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Carl de Boor1

This talk is intended to demonstrate with the help of some examples that the quasi–interpolant of [2] is
very convenient when it comes to proving even very elementary old and new facts about polynomial splines.
The key is a formula which gives each B–spline expansion coefficient for a given spline in terms of the value
of its derivatives at a point.

1. Definitions

Let k ∈ IN, let t := (ti)∞−∞ be real, nondecreasing ti < ti+k, all i, and set

a := inf
i
ti,

and
b := sup

i
ti.

For i ∈ ZZ, the ith B–spline of order k with (or, for the) knot sequence t is given by the rule

Nik(t) := gk(ti, . . . , ti+k; t) (ti+k − ti)

gk(s; t) := (s − t)k−1
+

taking, for each fixed t, the kth divided difference of g(s) := gk(s; t) at ti, . . . ti+k in the usual manner even
when some or all of the tj ’s coincide. I leave unresolved any possible ambiguity when t = tj for some j, and
concern myself only with left and right limits at such a point; i.e., I replace each t = tj by the “two points”
t−j and t+j .

As is well known,
Nik > 0 on (ti, ti+k), and Nik = 0 off [t+i , t

−
i+k]

so that (since ti < ti+k, by assumption) Nik is not identically zero, while on the other hand, no more than
k of the Njk’s are nonzero at any particular point. Consequently, for an arbitrary a ∈ IRZZ, the rule

f(t) :=
∑
i

aiNik(t)

defines a function on (a, b) if we take the sum to be pointwise. I call every such function a polynomial
spline of order k with knot sequence t, and denote their collection by

Sk,t.
The “quasi–interpolator” Q of interest here is given by the rule

Qf :=
∑
i

(λif)Nik

where

λif := λτi,ψik
f :=

∑
j<k

(−)k−1−jψ(k−1−j)
ik (τi)f (j)(τi)

ψik(t) := (ti+1 − t) . . . (ti+k−1 − t)/(k − 1)!

and τi is an arbitrary point in (ti, ti+k). One verifies directly that [2]

λiNjk = δij , all i, j.

Consequently,
(i) Q is a linear projector with range Sk,t;
(ii) every f ∈ Sk,t has a unique representation as a B–spline series;
(iii) if f =

∑
i aiNik, then

ai = λτi,ψik
f for arbitrary τi ∈ (ti, ti+k).
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2. Existence and uniqueness of the B–spline expansion

The rather curious freedom in the choice of τi above leads to the following short proof of

Theorem (Curry et Schoenberg [3]). Sk,t consists of exactly those f on (a,b) for which

(i) for all i, f i ∈ Pk(:= polynomials of degree < k); and

(ii) if ts < ts+1 = · · · = ts+r < ts+r+1, then jump ts+1f
(k−j) = 0 for all j > r.

In particular, any such f has exactly one B–spline expansion (in terms of the B–splines of order k with
knots t).

Here and below, we denote by f i the restriction of f to (ti, ti+1). For the proof, I show that Qf = f
for all such f :
(a) For all such f , and all i,

g(τ ) := λτ,ψik
f =

∑
j<k

(−)k−1−jψ(k−1−j)
ik (τ )f (j)(τ )

is constant on τ ∈ (ti, ti+k) = support Nik, since
(α) for ψ ∈ Pk and smooth f ,

(λτ,ψ − λσ,ψ)f =
∫ τ

σ

ψdf (k−1) (= 0 if f [σ,τ ] ∈ Pk)

hence, as f |(tj ,tj+1) ∈ Pk, g is constant on each (tj , tj+1); and
(β) if ti ≤ ts < ts+1 = · · · = ts+r < ts+r+1 ≤ ti+k, then ts+1 is an r-fold zero of ψik, hence

ψ
(k−1−j)
ik (ts+1) = 0, for j = k − 1, k − 2, . . . , k − r,

while, by assumption on f ,

jump ts+1f
(j) = 0, for j = k − r − 1, . . . , 0;

hence g is continuous across each ts+1 with ti < ts+1 < ti+k.
(b) For all such f , and all j with tj < tj+1,

(Qf)|j = f |j .

For, (Qf) |j =
∑j
i=j+1−k(λτi,ψik

f) (Nik)|j . But I can assume by (a) without loss that τi ∈ (tj , tj+1),
i = j + 1 − k, . . . , j; hence

(Qf)|j =
j∑

i=j+1−k
λτi,ψik

(f |j) (Nik)|j ,

while
δir = λτi,ψik

Nrk = λτi,ψik
(Nrk|j), r = j + 1 − k, . . . , j

shows the k–sequence Nik|j , i = j + 1 − k, . . . , j, in Pk to be independent, hence a basis for Pk.
Consequently,

j∑
i=j+1−k

(λτi,ψik
h) (Nik)|j = h, for all h ∈ Pk.
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3. Uniqueness of odd–degree spline interpolation

In discussing the smooth extension of a real valued function defined on some closed subset of IR to all
of IR, Golomb et Schoenberg [4] prove that, for t strictly increasing, every f ∈ S2k,t which vanishes at the
points of t and has square–integrable kth derivative must vanish identically. Their proof is not simple. In
particular, the straightforward argument

∀if(ti) = 0, hence, ∀i 0 = f(ti, . . . , ti+k) =
∫
Nik(t)f (k)(t) dt/cik with cik := (k−1)!(ti+k−

ti); i.e., f (k) is orthogonal to every Nik, while at the same time being in Sk,t which is
spanned by the Nik’s; hence f (k) = 0, and so f = 0.

was not open to them since it requires (Nik) to be a Schauder basis for Sk,t ∩ L2, a fact they did not know.

Theorem. Let 1 ≤ p ≤ ∞, and Nikp := (k/(ti+k − ti))1/pNik. Then

∑
i

biNikp ∈ Lp(a, b) iff ‖b‖p <∞.

Precisely, there exists Dkp > 0 (independent of t) so that

D−1
kp ‖b‖p ≤ ‖

∑
i

biNikp‖p ≤ ‖b‖p, for all b ∈ IRZZ.

The second inequality is straightforward. As to the first, let f :=
∑
i aiNik =

∑
i biNikp, so that

ai((ti+k − ti)/k)1/p = bi, all i. Then, from Sec. 1, |ai| ≤
∑
j<k |ψ(k−1−j)

ik (τi)| |f (j)(τi)|.
Take I to be a largest interval among (ti, ti+1), . . . , (ti+k−1, ti+k), and choose τi ∈ I. Then |ψ(k−1−j)

ik (τi)| <
Ajk|I|j for some constants Ajk, while |f (j)(τi)| ≤ Bjkp|I|−j−1/p · ( ∫

I
|f(t)|pdt)1/p since f |I ∈ Pk. Hence

|bi|p = |ai|p(ti+k − ti)/k ≤ |ai|p|I| ≤
( ∑

j

AjkBjkp

)p ∫
I

|f |p

≤ Ckp

∫ ti+k

ti

|f |p

which, after summing over i, gives the required inequality with Dkp = (kCkp)1/p.
For a uniform knot sequence t, this theorem has already been proved by Schoenberg in [5] using a

special case of the above formula for the B–spline coefficients.

Corollary. For 1 ≤ p <∞, (Nikp)∞−∞ is a Schauder basis for Sk,t ∩ Lp(a, b).
Bolstered by this Corollary, the earlier argument establishes uniqueness of odd–degree spline interpola-

tion even in the limiting case of repeated or osculatory interpolation at multiple knots.

4. Bounds for least–squares approximation by splines

An attempt to bound the error in odd–degree spline interpolation to a smooth function in the uniform
norm leads to the problem of bounding least–squares approximation by splines, considered as a map on L∞,
independently of the knot sequence (cf. [1]), a question of interest in itself.

Let n ∈ IN, S = span{N1k, . . . , Nnk}, and denote by Lf the least–squares approximation to an f ∈
L∞[t1, tn+k] by elements of S. Then, L is a linear projector, characterized by the fact that

(∗) Lf ∈ S, and, for all λ ∈ Λ, λLf = λf

with the “interpolation conditions”

Λ := {λ ∈ L∗
∞| for some ϕ ∈ S and all f, λf =

∫
ϕf}.
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one verifies that (∗) implies
‖L‖ = sup

x∈S
inf
λ∈Λ

‖λ‖ ‖x‖/|λx|.

But, in order to compute, one needs to coordinatize. Letting (λi) and (ϕi) be bases for Λ and S, respectively,
we get that

‖L‖ = sup
a

inf
b

‖
∑
i

biλi‖‖
∑
j

ajϕj‖/
∣∣ ∑
ij

biλiϕjaj
∣∣.

Take ϕi := Nik, λi := k
∫ ·Nik/(ti+k − ti), i = 1, . . . n. From the earlier theorem,

D−1
k1 D

−1
k∞‖b‖1‖a‖∞ ≤ ‖

∑
i

biλi‖ ‖
∑
j

ajϕj‖ ≤ ‖b‖1‖a‖∞

while
sup
a

inf
b

‖b‖1‖a‖∞/
∣∣ ∑
ij

biλiϕjaj
∣∣ = ‖(λiϕj)−1‖∞

with ‖A‖p denoting the norm for the matrix A induced by the p–norm on vectors. This proves

Proposition. For some positive Ck (independent of t and n),

Ck‖(λiϕj)−1‖∞ ≤ ‖L‖ ≤ ‖(λiϕj)−1‖∞

(considering L as a map on L∞[t1, tn+k]), with

(∗∗) λiϕj = k

∫
NikNjk/(ti+k − ti), i, j = 1, . . . , n.

It has been known for some time that L could be bounded if only the Gramian (λiϕj) could be bounded
below (in the max–norm). This proposition adds that such bounding below of the Gramian is also necessary
for bounding L. For this reason, I offer the modest sum of m–1972 ten dollar bills to the first person who
communicates to me a proof or a counterexample (but not both) of his or her own making for the following
conjecture (known to be true when k = 2 or k = 3):

Conjecture. For given n and t, let (λiϕj) be the n× n matrix whose entries are given by (∗∗). Then

sup
n,t

‖(λiϕj)−1‖∞ <∞.

Here, m is the year A.D. of such communication.

5. Estimates for dist (f,Sk,t)
Let Qf be the quasi–interpolant to f as defined in Section 1. For a sufficiently smooth f ,

f(t) − (Qf) (t) =
∫
E(t, s) df (k−1) (s)

with E(t, ·) a nonnegative function of small support. This makes Qf a convenient approximation when it
comes to estimating the distance of such f from splines with fixed and with variable knots. Lack of space
precludes, unfortunately, any discussion of this important aspect of the quasi–interpolant here.

1 Supported by the United States Army under Contract DA–31–124–ARO–D–462.
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