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1. INTRODUCTION

Let m,d € N:={1,2,3,...} be such that m > d/2, and define ¢ : R¢ = R by

¢-—{ |-[2me if d is odd,

2™ " log ||| if d is even.

Let = be a finite subset of R satisfying

where II,,_1 := {polynomials of total degree < m — 1}, and assume that f is a function
defined at least on =. The surface spline interpolant to f at =, denoted Tk f, is the unique
function s € S(¢; =) satisfying S|g = f|:; here, S(¢; =) denotes the space of all functions

of the form

g+ Aed(-—§)

e

where ¢ € II,,_; and the A¢’s satisfy

(1.2) D Aer(§) =0, Vrell, .
==

The approximation power of surface spline interpolation is usually described via ‘ap-
proximation orders’. For this we assume that we have a bounded open @ C R? for which
) :=closure(2) D =, and we define the ‘density of = in £’ to be the number

§:=46(Z;Q) :=supinf |z —¢].
zeQ EEE
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Surface spline interpolation in €2 is said to provide L,-approzimation of order ~ if
If = T=fllp, @) = O7) asd—0

for all sufficiently smooth functions f. The L,-approximation order of surface spline in-
terpolation is only partially understood at present (see [D2], [B1], [WS], [P2], [J1], [LW],
[S2], [J2], [Bej], [J3] and the surveys [P1], [B2], [FH]). One aspect which has arisen is the
definite presence of boundary effects which affect not only the rate at which 7= f converges
to f but also the rate at which the coefficients {\¢ }¢ez grow/decay as 6 — 0. We illustrate
these boundary effects by comparing results in the special case @ = R?, = = hZ¢ with
results when Q = B, = =%, := hZ‘N (1 — h)B.

Although the case Q@ = R% = = hZ? violates our initial assumptions, Buhmann [B1]
has shown that 7= can be defined even when = is the infinite set hZ4 (more on this in
section 5). Regarding approximation orders, it is known ([B1],[JL]) that Tjz« provides
L ,-approximation of order 2m for 1 < p < oo, and that the order 2m is sharp. In case the
function f decays sufficiently fast, it can be shown that there exists A\ € {5 := l5(Z?) such
that Tpza f = Ejezd Ajo(- — hj). We will show, in this case, that if f # 0 is sufficiently
smooth, then [[A[|, = O(h%/?) and [, # o(h/?).

We look now at the special case 2 = B, = = =Zj. Regarding approximation, it is
known [J1] that there exists an f € C°°(RY) such that ||f — TEthLp(B) £ o(hmt1/P);
consequently, 7=, does not provide L,-approximation in B of any order exceeding m+1/p
for 1 < p < oo. Note that m 4+ 1/p < 2m unless m = d = p = 1. Regarding the size of
{A¢}eez, , we show in Proposition 4.5 that for the same f, H/\Héz(Eh) +£ o(RldFN/2=m) ag
h — 0. Note that (d+1)/2 —m < d/2.

The purpose of the present work is to present a modified form of surface spline interpo-
lation which, to some extent, overcomes the above described boundary effects. Regarding
approximation, our modified method provides L,-approximation of order v, + m, where
~p = min{m,m + d/p — d/2}. Note that v, + m = 2m if 1 < p < 2; while v, + m lies
strictly between m 4+ 1/p and 2m when 2 < p < oo. The stated order of approximation
is obtained provided that €2 is bounded, open, and has the cone property (see Definition
4.1). Regarding the size of A\, our method enjoys an estimate which, roughly speaking,
reduces to |[All,, = O(h%/?) when the interpolation points are on a grid. Before describing
our interpolation method we introduce a family of seminorms defined on S(¢;=).

Let n € C([0..00)) be given by

n(t) = bt K, (t),

where K, _;/, is the modified Bessel function of order m —d/2 (see [AS]) and the constant
b = b(m,d) is chosen so that n(0) = 1. For h > 0, we define the seminorm || - |||, on

S(¢; =) by
g+ Y Aes(- — Ol :=\/Z Aen(le — &1 /).

ge= B £.6'€s
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Interpolation Method 1.3. We assume that we are given a bounded, open  C R¢
which has the cone property, a finite set = C 2 satisfying (1.1), and data f|: Let Q, C RY

(depending only on ) be a bounded, open set which contains Q, and let Z, C 2, be a finite
set such that =5 D = and §(Z2;2) < const(d,m)d(Z;Q). Let s =g+ > ez, Aed(- — &) €
S(¢; Z2) be chosen such that

(1.4) S|z = f|E and
(1.5) |l|sllls < const(d, m)min{]|||s]||; : 5 € S(¢;=2) and §|E = f|E}’

where § := §(=; Q).
Two remarks are in order here. First, the method requires only the information f|:;

in particular, it does not require that f be known on any points in Z3\=. Second, the
fact that the method does not specify a unique choice of the function s € S(¢; =2) should
not be viewed as a negative feature. Since n(|-|) is a (strictly) poitive definite function
(cf. [S1]), it follows that there exists a unique s € S(¢; =) which minimizes |||s||; subject
to the constraints (1.4). The point of (1.5) is that it is not necessary to completely
minimize |||s]|s; rather, it suffices to reduce [||s|||; to within a constant of its minimum
value. This means that one can replace ||| - ||| in (1.5) with any equivalent seminorm so
long as the equivalency constants are independent of §. For example, if ¢ > 0 is a constant
(independent of ), then ||| - |||s and ||| - |||.s are equivalent (see Proposition 2.9). Another
example of an equivalent seminorm arises when a certain ‘mesh ratio’ remains bounded.
For finite N' C R%, we define the minimum separation distance in A to be

sep(N) = min [¢— €]
[

If the mesh ratio §/sep(Z2) is bounded independently of d, then it turns out that |||s||| is
equivalent to H/\HEQ(EQ) (see Proposition 2.3), and hence (1.5) can be replaced with
(1.6)

[Allgy(z,) < const(d,m) mln{HX

}.

m

P S= G+ ) Aed(-—€) € S(¢E,) and 3|_ = f
£E€ES

£2(E2)

The following is a simplified version of Theorem 4.6.

Theorem 1.7. If f belongs to the Sobolev space Wi™ and s = q + 25652 Aed(-—E) s
chosen according to Interpolation Method 1.5, then for 1 < p < oo,

@) N = sl @ =0@""™)  asd—0, and
(i) Al yzy) = OU8/)™2892)  as b,e =0,

where v, ;= min{m,m + d/p — d/2}, § :=0(Z,Q), and € := sep(=3).

Note that if the mesh ratio §/¢ is bounded independently of § (eg. if = = hZ?NQ and
Zo = hZ9N Qy), then (ii) reduces to H/\HQ(EQ) = 0(§9/2).
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aal aaQ o« .. aad

x|l dxy? axjd )
The natural numbers are denoted N := {1,2.3,...}, and the non-negative integers are
denoted Ny. For multi-indices o € N¢, we define || := oy 4+ag+- - - +ag, while for z € RY,

we define |z| := \/:1;% +a3 4+ :1;2. For multi-indices a, we employ the notation ()® to

Throughout this paper we use standard multi-index notation: D% :=

represent the monomial # — 2, x € R¢, and we define a! := (a1!)(as!) - - - (aq!). The space
of bivariate polynomials of total degree < k can then be expressed as I := span{()® :
la| < k}. For x € RY, we define the complex exponential e, by e,(t) := et ¢t € RY The
Fourier transform of a function f can then be expressed as J/C\(w) = Jpa e—w(@)f(z) da.
The space of compactly supported C° functions is denoted C2°(R?). If 11 is a distribution
and ¢ is a test function, then the application of 1 to ¢ is denoted (g, ;). We employ the
notation const to denote a generic constant in the range (0..o00) whose value may change
with each occurence. An important aspect of this notation is that const depends only on its
arguments if any, and otherwise depends on nothing. Without further mention, we assume
that the parameters m, d are positive integers with m > d/2. Two oft employed sets in R?
are the open unit ball B := {z € R?: |z| < 1} and the unit cube C := [1/2..1/2).

2. PRELIMINARIES

The conclusion of Theorem 1.7 asserts that ||f — SHLP(Q) = 0(67t™) as § — 0. We

prefer our conclusion to estimate ||f — SHLP(Q) for all values of 4, not just asymptotically
as ¢ — 0. To do this we need to place an additional assumption on the interpolation points

—_—
—
—

Definition 2.1. A set A' C R? is said to be correct for interpolation in II, if for all
functions f, defined at least on A, there exists a unique ¢ € II,, such that U = f|/\/’ We

denote by T, the set of all pointsets in R? which are correct for interpolation in II,,. For
N € 7, we define |N|In as follows: Let ypr := ﬁ 256/\/’5 be the center of V. For each «
with |a| <n, there exist unique numbers {aq,¢}een such that Dq(yn) = > pcp da,eq(§)
for all ¢ € II,,. Then

N = max a .
Nz, |a|§n,5exv| el

The additional assumption which we need is that there exists AV C = such that N €
Zom—1 and |./\/|12m_1 < const(m,d). Note that this is necessarily satisfied if 6(Z;Q) is
sufficiently small.

The surface spline interpolant is intimately connected to a space of functions H™ defined
as follows: For n > d/2, let H™ be the set of all continuous functions ¢ such that D% €
Ly := Ly(RY) for all |a] = n, and define the seminorm ||| - ||| 7, on H" by

gl =" 3N, g€ H"

Duchon [D1] has shown (assuming (1.1)) that s = T= f is the unique function in H™ which
minimizes |||s|||;» subject to the constraints Sz = f|: The seminorm ||| - |||, which

we defined on S(¢; =) actually has a natural extension to all of H™. Let ||| |||, be the
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seminorm defined on H™ by
2
-

— . geH™.
(14 |-)m/?

g

llglll. 32‘

Lo

Proposition 2.2. If s = ¢+ 2565 Aedp(-— &) € S(9;2) and h > 0, then

s, = const(d, m)a™*"*|||s(h-)]ll,-

Proof. According to [GS], 7(|]) = ¢,(1 + |-]*)~™ and ¢ can be identified on RO with

Co |-|_2m, where ¢,, ¢4 are constants depending only on d, m.

R 4 R
Ils(h)ll, = ‘ ————(s(h))7|| =hT" || —5(/h)
1+ 7y . a1 B
- " —2m m— —m
= h™" eyl W|/|2 D Acee(-/B)|| =R e |(T4 )72 Nee—ggm
€€~ L2 €€~ L2
Now,
2
1_|_|| m/ZZ/\ge ¢/h
€€~ L2
= / 1 + | | Z/\ge ¢/h Z /\5’6—5’/11 dm
Re £€E ¢ex
27)¢ —
= > A@e/ (1+ ) eer—eyn dm = &2 > Aden(l€ =€l /h).
£,¢'exs Togees

4

The following result shows that |||s[|, is equivalent to |||, ) whenever h is sufficiently
small.

Proposition 2.3. Let = be a finite subset of R, and let 0 < h < const(d,m)sep(Z). If
s =q+ 25652 Aed(-— &) € S(¢; =), then

(2.4) const(d,m) [ Moz, < llsll, < const(d,m) [\ z) -

Proof. 1t is known (cf. [S1]) that since sep(Z/h) > const(d, m),

sl = \/ S Aen(E — €] /1) > const(d, m) [y, (s) -

§,¢'€E
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Put C :=[-1/2..1/2)? and recall from the proof of Proposition 2.2 that

2

Islllz = comst(d,m) |[(1+ )™/ 3" Aee—esn

ces L,

2

< const(d,m) ZH (1+|-[H)~™/? L Gro) D Aeeern

jezs £e=

L2(j+0)
Since sep(=/h) > const(d, m), it follows that Z Ne€_g/n < const(d, m) [[All,,z)-
ses L2(j+C)
Hence
sl < eonst(d,m) 3 |+ 1) ™2 Iz < consi(dm) A )

JEZA
O

Theorem 1.7 describes the approximation power of Interpolation Method 1.3 when the
data comes from a function f € W}™. The theorem does not address the case when f is
less smooth. The theory actually applies when f belongs to a certain range of smoothness
spaces where WJ" is the roughest space and W}™ is the smoothest. We now describe these
spaces.

Definition 2.5. The Sobolev space W,', v > 0, is the set of all f € Ly such that

< Q.

1y o= || L+ 1272

Let Ay := B, and for k € N, let 4; := 2¥"B\2*~!B. The Besov space B;q, v € R,
1 < g < 00, 1s defined to be the set of all tempered distributions f for which

< 0.

£y, = |1 2017
" éq(NO)

Lo(Ag)

These Besov spaces are Banach spaces; the reader is refered to [Pe| for a general refer-
ence.

Definition. For v € [0..m], let F, be the space given by

- By 0 <y <m,
Tl WY ity e {0,m).

Incidentally, the space By’ is strictly larger than Wm+7 The following lemma shows
some useful relations between ||| I, and [|| - ||| g II HT
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Lemma 2.6. If f € H™, h >0 and v € [0..m], then

@) L < B2 NE o
(@) AL < A2 R F (RN, and
(iid) IR, < comst(m, 1 )R FITVEL L B | f 5 -

Proof. First note that

" d R
h- = ||—————(f(h- =h ———f(-/h
IR, ‘u+yﬁmﬂux>> TRl
(2.7) ke b2
) 2m 2m
— h_d/2 |h| J/C\‘ — h2m—d/2 || J/C\‘
T Zym
a P | teRErd N
Hence,
2m—d/2 ||2m 7 m—d/2
|||f(h)|||* <h Wf =h |||f|||Hm
Lo
which proves (i). For (ii) we note that by (2.7),
R (1+ [h-")m/2 "
Wil =\ | < aspee | |aspepee
L Lo Ly
|‘|2m 7 —2m+d/2
=1nax{hhm}‘——————;———f < (14 B2 ), by (27).
TR

For (iii), we mention that the factor (1+h™) is only needed in case h > 1 and 0 < v < m.
The case v = 0 of (iii) follows from (i) since ||| fl||gm < HfHWQm The case v = m of (iii)

follows easily from (2.7) since
|‘|2m

2m—d /2
I, < e |

= P g < Y e

2

f\

Now assume that 0 < v < m. By (2.7),

oo

7M. < 8272 | e

|‘|2m

~

Lo(Ag)
N oo 22km
58 - () B2 —d/2 H ‘ A‘
(2.8) < const(m) f La(Ao) + ; 1 4+ h222k) m/2 / Lo(Ag)

o © 92km i
< const(m)h?" = ? 171l (1 +2 (1 4 h222k)ym/2 27 H)) |
k=1
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If h > 1, then by (2.8)

oo 22km
) 2m—d/2 —k(m+)
17, < comst(m)B2™ =412 | £ s (1 X gy )

= comst(m)hzm_d/2 HfHBmﬂ—v (1 + ™ Z 2_’“7) < const(m,’y)hm_d/z(l + h™) HfHBmﬂ—v )
, 00 i1 2,00

On the other hand, if A < 1, then by (2.8)

e 22km
. 2m—d /2 —k(m+7)
I, < const(m)h™ =12 s 3 e
|—_ 10g2 h-| [e®) 22km
< Const(m)th—d/Z HfHBm_M Z 22km2—k(m+'y) + Z g 2—k(m—|—'y)
- k=0 k=[—log, k]
|—_ 10g2 h-| o0
= const(m)h>" "2 | fll g | Y 2K R N a7k
- k=0 k=[—log, k]

< const(m,’y)hm+7_d/2 HfHBm+v )
2,00

4

With Proposition 2.2 and Lemma 2.6 in hand, we can prove an assertion contained in
the second remark following Interpolation Method 1.3.

Proposition 2.9. Let = C R? be finite and let s = ¢ + 2565 Aep(-— &) € S(;=2). If
h,h' > 0 are such that h/h' + h'/h < const, then

const(m)|[s[l[, < [lls[ll, < const(m)][|s][],,.

Proof. By Lemma 2.6 (ii),

W2 (Rl < B2 4 (B /R)™)(R R TR s(R),
< const(m)h' 2" |Is(hHIl,,  since m > d/2.

The desired conclusion now follows from Proposition 2.2 (and symmetry). O

If f e H", then J/C\can be identified on R?\0 with a locally integrable function. However,

on any neighborhood of 0, the distribution ]/C\may be of a higher order. The following lemma
gives a sufficient condltlon on the test function ¢ for which the higher order component of
f can be ignored when computing (g, f>
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Lemma 2.10. Let n > d/2. If g € CZ(RY) satisfies |g(w)| = O(Jw]"™) as |w| — 0, then
0.5 = [, gtw)fwdw ven
R4\0
Proof. Let o € C.(RY) be such that ¢ = 1 on B. Define the tempered distribution v by

o= [ 0 - 3 P o) e, € CRRY

!
(04
|a|<n

If |o| = n, then (¢, ()*V) = f]Rd\o ;/)(w)waf(w) dw, and hence ()*V € Ly (as ()afe Ly).

It follows from this that v € H"™. Since v = ]/C\ on RN0, it follows that f — v is a
polynomial. Since f — v € H", it follows that f — v € II,_;. Consequently, f = v + ¢
for some ¢ € I,—;. Now, if ¢ € C>(RY) satisfies |g(w)| = O(Jw|™) as |w| — 0, then

o~

(9, f) = (9,7) +(9:@) = Jparo 9(w) f(w)dw +0. O
3. A RESULT ON ||| - |||,

The purpose of this section is to prove the following:

Proposition 3.1. Let r > 0 and for each j € Z%, let N be a finite subset of j + rB. If
{bj.¢}jent cen; 18 such that

Z bjeq€) =0 Vgellym_1,7€ 7% and

EEN;
M := sup Z bj.¢| < o0,
JET e
then
2
DD bief(&)| < comst(dym, )My VF € H™.
JEZA |EEN;
Our proof of this proposition employs local versions of ||| - ||| ;» and HHW;

Definition. For n > d/2 and A C R? open, we define

1A gy == | D> ID=FIT )

lar|=n

1 llwp cay = Z HDQJCHZLQ(A)-

la|<n

It is a straightforward matter to show, via the Plancheral Theorem, that
(3.2)
const(d, n) ||| flll oy < IFlllggn < const(d,n)l[[flll gnpay Vf € H"  and
const(d, n) | fllyp mey < 1 fllwy < const(d,n) || fllywy @) VFeWs

The proof of the following lemma can be found in [D2, p. 328].
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Lemma 3.4. Let y € RY, >0, n > d/2, and let N C y +rB be such that N € T,,_y. If

feWy and q € I,,_1 are such that f|/\/’ = | then

1f = dll,yarmy < const(r,n, M FI gy rm)-

Lemma 3.5. Let y € RY, >0, n > d/2, and let N C y +rB be such that N € T,,_y. If
feWwy, then

HfHW;(y—i—rB) < const(r,n, V) <HfH42(/\/) + |||f|||H"(y—|—rB)> :

Proof. Since all norms and seminorms under discussion are translation invariant, we may
assume without loss of generality that y = 0. It is known [A, p. 79] that H-Hwn(,,B) is
2

equivalent to |||, .5y + Il - lgn(rp)- Let ¢ € 1 be such that 9 = f|/\/’ Then
1wy rmy W= dllwa opy + ldllwg omy
< const(r,n,d) (If = all e + I1F = alllincesy + Nlalluom )

< const(r,n, N) <|||f|||H"(7’B) + HQWQ(N)> , by Lemma 3.4 and since ¢ € II,,_,

= const(r, 1, A) (11 lllgom) + 1 lisnn) -

0
Lemma 3.6. Let y € RY, >0, and n > d/2. If f € H", then there exists fE H™ such
that
(Z) f|y—|—r’B - f|y—|—rB and
() WAl g < const(d, n, )| FIll n(yrrm):

Proof. Since the seminorms under discussion are translation invariant, we may assume
without loss of generality that y = 0. Let A' C rB be such that N € Z,,_;. Let f €
H™. Let q € II,,_1 be such that a9 = f|/\/’ and put g := f — ¢q. By the Calderéon

Extension Theorem [A, p. 84], there exists g € W] such that §|7’B =9 and HgHW; <

rB
const(d, n,r) HgHW;(TB). Since g € W' and g € II,_4, it follows that fi=G+qec H"

Note that fv| 5= f| 5 and

11 1[Trn < Ngllyyy < const(d, n,r) lgllwp ()

< const(N',1,7) (119 sy + Mollin o) » by Lemma 3.5,
= const(N,m, 1) Il o

which (after a suitable choice of N') proves the lemma. O
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Lemma 3.7. Let n > d/2, r > 0, y € R?, and let N be a finite subset of y +rB. If
{be }een is such that

(3.8) Y beg(§) =0 VgeT, .y,
EEN

then

> b £(6)] < const(don, )l o gyrmy D bl VF € H.
EEN EEN

Proof. Without loss of generality assumey = 0. Let f € H™ and let ]va € H™ be as described
in Lemma 3.6. Put 7 := 256/\/— beee. Since fis integrable on R B and by Lemma 3.6

(1), it follows that 256/\/— be f(€) = 256/\/— be f(&) = (277)_d<7',f>. Since D%e¢(0) = (i£)?, it
follows from (3.8) that D*7(0) = 0 for all |a| < n. Hence, |7(w)| = O(|w|") as |w| — 0.
Therefore, by Lemma 2.10,

(3.9) > bef(€)] = (2m) 7

<@ || e
EEN 2

[, e

by Cauchy-Schwarz inequality. In order to estimate the factor containing 7, we note that
7], < 256/\/— |be| =: M. It follows by Taylor’s Theorem that for w € B,

[7(w)] < const(d,n) |I§l|i},i HDQTHLOO(B) Jwl"

< const(d,n)M  max [[D%||, (B) |w|"™ < const(d,n,r)M |w|".

la|=n,EeN
Hence,
ol < 17 o+ 1777
Lo L2(R4\B) L2(B)
<M H||_n + const(d, n,r)M < const(d,n,r)M.
Lo (RE\ B)

which, in view of (3.9) and Lemma 3.6 (ii), completes the proof. O

Lemma 3.10. Letn > d/2 andr > 0. For each j € 7%, let N be a finite subset of j+rB.
If {bje}jer cen; 18 such that

» bieq(6) =0 VYgel,1,j€Z’ and
EEN;

M := sup Z bj.¢| < o0,
IEE! gen;
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then
2

ST e ()] < comst(d,n, )M fl5. Vf € H™

JETA |EEN;

Proof. By Lemma 3.7,

2

Y oAD bicf(O)] < const(din,r) Y Ml (4rm)

JEZL |EEN; jezd

= const(d,n,r)M* Y > | Dfl1, 1) < const(d,n,r)M* Y DIy,

lo|=n jez

|a|=n

= const(d. n, )M || FlI4 gy < const(d,m, ) M2y, by (3:2).

4

Proof of Proposition 3.1. Let f € H™ and define f; by ]/C\l = XBJ/C\ and put fo == f — f1

Note that f € H™ 0 H*™, fy € H™ |IFII = IIANE + A2 Allen < 272 A,
and ||| folll g < 272 £2ll,- Thus

2 2

ST bief@ =313 e A1) + £206)

JETL |EEN; JETA |EEN;
2

2
<23 N biefi©)) 123 | Y bieh(©)
JEZA |EEN; JEZ4 |EEN;
< const(d, m,r)M? |||f1|||§{2m + const(d, m,r)M? |||f2|||§1,m7 by Lemma 3.10,
< const(d, m, r)M? ||| f1]||? + const(d, m, r) M ||| f|||? < const(d, m,r)M?||| |||

4. THE MAIN RESULT

The following is equivalent to the standard definition of the cone property. This form
has been chosen simply to facilitate the proof of the lemma which follows.

Definition 4.1. A set Q@ C R? is said to have the cone property if there exists eq,rq €
(0..00) such that for all @ € Q there exists y € ) such that |+ — y| = eq and

r+ty—x+reB)CQ Vte|0..1].
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Lemma 4.2. Let n > 0. If @ C R? is bounded, open, and has the cone property, then
there exists dg, 19 € (0..00) (depending only on n and ) such that if = is a finite subset of
Q with § 1= §(Z;Q) < bo, then for all x € Q/§ there exists a finite N C (Z/8) N (z + roB)
and {bg¢ }eenr such that

q(z) + Z beq(§) =0 Vgell, and
EEN

Z |be| < const(n, ).
EEN

Proof. There exists r; € (0..00) (depending only on d and n) such that if = € R? and
= c R are such that 5(§;Z + 1 B) < 1, then there exists N C =N (z + r1 B) such that
N e 7T, and |N|In < const(d,n). Let eq,rq be as in Definition 4.1, and put dp := rq/r1,
ro :=11(1 + €q/rq). Assume § < &y and = € /§. By Definition 4.1, there exists y € §2
such that |dx — y| = eq and dx + t(y — dx + rqB) C Q for all t € [0..1]. By substituting
t = dr1/rq and putting z := x + (r1/rq)(y — dx) it follows that |@ — z| = r1eq/rq and
z4+rmBC (/5N (x+roB). Since §(Z/5;z +mB) <(Z/6;Q/8) =1, there exists N C
(2/0) N (2 +r1B) such that N € T, and [N|; < const(d,n). Let yn and {aa ¢ }a|<n,cen
be as in Definition 2.1. If ¢ € II,,, then

1 1
a(e) = D, DN =) = Y = Y aaea(§)(z —yn)°”
la|<n ' la|<n T tEN
1
=> | > —pdagle —yn)® | al§).
EEN ||a|<n

Hence, if be := — Elalﬁn %aaf(:p —yn)®, then g(x) + 256/\/— beq(¢) = 0 Vq € II,, and

1
Sl <30 DT Wy, fe — uwl!* < const(d,n, o) = const(n, Q).
EeN EEN |a|<n

4

The following result shows that if s is any surface spline which happens to interpolate
f|E’ then || f — SHLP(Q) can be estimated in terms of the smoothness of f and |||s||s.

Theorem 4.3. Let v € [0..m] and f € F,. Let Q be an open, bounded subset of R¢
having the cone property and let = be a finite subset of Q for which there exists N C =
such that N' € Top—1 and |N|g, < const(d,m). Let Z3 be any finite subset of RY. If

s € S(¢;=3) satisfies S| = f|:, then

1 = sll,, 0y < const(,m, 1) (EWF||f]| 2, + 8w sl 5)
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where 6 := 0(=; Q) and v, := min{m,m+d/p—d/2}, 1 <p < occ.
Proof. First note that

11£(8-) = (&)L, < MG, + s,
< const(€2,m, 1)8" || £ .+ const(d,m)8" 3]l

by Lemma 2.6 (iii) and Proposition 2.2. Let dg and rg be as in Lemma 4.2 with n = 2m —1.
Case 1. § € (0..0do].
Since, for 1 < p < 2, ~, is constantly m and | f — SHLP(Q) < const(Q) || f — SHLQ(Q),

we may assume without loss of generality that 2 < p < co. Put € :=[~1/2..1/2)? and
A={j€Z: (j+C)n(Q)8) # 0}. For each j € A, let z; € j+ C be such that
| f(6-) — 3(5')”Loo((j+c)m(9/6)) <2|f(dx;) — s(dx;)|. By Lemma 4.2, for each j € A, there
exists Nj C (Z/0) N (xj + roB) and {bj¢}een; such that

q(zj) + Z bjeq() =0 Vgellyym—y and
EEN;

Z bj.¢| < const(m, ).
EEN;

Put r :=ro + /d/2 and note that {z;} UN; C j+rB for all j € A. Now,
1F = sl ) = 821 F(8) = (8 I, cys) < 87
< 25U || = | f(;) — s(82)IMl, 4y < 267 | j = | f(Sx;) — (62 )11,y

— 2507 |37 [f(5)) — s(6a ).

JEA

Je lF(S8) — 3(5')”Loo((j+c)ﬁ(9/5))Hg (A)

Since f(6€) — s(6¢) =0 for all £ € /5, we have
|[F(52j) = s(8aj)| = | f(8a;) — s(Sz) + Y (F(8) —s(5€))|, Vje A
EEN;

It thus follows by Proposition 3.1 that

D 1f(8aj) = s(8a;)* < const(m, Q)[IIF(87) — s(8-)]II2-

JEA
Therefore,

1f = sllp, () < const(m, Q8P| f(8) = s(8)]ll,
< const($,m, ) (87| f £, 4+ 2|5 |5)
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by (4.4).

Case 2. § > &o.
It suffices to show that [|f — s, _ o) < const(€,m. y)([[fl| £, + llsllls). Let = € Q. As
was shown in the proof of Lemma 4.2, if ynr, {@a.¢ }ja|<n,cen” are as in Definition 2.1 and

be := — E|a|§2m_1 %Ga,g(l' —yn)*, £ €N, then ¢(z) + 256/\/ q(§) = 0 Vg € ap—1. Let
r be the smallest positive real number for which £ C yar + rB. Then

[f(2) = s(@)] = | f2) = s(2) + Y (f(€) = s(6))

< const(d,m,r)|||f —sl|||,, by Proposition 3.1,

< const(Q, m)(1 +8™)5 2R (5) — s(5)

< const(2,m, ) ([ fll £, + lllsllls), by (4.4),
since dg < 0 < const(2). O

by Lemma 2.6 (ii),

Il

Our first application of Theorem 4.3 is to prove a result mentioned in the introduction

regarding the size of \ in the case when Q = B and = = hZ4N (1 — h)B.
Proposition 4.5. There exists f € C°°(R?) such that if Q = B, = = hZ?N (1 — h)B and
Tof = 4+ Yees Nedl: — £), then
() If = Tefll g # o™VP), 1<p<oo, and
(22) Moy # o(WFDIE=M) as b — 0.
Proof. Tt was shown in [J1] that there exists a compactly supported f € C°°(R?) such
that (i) holds. In order to prove that (ii) holds for the same function f, suppose to the
contrary that H/\HEQ(E) o(R(H1)/2=m) = Since HfHW22m < 00, it follows by Theorem 4.3
(with s =T=f, v =m, =3 = =, p = 2) that for sufficiently small h
1f = T=fll ) < const(dom)(R*™ || fllyyzm + B2~ T= £]],)
< const(d, m)(R*™ HfHW22m + pEm—d/? ]\/\]\42(5)), by Proposition 2.3,
— O(hm+1/2)
which contradicts (i). O

(11 |l

Our main result is now obtained by applying Theorem 4.3 in the case when s is chosen
according to Interpolation Method 1.3. We employ results from [J3] to estimate |||s]||s.

Theorem 4.6. Let v € [0..m] and f € Fy. Let s = q+ Y ez, Aed(- — £) be chosen
according to Interpolation Method 1.3 and assume that there exists N C = such that
N €Ty and |./\/|12m_1 < const(d,m). Then

() f = sl @) < const(€,Qa,m, v )8 V|| £l £
(”) |||3|||6 S Const(97927m77)57—m+d/2 HJCH}'v ’ and
(i0) [ Mlygmy) < const(2,Qz,m,y)(8/e)" =257 m 2 £l 1
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where v, ;= min{m,m + d/p — d/2}, § := 6(Z;Q), and € := sep(=3).

Proof. We first prove (ii). Since §(Z3;2) < const(d, m)d(Z; Q) and with Proposition 2.9
in view, we may assume without loss of generality that §(Z2;Qs) < d. Let o € C2°(R?) be
such that o =1 on Q and K :=suppo C Q2. Put f := of and note that supp f C K and
g

th. 5.1] for v € (0..m].

< const(d,m, o) || f|| .. The following is known [D1] for v = 0 and is proved in [J3;
7, ¥

|||}v_ T52}V|||Hm S COIlSt(I(, 927m77)57

..

< const(§2, m,~v,0)8" HfHﬁ )

(4.7)

Since T, f € S ;=) and satisfies (1= = _, it follows by Proposition 2.2 that
2 Dl = fie

lls(8)ll. < const(d, m)|ll(T=, /)(8-)]ll,

< const(d, m)||| f(8)Ill, + const(d, m)|||f(8-) — (T=. F)(&)]l,
< const(d, m,y)§™ =42 (1 4 §m) Hﬂ . + const(d,m)§m /2 If — TEQﬂHHm, by Lemma 2.6,

< COHSt(QQ,m,’}/,U)(Sm—i_’Y_d/Z HfHﬁ , by (4.7) and since § < const(22),

which in view of Propostion 2.2 (and after a suitable choice of o) proves (ii) . Note that
(i) follows from (ii) via Theorem 4.3. In order to prove (iii), note that by Proposition 2.3
and Proposition 2.6,

Ny, < const(d,m)]lls|ll, = const(d, m)e™"*¢||s(e)]ll,
< const(d, m)e=2H(§/e) 72421 4 (5/)™)|Is(8)l,, by Lemma 2.6 (i)
= const(d,m)(d/€) "2 (1 + (6/€)™ )[||s]ll5 < const(€2, Qa,m,¥)(8/e)™ 2T £ 1
by (i), O
5. SOME BOUNDS ON [[All,, =) IN CASE Q@ = R? AND = = hZ!

Buhmann’s [B1] extension of the definition of Tk f to the case = = hZ? is well defined
under very minimal restrictions on the growth of f at infinity. However, T}7¢ f cannot
necessarily be written as a series of the form Ejezd Ajo(- — hj) which converges uniformly
on compact sets unless we make some decay assumptions on f. The following can easily

be derived from [B1]:
Theorem 5.1. Let h > 0 and k > max{2m,m +d}. If f € C(R?) satisfies

00, then there exists a unique A € Uy such that

k
| fHLOO <

G ||, <o
(17) Z Ajglhj) =0 Vqell,—y, and
JEZA

(1i1) 5= Z Ajo(-— hy)  satisfies S|z = f|th.

jez?



DURFACE SPFLINE APFROANIMATIOIN i

The coefficients {)\; } jcz« above are given by \j := h=2"+4 Z f(hl)ce—; where {c;}eza

Lezd
is an exponentially decaying sequence defined by

1
D ciemj =wis =

jezd Co EjEZd | + 277.]

where ¢4 is a nonzero constant depending only on d, m. Assuming f € W3, it is a direct

application of Poisson’s summation formula to show that Z Nje—; =h"mw Z J/C\(/h +
jezd jezd
27j/h). Consequently,

(5.2) INll,, = 2m) 2R 2™ |lw Y F(/h + 275 /h)
jez La(27C)

Much can be derived from (5.2). For example, it is possible to show that if 0 < v < m,
then [|A[[,, < const(d, m,y)h Y/ || fIl gm+~ and there exists an exponentially decaying
2,00

fe Bg?:j such that |[A][,, # o(h7™™m+4/2) as h — 0. We refrain from proving this result,
but instead prove the following:

Proposition 5.3. If f € W7™\0 satisfies

and X 1s as in Theorem 5.1, then

||kaL < oo for some k > max{2m,m+ d}

(i) A, < const(d,m)R ||| f[ll yom, YA >0, and
(i) |, # o(h?)  ash — 0.

Proof. Noting that w satisfies const(d, m) |z|*™ < |w(z)| < const(d,m) ||?

obtain from (5.2) that

"oz € 2rC, we

I, < const(d,m)n=2" [ ||| F(-/m)

3 Hf(-/h + 27rj/h)\

Lo(27C) J€ZA\0 Lo(27C)
= coust(d.mh2 [ 17 7] LD DN 1 .
Lo(27C/R) jezho Lo(27(j+C)/h)
< const(d, m Rd/? om + R T2 H : _2mH H i A‘
< ( ) |||f|||H Z | | Loo(27(5+C)/R) | | ! La(27(j+C)/h)

JEZIN\O
< const(d ¥ (11l e+ -7 7

< const(d, m)A"? || fll] gr2m

by Cauchy-Schwarz ineq.,

Lo (Re \27rh—10)> ’
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which

[, > c01r1st(al,m)hd/2

vaonarkl J. JOORANDOIN

proves (i). The above argument can be restructured to yield

2m
‘| | J/C\“LQ(Rd\Zﬂh—lc)

2m d/2
. - t(d h
| fHIQ(zﬁC/h) const(d, m)

# o(h"/?)

since

AS.

Bej.
B1.

B2.

D1.

D2.
FH.

GS.
JL.

J1.
J2.
J3.

Lw.

P1.

P2.
S1.
S2.

WS.

2m
. =o(1). O
‘| | ﬂ‘LQ(Rd\Zﬂh—lc) 0( )
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