also holds when � is replaced by �+ �, hence we obtain that

kB �0k (2
kdDk� � �)kLp(IRd) = O(2�k�):

However, by Lemma 3.2.3, B �0k (2
kdDk� � �) = B �0k C

ku. Assuming, without
loss, that the shifts of B are stable in the p-norm (cf. [47]), we conclude that
kCkuk`p(Zk) = O(2�k�):

As a nice application, we obtain the following result. The case n = 1 in
this result is essentially very well known (cf. [33], [42], [57], [36]).

Corollary 3.3.4. Let � be compactly supported and re�nable and assume
that b�(0) = 1. Let n be a positive integer such that (i) E(�) provide approx-

imation order � n, and (ii) 1 � b� has a zero of order � n at the origin. Let
K be a compact set that contains supp �, and let U0 � Q be the space of all
sequences u that satisfy the following conditions:
(i) supp u � K.
(ii) bu has a zero of order � n at the origin.
Let 0 < � � n and 1 � p � 1 be given. Then the subdivision converges
in the p-norm at any rate < � on the entire sequence space Q whenever the
following condition holds: \With C the cascade operator associated with �, we
have that kCkk = O(2�k�), when considering Ck as a map from U0 to `p(Zk)."

Proof: Let �0 < �. We need to show that for each g 2 G�, (g �0k C
k�)k

converges in the p-norm at a rate �0 to �.
First, since the space U0 here is a superspace of the space U of Theorem

3.3.3, we can invoke the latter to conclude that, under the current assumptions,
� 2W�0

p (IRd). Now, let u be a sequence supported on K such that 1� bu has
a zero of order n at the origin, and such that u � K� = 0. (We are tacitly
assuming thatK contains such a sequence; a suitable K is e.g., supp �+[0; n�
1]d.) By Theorem 3.2.8, the cascade iterations converge on g�0u to � at a rate
�0 in the p-norm. On the other hand, � � u 2 U0, hence, by our assumption
here kCk(� � u)k`p(Zk) = O(2�k�), hence the cascade iterations converge to 0
on g �0 (� � u) at a rate �. Thus, those iterations converge to � on g = g �0 �
at a rate �0.

The cascade operator can be represented as the composition of 2d basic
operators: with j 2 Z1 \ [0; 1)d, the jth component Cj of C is

Cjc := (E�jCc)j
ZZd
:

Using this approach, one may interpret the condition

kCkk = O(2�k�)
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(with Ck viewed as an operator from U to `p(Zk)) that appears in Theorem
3.3.3 as an equivalent statement on the joint spectral radius of these 2d opera-
tors (acting on U : that joint spectral radius should be in the p-norm < 2��).
I forgo providing further details in this regard, since, at the time this article
is written, I am not convinced that the formulation of the previous theorem
in that equivalent language provides a more e�cient venue compared to the
straightforward attempt of estimating kCkuk`p(Zk) for k = 1; 2; 3; : : :, and with
u varies over a basis for U .

Remark. In the above analysis, we took into account the fact that each point
in Zk represents a shift of the dilated cube [0; 1]k=2k, and that the Lp-norm
of that dilated cube is 2�k=p. We thus attached mass 2�k=p to each point in
Zk when de�ning the `p(Zk)-norm. For p <1, this removes the unnecessary
artifact in the original de�nition of the p-joint spectral radius ([79], [42]). For
example, in these terms, the subdivision algorithm converges on the entire Q
space in the Lp-norm if and only if the p-joint spectral radius on U0 is < 1,
[42], [36].

Remark. The formulation of Theorem 3.3.3 in terms of the kernel is con-
venient, especially since we do not assume � to be continuous, hence cannot
restrict it or a translate of it to the integers. However, it might be hard, in
general, to compute K�; the alternative is to invoke Proposition 3.2.7 and to
compute instead all sequences of the form (� � �)j

ZZd
. In case � is continu-

ous, that may not be hard (cf. [40] and the discussion in the next section).
Since, in general, we do not know in advance whether � is continuous, we
may instead try the following idea, which is an adaptation of the approach
used in [53] and [45], and which was suggested to me by D. X. Zhou, [80].
If we choose � to be a well-understood smooth re�nable function (e.g., a box
spline), and if we guarantee that � � � is continuous, we should be able to
compute u� := (� � �)j

ZZd
(cf. the discussion after Theorem 3.2.4). By varying

the above � (and applying suitable di�erence operators to each so-obtained
u�), one may hope to get a spanning set for the space U in Theorem 3.3.3. A
rigorous treatment using this approach has yet to be found.

3.4. Miscellaneous Results

The connection between the transfer operator and the cascade op-
erator. We started the discussion of the second part of this article with
L2-analysis via the transfer operator. We then presented the Lp-approach
via the cascade operator. As said, the two operators are intimately related.
Indeed, it is straightforward to prove the following (where we de�ne ba(!) :=P
j2Z1 a(j)e

ij�2!):

Proposition 3.4.1. Let � be re�nable with mask a and set m := 2�djbaj2.
Let C be the cascade operator associated with a and let T be the transfer
operator associated with m. Given any c 2 `2(ZZ

d), we have

kCkck2`2(Zk) = kT k(jbcj2)kL1(TTd):



28 A. Ron

In view of the fact that T is an endomorphism on the space H� (cf.
Section 3.1), while C is not an endomorphism of any non-trivial space, it
is preferable to use the transfer operator for studies in the L2-norm. For
example, the contractivity assumption on the space U in Corollary 3.3.4 is
equivalent, when p = 2, to the condition

k(TjH0 )
kk = O(2�2k�);

with H0 := ff 2 H : f(0) = 0g (with H as in (3.1.7)). This eventually
leads to the characterization of the convergence of the cascade/subdivision
algorithms in terms of the E-condition on T (cf. [52]). Similar remarks can be
made with respect to the smoothness problems. Usually it is easier to get the
L2-results directly from the transfer operator, compared to the alternative of
converting the cascade operator results via Proposition 3.4.1.

Linear independence. The recent papers [37] and [40] suggest an interest-
ing way for analyzing the local linear independence of the shifts of a re�nable
function �. To recall, given a compactly supported (not necessarily re�nable)
�, and an open set 
 � IRd, we say that the shifts of � are independent on 

if, whenever

� �0 q = 0; on 


for some q 2 Q, we have that q(j)�(� � j) = 0 on 
, for every j 2 ZZd. We
assume, for simplicity, that � 2 C(IRd) (this allows us to choose 
 := [0; 1]d,
though that set is not open).

Let us look closer at this problem. Let

Z
 := fj 2 ZZd : 
 \ (j + supp �) 6= ;g:

Note that q(j)�(� � j) = 0 on 
 unless j 2 Z
. Now, if � �0 q = 0 on 
, then
for every x 2 
, X

j2Z

q(j)�(x� j) = 0:

So, with
�x : Z
 ! C : j 7! �(x� j);

the question is whether or not (�x)x2
 span

U
 := CZ
 :

In [37], [40], the following idea was devised for �nding the local dependence
relations of � on 
. If we �nd �rst the vector u := �j

ZZd
(cf. the discussion

after Theorem 3.2.4), then, by Lemma 3.2.3, Cku = �jZk . The iterations thus
provide us eventually with the sequences �x, x dyadic, which su�ce here since
� is continuous. The only remaining practical problems are: (i) to compute
the initial u, something that usually is not hard when � is continuous, and (ii)
determining a stopping criterion for the iterations: the tree structure of the
cascade operator (which we have largely ignored) entails that, for 
 := [0; 1]d,
we stop exactly when

spanf�x : x 2 Zk \ 
g = spanf�x : x 2 Zk+1 \ 
g:
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One can also devise a stopping criterion when, e.g., 
 is a box whose corners
lie in some Zk. I do no know of a strategy for choosing a stopping criterion
for a general 
.

The local linear independence is nicely connected with the problem of
global linear independence: this is the case when K� = 0 (cf. (3.2.6)). We
recall, [23], [62], that the shifts of a compactly supported distribution � are
globally linearly dependent if there exists an exponential � 2 K�. Here,

� : j 7! �j; j 2 ZZd;

and � 2 (Cn0)d. The following connection between global independence and
local independence is a consequence of that characterization:

Lemma 3.4.2. Let � be a compactly supported continuous function. Let

 := [0; 1]d, and let � be all the local dependence relations of E(�) on 
:

� := fq 2 Q : supp q � 
+ supp �; (� �0 q)j
 = 0g:

Then the shifts of � are globally linearly independent if and only if � contains
a sequence that coincides on ZZd \ (
 + supp �) with an exponential �.

Proof: If q and � coincide on ZZd \ (
 + supp �), and if q 2 �, then, on 
,
��0 � = ��0 q = 0. But since � is an exponential, it is obvious that ��0 � = 0 on
any integer translate of 
. Those integer translates cover IRd, hence ��0 � = 0
everywhere. The converse is trivial.

This leads to the following result, [40]:

Corollary 3.4.3. Let � be a compactly supported continuous function, and
let V be any spanning set for span(�x)x2[0;1]d. Then E(�) are linearly depen-
dent if and only if there exists an exponential � such that v ? �, for every
v 2 V , i.e., such that

P
j2ZZd v(j)�

j = 0, for every v 2 V .

4. A Conjecture

I want to close this article with the following conjecture concerning the conver-
gence of the cascade algorithm. At the time this article is written, I strongly
believe it to be true, but cannot say whether it is easy or hard to solve it.
The conjecture is proved in [59] under various additional assumptions (for
example, under the assumption that K� = 0, and under the weaker assump-
tion that f = g �0 u, where u �K� = 0. These results readily imply that the
conjecture is true in one dimension.)

Conjecture. Let � be a compactly supported re�nable function in W�
p (IR

d),

d � 2, and assume b�(0) 6= 0 (the mask need not be �nite). Let g be a
compactly supported bounded function that satis�es the following three con-
ditions:
(a) The shifts of g provide approximation order � � (and bg(0) = 1).

(b) b�� bg = O(j � j�) near the origin.
(c) K� � Kg.
Then the cascade algorithm converges on g to � in the p-norm at rate �.
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