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1. Introduction

Let m;d 2 N := f1; 2; 3; : : : g be such that m > d=2, and de�ne � : Rd! R by

� :=

(
j�j2m�d if d is odd,

j�j2m�d log j�j if d is even.

Let � be a �nite subset of Rd satisfying

(1.1) 8q 2 �m�1(qj�
= 0) q = 0);

where �m�1 := fpolynomials of total degree � m � 1g, and assume that f is a function
de�ned at least on �. The surface spline interpolant to f at �, denoted T�f , is the unique
function s 2 S(�; �) satisfying sj�

= fj�
; here, S(�; �) denotes the space of all functions

of the form

q +
X
�2�

���(� � �)

where q 2 �m�1 and the ��'s satisfy

(1.2)
X
�2�

��r(�) = 0; 8r 2 �m�1:

The approximation power of surface spline interpolation is usually described via `ap-
proximation orders'. For this we assume that we have a bounded open 
 � Rd for which

 :=closure(
) � �, and we de�ne the `density of � in 
' to be the number

� := �(�;
) := sup
x2


inf
�2�

jx � �j :
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Surface spline interpolation in 
 is said to provide Lp-approximation of order 
 if

kf � T�fkLp(
) = O(�
) as � ! 0

for all su�ciently smooth functions f . The Lp-approximation order of surface spline in-
terpolation is only partially understood at present (see [D2], [B1], [WS], [P2], [J1], [LW],
[S2], [J2], [Bej], [J3] and the surveys [P1], [B2], [FH]). One aspect which has arisen is the
de�nite presence of boundary e�ects which a�ect not only the rate at which T�f converges
to f but also the rate at which the coe�cients f��g�2� grow/decay as � ! 0. We illustrate
these boundary e�ects by comparing results in the special case 
 = R

d, � = hZd with
results when 
 = B, � = �h := hZd \ (1� h)B.

Although the case 
 = R
d, � = hZd violates our initial assumptions, Buhmann [B1]

has shown that T� can be de�ned even when � is the in�nite set hZd (more on this in
section 5). Regarding approximation orders, it is known ([B1],[JL]) that ThZd provides
Lp-approximation of order 2m for 1 � p �1, and that the order 2m is sharp. In case the
function f decays su�ciently fast, it can be shown that there exists � 2 `2 := `2(Zd) such
that ThZd f =

P
j2Zd �j�(� � hj). We will show, in this case, that if f 6= 0 is su�ciently

smooth, then k�k`2 = O(hd=2) and k�k`2 6= o(hd=2).

We look now at the special case 
 = B, � = �h. Regarding approximation, it is
known [J1] that there exists an f 2 C1(Rd) such that kf � T�hfkLp(B) 6= o(hm+1=p);

consequently, T�h does not provide Lp-approximation in B of any order exceeding m+1=p
for 1 � p � 1. Note that m + 1=p < 2m unless m = d = p = 1. Regarding the size of
f��g�2�h , we show in Proposition 4.5 that for the same f , k�k`2(�h) 6= o(h(d+1)=2�m) as

h! 0. Note that (d + 1)=2�m < d=2.

The purpose of the present work is to present a modi�ed form of surface spline interpo-
lation which, to some extent, overcomes the above described boundary e�ects. Regarding
approximation, our modi�ed method provides Lp-approximation of order 
p +m, where

p := minfm;m + d=p � d=2g. Note that 
p +m = 2m if 1 � p � 2; while 
p +m lies
strictly between m + 1=p and 2m when 2 < p � 1. The stated order of approximation
is obtained provided that 
 is bounded, open, and has the cone property (see De�nition
4.1). Regarding the size of �, our method enjoys an estimate which, roughly speaking,
reduces to k�k`2 = O(hd=2) when the interpolation points are on a grid. Before describing
our interpolation method we introduce a family of seminorms de�ned on S(�; �).

Let � 2 C([0 : :1)) be given by

�(t) = btm�d=2Km�d=2(t);

where Km�d=2 is the modi�ed Bessel function of orderm�d=2 (see [AS]) and the constant
b = b(m;d) is chosen so that �(0) = 1. For h > 0, we de�ne the seminorm jjj � jjjh on
S(�; �) by

jjjq+
X
�2�

���(� � �)jjj

h

:=

s X
�;�02�

����0�(j� � �0j =h):
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Interpolation Method 1.3. We assume that we are given a bounded, open 
 � R
d

which has the cone property, a �nite set � � 
 satisfying (1.1), and data fj�
. Let 
2 � Rd

(depending only on 
) be a bounded, open set which contains 
, and let �2 � 
2 be a �nite
set such that �2 � � and �(�2; 
2) � const(d;m)�(�;
). Let s = q +

P
�2�2

���(� � �) 2
S(�; �2) be chosen such that

sj�
= fj�

and(1.4)

jjjsjjj� � const(d;m)minfjjjesjjj� : es 2 S(�; �2) and esj� = fj�
g;(1.5)

where � := �(�;
).

Two remarks are in order here. First, the method requires only the information fj�
;

in particular, it does not require that f be known on any points in �2n�. Second, the
fact that the method does not specify a unique choice of the function s 2 S(�; �2) should
not be viewed as a negative feature. Since �(j�j) is a (strictly) poitive de�nite function
(cf. [S1]), it follows that there exists a unique s 2 S(�; �2) which minimizes jjjsjjj� subject
to the constraints (1.4). The point of (1.5) is that it is not necessary to completely
minimize jjjsjjj�; rather, it su�ces to reduce jjjsjjj� to within a constant of its minimum
value. This means that one can replace jjj � jjj� in (1.5) with any equivalent seminorm so
long as the equivalency constants are independent of �. For example, if c > 0 is a constant
(independent of �), then jjj � jjj� and jjj � jjjc� are equivalent (see Proposition 2.9). Another
example of an equivalent seminorm arises when a certain `mesh ratio' remains bounded.
For �nite N � Rd, we de�ne the minimum separation distance in N to be

sep(N ) := min
�;�02N
� 6=�0

j� � �0j :

If the mesh ratio �=sep(�2) is bounded independently of �, then it turns out that jjjsjjj� is
equivalent to k�k`2(�2) (see Proposition 2.3), and hence (1.5) can be replaced with

(1.6)

k�k`2(�2) � const(d;m)minf



e�




`2(�2)
: es = eq+X

�2�2

e���(���) 2 S(�; �2) and esj� = fj�
g:

The following is a simpli�ed version of Theorem 4.6.

Theorem 1.7. If f belongs to the Sobolev space W 2m
2 and s = q +

P
�2�2

���(� � �) is
chosen according to Interpolation Method 1.3, then for 1 � p � 1,

(i) kf � skLp(
) = O(�
p+m) as � ! 0, and

(ii) k�k`2(�2) = O((�=�)m�d=2�d=2) as �; �! 0;

where 
p := minfm;m+ d=p� d=2g, � := �(�;
), and � := sep(�2).

Note that if the mesh ratio �=� is bounded independently of � (eg. if � = hZd \ 
 and
�2 = hZd \ 
2), then (ii) reduces to k�k`2(�2) = O(�d=2).
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Throughout this paper we use standard multi-index notation: D� := @�1

@x
�1
1

@�2

@x
�2
2

� � � @�d

@x
�d
d

.

The natural numbers are denoted N := f1; 2; 3; : : : g, and the non-negative integers are
denoted N0. For multi-indices � 2 Nd0, we de�ne j�j := �1+�2+ � � �+�d, while for x 2 Rd,

we de�ne jxj :=
p
x21 + x22 + � � �+ x2d. For multi-indices �, we employ the notation ()� to

represent the monomial x 7! x�, x 2 Rd, and we de�ne �! := (�1!)(�2!) � � � (�d!). The space
of bivariate polynomials of total degree � k can then be expressed as �k := spanf()� :
j�j � kg. For x 2 Rd, we de�ne the complex exponential ex by ex(t) := eix�t, t 2 Rd. The

Fourier transform of a function f can then be expressed as bf (w) := R
Rd
e�w(x)f(x) dx.

The space of compactly supported C1 functions is denoted C1
c (Rd). If � is a distribution

and g is a test function, then the application of � to g is denoted hg; �i. We employ the
notation const to denote a generic constant in the range (0 : :1) whose value may change
with each occurence. An important aspect of this notation is that const depends only on its
arguments if any, and otherwise depends on nothing. Without further mention, we assume
that the parametersm;d are positive integers with m > d=2. Two oft employed sets in Rd

are the open unit ball B := fx 2 Rd : jxj < 1g and the unit cube C := [1=2::1=2)d.

2. Preliminaries

The conclusion of Theorem 1.7 asserts that kf � skLp(
) = O(�
p+m) as � ! 0. We

prefer our conclusion to estimate kf � skLp(
) for all values of �, not just asymptotically

as � ! 0. To do this we need to place an additional assumption on the interpolation points
�.

De�nition 2.1. A set N � R
d is said to be correct for interpolation in �n if for all

functions f , de�ned at least on N , there exists a unique q 2 �n such that qjN
= fjN

. We

denote by In the set of all pointsets in Rd which are correct for interpolation in �n. For
N 2 In, we de�ne jN jIn as follows: Let yN := 1

#N

P
�2N � be the center of N . For each �

with j�j � n, there exist unique numbers fa�;�g�2N such that D�q(yN ) =
P

�2N a�;�q(�)
for all q 2 �n. Then

jN jIn := max
j�j�n;�2N

ja�;�j :

The additional assumption which we need is that there exists N � � such that N 2
I2m�1 and jN jI2m�1 � const(m;d). Note that this is necessarily satis�ed if �(�;
) is

su�ciently small.
The surface spline interpolant is intimately connected to a space of functionsHm de�ned

as follows: For n > d=2, let Hn be the set of all continuous functions g such that D�g 2
L2 := L2(Rd) for all j�j = n, and de�ne the seminorm jjj � jjjHn on Hn by

jjjgjjjHn := kj�jn bgkL2 ; g 2 Hn:

Duchon [D1] has shown (assuming (1.1)) that s = T�f is the unique function in Hm which
minimizes jjjsjjjHm subject to the constraints sj�

= fj�
. The seminorm jjj � jjjh which

we de�ned on S(�; �) actually has a natural extension to all of Hm. Let jjj � jjj� be the
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seminorm de�ned on Hm by

jjjgjjj� :=






 j�j2m

(1 + j�j2)m=2
bg






L2

; g 2 Hm:

Proposition 2.2. If s = q +
P

�2� ���(� � �) 2 S(�; �) and h > 0, then

jjjsjjjh = const(d;m)h�2m+djjjs(h�)jjj�:

Proof. According to [GS], b�(j�j) = c�(1 + j�j2)�m and b� can be identi�ed on Rdn0 with

c� j�j
�2m, where c�, c� are constants depending only on d;m.

jjjs(h�)jjj� =






 j�j2m

(1 + j�j2)m=2
(s(h�))b






L2

= h�d






 j�j2m

(1 + j�j2)m=2
bs(�=h)






L2

= h�d jc�j







 j�j2m

(1 + j�j2)m=2
j�=hj�2m

X
�2�

��e��(�=h)








L2

= h2m�d jc�j







(1 + j�j2)�m=2
X
�2�

��e��=h








L2

:

Now, 





(1 + j�j2)�m=2
X
�2�

��e��=h








2

L2

=

Z
Rd

(1 + j�j2)�m

0@X
�2�

��e��=h

1A0@X
�02�

��0e��0=h

1A dm

=
X

�;�02�

����0

Z
Rd

(1 + j�j2)�me(�0��)=h dm =
(2�)d

c�

X
�;�02�

����0�(j�
0 � �j =h):

�

The following result shows that jjjsjjjh is equivalent to k�k`2(�) whenever h is su�ciently

small.

Proposition 2.3. Let � be a �nite subset of Rd, and let 0 < h � const(d;m)sep(�). If
s = q +

P
�2�2

���(� � �) 2 S(�; �), then

(2.4) const(d;m) k�k`2(�) � jjjsjjjh � const(d;m) k�k`2(�) :

Proof. It is known (cf. [S1]) that since sep(�=h) � const(d;m),

jjjsjjjh =

s X
�;�02�

����0�(j� � �0j =h) � const(d;m) k�k`2(�) :
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Put C := [�1=2 : : 1=2)d and recall from the proof of Proposition 2.2 that

jjjsjjj2h = const(d;m)







(1 + j�j2)�m=2
X
�2�

��e��=h








2

L2

� const(d;m)
X
j2Zd




(1 + j�j2)�m=2



2
L1(j+C)








X
�2�

��e��=h








2

L2(j+C)

:

Since sep(�=h) � const(d;m), it follows that








X
�2�

��e��=h








L2(j+C)

� const(d;m) k�k`2(�).

Hence

jjjsjjj2h � const(d;m)
X
j2Zd




(1 + j�j2)�m=2



2
L1(j+C)

k�k2`2(�) � const(d;m) k�k2`2(�) :

�

Theorem 1.7 describes the approximation power of Interpolation Method 1.3 when the
data comes from a function f 2 W 2m

2 . The theorem does not address the case when f is
less smooth. The theory actually applies when f belongs to a certain range of smoothness
spaces whereWm

2 is the roughest space andW 2m
2 is the smoothest. We now describe these

spaces.

De�nition 2.5. The Sobolev space W 

2 , 
 � 0, is the set of all f 2 L2 such that

kfkW

2
:=



(1 + j�j2)
=2 bf




L2
<1:

Let A0 := B, and for k 2 N, let Ak := 2kBn2k�1B. The Besov space B

2;q, 
 2 R,

1 � q � 1, is de�ned to be the set of all tempered distributions f for which

kfkB

2;q

:=





k 7! 2k




 bf




L2(Ak)






`q(N0 )

<1:

These Besov spaces are Banach spaces; the reader is refered to [Pe] for a general refer-
ence.

De�nition. For 
 2 [0 : :m], let F
 be the space given by

F
 :=

(
Bm+

2;1 if 0 < 
 < m;

Wm+

2 if 
 2 f0;mg:

Incidentally, the space Bm+

2;1 is strictly larger than Wm+


2 . The following lemma shows
some useful relations between jjj � jjj� and jjj � jjjHm, k�kF
 .
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Lemma 2.6. If f 2 Hm, h > 0 and 
 2 [0 : : m], then

(i) jjjf(h�)jjj� � hm�d=2jjjf jjjHm;

(ii) jjjf jjj� � h�2m+d=2(1 + hm)jjjf(h�)jjj�; and

(iii) jjjf(h�)jjj� � const(m;
)hm+
�d=2(1 + hm) kfkF
 :

Proof. First note that

(2.7)

jjjf(h�)jjj� =






 j�j2m

(1 + j�j2)m=2
(f(h�))b






L2

= h�d






 j�j2m

(1 + j�j2)m=2
bf (�=h)






L2

= h�d=2






 jh�j2m

(1 + jh�j2)m=2
bf






L2

= h2m�d=2






 j�j2m

(1 + jh�j2)m=2
bf






L2

:

Hence,

jjjf(h�)jjj� � h2m�d=2






 j�j2m

(0 + jh�j2)m=2
bf






L2

= hm�d=2jjjf jjjHm

which proves (i). For (ii) we note that by (2.7),

jjjf jjj� =






 j�j2m

(1 + j�j2)m=2
bf






L2

�






(1 + jh�j2)m=2

(1 + j�j2)m=2







L1






 j�j2m

(1 + jh�j2)m=2
bf






L2

= maxf1; hmg






 j�j2m

(1 + jh�j2)m=2
bf






L2

� (1 + hm)h�2m+d=2jjjf(h�)jjj�; by (2.7).

For (iii), we mention that the factor (1+hm) is only needed in case h � 1 and 0 < 
 < m.
The case 
 = 0 of (iii) follows from (i) since jjjf jjjHm � kfkWm

2
. The case 
 = m of (iii)

follows easily from (2.7) since

jjjf(h�)jjj� � h2m�d=2






 j�j2m

(1 + 0)m=2
bf






L2

= h2m�d=2 kfkH2m : � h2m�d=2 kfkW2m
2

:

Now assume that 0 < 
 < m. By (2.7),

(2.8)

jjjf(h�)jjj� � h2m�d=2
1X
k=0






 j�j2m

(1 + jh�j2)m=2
bf






L2(Ak)

� const(m)h2m�d=2

 


 bf



L2(A0)

+
1X
k=1

22km

(1 + h222k)m=2




 bf



L2(Ak)

!

� const(m)h2m�d=2 kfkBm+

2;1

 
1 +

1X
k=1

22km

(1 + h222k)m=2
2�k(m+
)

!
:
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If h � 1, then by (2.8)

jjjf(h�)jjj� � const(m)h2m�d=2 kfkBm+

2;1

 
1 +

1X
k=1

22km

(0 + h222k)m=2
2�k(m+
)

!

= const(m)h2m�d=2 kfkBm+

2;1

 
1 + h�m

1X
k=1

2�k


!
� const(m;
)hm�d=2(1 + hm) kfkBm+


2;1
:

On the other hand, if h < 1, then by (2.8)

jjjf(h�)jjj� � const(m)h2m�d=2 kfkBm+

2;1

1X
k=0

22km

(1 + h222k)m=2
2�k(m+
)

� const(m)h2m�d=2 kfkBm+

2;1

0@d� log2 heX
k=0

22km2�k(m+
) +
1X

k=d� log2 he

22km

hm2km
2�k(m+
)

1A
= const(m)h2m�d=2 kfkBm+


2;1

0@d� log2 heX
k=0

2k(m�
) + h�m
1X

k=d� log2 he

2�k


1A
� const(m;
)hm+
�d=2 kfkBm+


2;1
:

�

With Proposition 2.2 and Lemma 2.6 in hand, we can prove an assertion contained in
the second remark following Interpolation Method 1.3.

Proposition 2.9. Let � � R
d be �nite and let s = q +

P
�2� ���(� � �) 2 S(�; �). If

h; h0 > 0 are such that h=h0 + h0=h � const, then

const(m)jjjsjjjh0 � jjjsjjjh � const(m)jjjsjjjh0 :

Proof. By Lemma 2.6 (ii),

h�2m+djjjs(h�)jjj� � h�2m+d(1 + (h0=h)m)(h0=h)�2m+d=2jjjs(h0�)jjj�

� const(m)h0
�2m+d

jjjs(h0�)jjj�; since m > d=2:

The desired conclusion now follows from Proposition 2.2 (and symmetry). �

If f 2 Hn, then bf can be identi�ed on Rdn0 with a locally integrable function. However,

on any neighborhood of 0, the distribution bf may be of a higher order. The following lemma
gives a su�cient condition on the test function g for which the higher order component ofbf can be ignored when computing hg; bf i.
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Lemma 2.10. Let n > d=2. If g 2 C1
c (Rd) satis�es jg(w)j = O(jwjn) as jwj ! 0, then

hg; bf i = Z
Rdn0

g(w) bf (w) dw 8f 2 Hn:

Proof. Let � 2 Cc(Rd) be such that � = 1 on B. De�ne the tempered distribution � by

h ; b�i := Z
Rdn0

[ (w) �
X
j�j<n

D� (0)

�!
w��(w)] bf (w) dw;  2 C1

c (Rd):

If j�j = n, then h ; ()�b�i = R
Rdn0  (w)w

� bf (w) dw, and hence ()�b� 2 L2 (as ()� bf 2 L2).

It follows from this that � 2 Hn. Since b� = bf on Rdn0, it follows that f � � is a
polynomial. Since f � � 2 Hn, it follows that f � � 2 �n�1. Consequently, f = � + q
for some q 2 �n�1. Now, if g 2 C1

c (Rd) satis�es jg(w)j = O(jwjn) as jwj ! 0, then

hg; bf i = hg; b�i + hg; bqi = R
Rdn0 g(w)

bf (w) dw + 0. �

3. A result on jjj � jjj�

The purpose of this section is to prove the following:

Proposition 3.1. Let r > 0 and for each j 2 Zd, let Nj be a �nite subset of j + rB. If
fbj;�gj2Zd ;�2Nj

is such thatX
�2Nj

bj;�q(�) = 0 8q 2 �2m�1; j 2Z
d and

M := sup
j2Zd

X
�2Nj

jbj;�j <1;

then X
j2Zd

������
X
�2Nj

bj;�f(�)

������
2

� const(d;m; r)M2 jjjf jjj2� 8f 2 Hm:

Our proof of this proposition employs local versions of jjj � jjjHn and k�kWn
2
.

De�nition. For n > d=2 and A � Rd open, we de�ne

jjjf jjjHn(A) :=

sX
j�j=n

kD�fk2L2(A);

kfkWn
2 (A)

:=

sX
j�j�n

kD�fk2L2(A):

It is a straightforward matter to show, via the Plancheral Theorem, that

const(d; n)jjjf jjjHn(Rd ) � jjjf jjjHn � const(d; n)jjjf jjjHn(Rd ) 8f 2 Hn and
(3.2)

const(d; n) kfkWn
2 (R

d ) � kfkWn
2
� const(d; n) kfkWn

2 (R
d ) 8f 2Wn

2 :

(3.3)

The proof of the following lemma can be found in [D2, p. 328].
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Lemma 3.4. Let y 2 Rd, r > 0, n > d=2, and let N � y + rB be such that N 2 In�1. If
f 2Wn

2 and q 2 �n�1 are such that fjN
= qjN

, then

kf � qkL2(y+rB) � const(r; n;N )jjjf jjjHn(y+rB):

Lemma 3.5. Let y 2 Rd, r > 0, n > d=2, and let N � y + rB be such that N 2 In�1. If
f 2Wn

2 , then

kfkWn
2 (y+rB)

� const(r; n;N )
�
kfk`2(N ) + jjjf jjjHn(y+rB)

�
:

Proof. Since all norms and seminorms under discussion are translation invariant, we may
assume without loss of generality that y = 0. It is known [A, p. 79] that k�kWn

2
(rB) is

equivalent to k�kL2(rB) + jjj � jjjHn(rB). Let q 2 �n�1 be such that qjN
= fjN

. Then

kfkWn
2
(rB) � kf � qkWn

2
(rB) + kqkWn

2
(rB)

� const(r; n; d)
�
kf � qkL2(rB) + jjjf � qjjjHn(rB) + kqkL2(rB)

�
� const(r; n;N )

�
jjjf jjjHn(rB) + kqk`2(N )

�
; by Lemma 3.4 and since q 2 �n�1,

= const(r; n;N )
�
jjjf jjjHn(rB) + kfk`2(N )

�
:

�

Lemma 3.6. Let y 2 Rd, r > 0, and n > d=2. If f 2 Hn, then there exists ef 2 Hn such
that

(i) efjy+rB = fjy+rB
and

(ii) jjj ef jjjHn � const(d; n; r)jjjf jjjHn(y+rB):

Proof. Since the seminorms under discussion are translation invariant, we may assume
without loss of generality that y = 0. Let N � rB be such that N 2 In�1. Let f 2
Hn. Let q 2 �n�1 be such that qjN

= fjN
and put g := f � q. By the Calder�on

Extension Theorem [A, p. 84], there exists eg 2 Wn
2 such that egjrB = gjrB

and kegkWn
2
�

const(d; n; r) kgkWn
2 (rB)

. Since eg 2 Wn
2 and q 2 �n�1, it follows that ef := eg + q 2 Hn.

Note that efjrB = fjrB
and

jjjef jjjHn � kegkWn
2
� const(d; n; r) kgkWn

2 (rB)

� const(N ; n; r)
�
kgk`2(N ) + jjjgjjjHn(rB)

�
; by Lemma 3.5,

= const(N ; n; r)jjjf jjjHn(rB)

which (after a suitable choice of N ) proves the lemma. �
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Lemma 3.7. Let n > d=2, r > 0, y 2 Rd, and let N be a �nite subset of y + rB. If
fb�g�2N is such that

(3.8)
X
�2N

b�q(�) = 0 8q 2 �n�1;

then ������
X
�2N

b�f(�)

������ � const(d; n; r)jjjf jjjHn(y+rB)

X
�2N

jb� j ; 8f 2 Hn:

Proof. Without loss of generality assume y = 0. Let f 2 Hn and let ef 2 Hn be as described

in Lemma 3.6. Put � :=
P

�2N b�e�. Since
bef is integrable on RdnB and by Lemma 3.6

(i), it follows that
P

�2N b�f(�) =
P

�2N b� ef (�) = (2�)�dh�;
bef i. Since D�e�(0) = (i�)�, it

follows from (3.8) that D�� (0) = 0 for all j�j < n. Hence, j� (w)j = O(jwjn) as jwj ! 0.
Therefore, by Lemma 2.10,

(3.9)

������
X
�2N

b�f(�)

������ = (2�)�d

�����
Z
Rdn0

� (w)
bef (w) dw����� � (2�)�d




j�j�n �



L2
jjjef jjjHn ;

by Cauchy-Schwarz inequality. In order to estimate the factor containing � , we note that
k�kL1 �

P
�2N jb�j =:M . It follows by Taylor's Theorem that for w 2 B,

j� (w)j � const(d; n) max
j�j=n

kD��kL1(B) jwj
n

� const(d; n)M max
j�j=n;�2N

kD�e�kL1(B) jwj
n � const(d; n; r)M jwjn :

Hence, 


j�j�n �



L2
�



j�j�n �




L2(RdnB)
+



j�j�n �




L2(B)

�M



j�j�n




L2(RdnB)
+ const(d; n; r)M � const(d; n; r)M:

which, in view of (3.9) and Lemma 3.6 (ii), completes the proof. �

Lemma 3.10. Let n > d=2 and r > 0. For each j 2Zd, let Nj be a �nite subset of j+rB.
If fbj;�gj2Zd ;�2Nj

is such thatX
�2Nj

bj;�q(�) = 0 8q 2 �n�1; j 2Z
d and

M := sup
j2Zd

X
�2Nj

jbj;�j <1;
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then X
j2Zd

������
X
�2Nj

bj;�f(�)

������
2

� const(d; n; r)M2 jjjf jjj2Hn 8f 2 Hn:

Proof. By Lemma 3.7,

X
j2Zd

������
X
�2Nj

bj;�f(�)

������
2

� const(d; n; r)
X
j2Zd

M2jjjf jjj2Hn(j+rB)

= const(d; n; r)M2
X
j�j=n

X
j2Zd

kD�fk2L2(j+rB) � const(d; n; r)M2
X
j�j=n

kD�fk2L2

= const(d; n; r)M2 jjjf jjj2Hn(Rd ) � const(d; n; r)M2jjjf jjj2Hn; by (3.2).

�

Proof of Proposition 3.1. Let f 2 Hm and de�ne f1 by bf1 := �
B
bf and put f2 := f � f1.

Note that f1 2 Hm \H2m, f2 2 Hm, jjjf jjj2� = jjjf1jjj
2
� + jjjf2jjj

2
�, jjjf1jjjH2m � 2m=2jjjf1jjj�,

and jjjf2jjjHm � 2m=2jjjf2jjj�. Thus

X
j2Zd

������
X
�2Nj

bj;�f(�)

������
2

=
X
j2Zd

������
X
�2Nj

bj;�(f1(�) + f2(�))

������
2

� 2
X
j2Zd

������
X
�2Nj

bj;�f1(�)

������
2

+ 2
X
j2Zd

������
X
�2Nj

bj;�f2(�)

������
2

� const(d;m; r)M2 jjjf1jjj
2
H2m + const(d;m; r)M2 jjjf2jjj

2
Hm; by Lemma 3.10,

� const(d;m; r)M2 jjjf1jjj
2
� + const(d;m; r)M2 jjjf2jjj

2
� � const(d;m; r)M2jjjf jjj2�:

�

4. The Main Result

The following is equivalent to the standard de�nition of the cone property. This form
has been chosen simply to facilitate the proof of the lemma which follows.

De�nition 4.1. A set 
 � Rd is said to have the cone property if there exists �
; r
 2
(0 : :1) such that for all x 2 
 there exists y 2 
 such that jx � yj = �
 and

x+ t(y � x + r
B) � 
 8t 2 [0 : : 1]:
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Lemma 4.2. Let n � 0. If 
 � R
d is bounded, open, and has the cone property, then

there exists �0; r0 2 (0 : :1) (depending only on n and 
) such that if � is a �nite subset of

 with � := �(�;
) � �0, then for all x 2 
=� there exists a �nite N � (�=�) \ (x+ r0B)
and fb�g�2N such that

q(x) +
X
�2N

b�q(�) = 0 8q 2 �n and

X
�2N

jb�j � const(n;
):

Proof. There exists r1 2 (0 : :1) (depending only on d and n) such that if z 2 Rd ande� � Rd are such that �(e�; z + r1B) � 1, then there exists N � e� \ (z + r1B) such that
N 2 In and jN jIn � const(d; n). Let �
; r
 be as in De�nition 4.1, and put �0 := r
=r1,
r0 := r1(1 + �
=r
). Assume � � �0 and x 2 
=�. By De�nition 4.1, there exists y 2 

such that j�x� yj = �
 and �x + t(y � �x + r
B) � 
 for all t 2 [0 : : 1]. By substituting
t = �r1=r
 and putting z := x + (r1=r
)(y � �x) it follows that jx � zj = r1�
=r
 and
z + r1B � (
=�) \ (x + r0B). Since �(�=�; z + r1B) � �(�=�; 
=�) = 1, there exists N �
(�=�) \ (z + r1B) such that N 2 In and jN jIn � const(d; n). Let yN and fa�;�gj�j�n;�2N
be as in De�nition 2.1. If q 2 �n, then

q(x) =
X
j�j�n

1

�!
D�q(yN )(x � yN )� =

X
j�j�n

1

�!

X
�2N

a�;�q(�)(x � yN )�

=
X
�2N

24 X
j�j�n

1

�!
a�;�(x� yN )�

35 q(�):
Hence, if b� := �

P
j�j�n

1
�!a�;�(x � yN )�, then q(x) +

P
�2N b�q(�) = 0 8q 2 �n and

X
�2N

jb�j �
X
�2N

X
j�j�n

1

�!
jN jIn jx � yN j

j�j � const(d; n; r0) = const(n;
):

�

The following result shows that if s is any surface spline which happens to interpolate
fj�

, then kf � skLp(
) can be estimated in terms of the smoothness of f and jjjsjjj�.

Theorem 4.3. Let 
 2 [0 : : m] and f 2 F
 . Let 
 be an open, bounded subset of Rd

having the cone property and let � be a �nite subset of 
 for which there exists N � �
such that N 2 I2m�1 and jN jI2m�1 � const(d;m). Let �3 be any �nite subset of Rd. If

s 2 S(�; �3) satis�es sj�
= fj�

, then

kf � skLp(
) � const(
;m; 
)(�
p+
 kfkF
 + �
p+m�d=2jjjsjjj�)



14 MICHAEL J. JOHNSON

where � := �(�;
) and 
p := minfm;m+ d=p� d=2g, 1 � p �1.

Proof. First note that

(4.4)
jjjf(��)� s(��)jjj� � jjjf(��)jjj� + jjjs(��)jjj�

� const(
;m; 
)�m+
�d=2 kfkF
 + const(d;m)�2m�djjjsjjj�;

by Lemma 2.6 (iii) and Proposition 2.2. Let �0 and r0 be as in Lemma 4.2 with n = 2m�1.

Case 1. � 2 (0 : : �0].
Since, for 1 � p � 2, 
p is constantly m and kf � skLp(
) � const(
) kf � skL2(
),

we may assume without loss of generality that 2 � p � 1. Put C := [�1=2 : : 1=2)d and
A := fj 2 Zd : (j + C) \ (
=�) 6= ;g. For each j 2 A, let xj 2 j + C be such that
kf(��) � s(��)kL1((j+C)\(
=�)) � 2 jf(�xj )� s(�xj )j. By Lemma 4.2, for each j 2 A, there

exists Nj � (�=�) \ (xj + r0B) and fbj;�g�2Nj
such that

q(xj ) +
X
�2Nj

bj;�q(�) = 0 8q 2 �2m�1 and

X
�2Nj

jbj;�j � const(m;
):

Put r := r0 +
p
d=2 and note that fxjg [ Nj � j + rB for all j 2 A. Now,

kf � skLp(
) = �d=p kf(��) � s(��)kLp(
=�) � �d=p



j 7! kf(��) � s(��)kL1((j+C)\(
=�))





`p(A)

� 2�d=p kj 7! jf(�xj )� s(�xj )jk`p(A) � 2�d=p kj 7! jf(�xj )� s(�xj )jk`2(A)

= 2�d=p
sX

j2A

jf(�xj ) � s(�xj )j
2
:

Since f(��) � s(��) = 0 for all � 2 �=�, we have

jf(�xj ) � s(�xj )j =

������f(�xj ) � s(�xj ) +
X
�2Nj

(f(��) � s(��))

������ ; 8j 2 A:

It thus follows by Proposition 3.1 thatX
j2A

jf(�xj ) � s(�xj )j
2 � const(m;
)jjjf(��) � s(��)jjj2�:

Therefore,

kf � skLp(
) � const(m;
)�d=pjjjf(��)� s(��)jjj�

� const(
;m; 
)(�
p+
 kfkF
 + �
p+m�d=2jjjsjjj�)
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by (4.4).

Case 2. � > �0.
It su�ces to show that kf � skL1(
) � const(
;m; 
)(kfkF
 + jjjsjjj�). Let x 2 
. As

was shown in the proof of Lemma 4.2, if yN , fa�;�gj�j�n;�2N are as in De�nition 2.1 and

b� := �
P

j�j�2m�1
1
�!a�;�(x � yN )�, � 2 N , then q(x) +

P
�2N q(�) = 0 8q 2 �2m�1. Let

r be the smallest positive real number for which 
 � yN + rB. Then

jf(x) � s(x)j =

������f(x) � s(x) +
X
�2N

(f(�) � s(�))

������
� const(d;m; r)jjjf � sjjj�; by Proposition 3.1,

� const(
;m)(1 + �m)��2m+d=2jjjf(��)� s(��)jjj�; by Lemma 2.6 (ii);

� const(
;m; 
)(kfkF
 + jjjsjjj�); by (4.4);

since �0 � � � const(
). �

Our �rst application of Theorem 4.3 is to prove a result mentioned in the introduction
regarding the size of � in the case when 
 = B and � = hZd \ (1� h)B.

Proposition 4.5. There exists f 2 C1(Rd) such that if 
 = B, � = hZd\ (1� h)B and
T�f = q +

P
�2� ���(� � �), then

(i) kf � T�fkLp(B) 6= o(hm+1=p); 1 � p �1; and

(ii) k�k`2(�) 6= o(h(d+1)=2�m) as h! 0:

Proof. It was shown in [J1] that there exists a compactly supported f 2 C1(Rd) such
that (i) holds. In order to prove that (ii) holds for the same function f , suppose to the
contrary that k�k`2(�) = o(h(d+1)=2�m). Since kfkW2m

2
< 1, it follows by Theorem 4.3

(with s = T�f , 
 = m, �3 = �, p = 2) that for su�ciently small h

kf � T�fkL2(B) � const(d;m)(h2m kfkW2m
2

+ h2m�d=2jjjT�f jjjh)

� const(d;m)(h2m kfkW2m
2

+ h2m�d=2 k�k`2(�)); by Proposition 2.3,

= o(hm+1=2)

which contradicts (i). �

Our main result is now obtained by applying Theorem 4.3 in the case when s is chosen
according to Interpolation Method 1.3. We employ results from [J3] to estimate jjjsjjj�.

Theorem 4.6. Let 
 2 [0 : :m] and f 2 F
 . Let s = q +
P

�2�2
���(� � �) be chosen

according to Interpolation Method 1.3 and assume that there exists N � � such that
N 2 I2m�1 and jN jI2m�1 � const(d;m). Then

(i) kf � skLp(
) � const(
;
2;m; 
)�

p+
 kfkF
 ;

(ii) jjjsjjj� � const(
;
2;m; 
)�

�m+d=2 kfkF
 ; and

(iii) k�k`2(�2) � const(
;
2;m; 
)(�=�)
m�d=2�
�m+d=2 kfkF
 ;
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where 
p := minfm;m+ d=p� d=2g, � := �(�;
), and � := sep(�2).

Proof. We �rst prove (ii). Since �(�2; 
2) � const(d;m)�(�;
) and with Proposition 2.9
in view, we may assume without loss of generality that �(�2; 
2) � �. Let � 2 C1

c (Rd) be

such that � = 1 on 
 and K := supp� � 
2. Put ef := �f and note that supp ef � K and


 ef



F


� const(d;m; �) kfkF
 . The following is known [D1] for 
 = 0 and is proved in [J3;

th. 5.1] for 
 2 (0 : :m].

(4.7)
jjjef � T�2

ef jjjHm � const(K;
2;m; 
)�





 ef




F


� const(
2;m; 
; �)�

 kfkF
 :

Since T�2 ef 2 S(�; �2) and satis�es (T�2 ef )j� = fj�
, it follows by Proposition 2.2 that

jjjs(��)jjj� � const(d;m)jjj(T�2 ef )(��)jjj�
� const(d;m)jjj ef(��)jjj� + const(d;m)jjjef(��) � (T�2 ef)(��)jjj�
� const(d;m; 
)�m+
�d=2(1 + �m)




 ef



F


+ const(d;m)�m�d=2jjjef � T�2
ef jjjHm; by Lemma 2.6,

� const(
2;m; 
; �)�
m+
�d=2 kfkF
 ; by (4.7) and since � � const(
2);

which in view of Propostion 2.2 (and after a suitable choice of �) proves (ii) . Note that
(i) follows from (ii) via Theorem 4.3. In order to prove (iii), note that by Proposition 2.3
and Proposition 2.6,

k�k`2(�2) � const(d;m)jjjsjjj� = const(d;m)��2m+djjjs(��)jjj�

� const(d;m)��2m+d(�=�)�2m+d=2(1 + (�=�)m)jjjs(��)jjj�; by Lemma 2.6 (ii),

= const(d;m)(�=�)�d=2(1 + (�=�)m)jjjsjjj� � const(
;
2;m; 
)(�=�)
m�d=2�
�m+d=2 kfkF
 ;

by (ii). �

5. Some bounds on k�k`2(�) in case 
 = Rd
and � = hZd

Buhmann's [B1] extension of the de�nition of T�f to the case � = hZd is well de�ned
under very minimal restrictions on the growth of f at in�nity. However, ThZd f cannot
necessarily be written as a series of the form

P
j2Zd �j�(� �hj) which converges uniformly

on compact sets unless we make some decay assumptions on f . The following can easily
be derived from [B1]:

Theorem 5.1. Let h > 0 and k > maxf2m;m+ dg. If f 2 C(Rd) satis�es



j�jk f




L1
<

1, then there exists a unique � 2 `2 such that

(i)



j�jk �




`1
<1;

(ii)
X
j2Zd

�jq(hj) = 0 8q 2 �m�1; and

(iii) s :=
X
j2Zd

�j�(� � hj) satis�es sjhZd
= fjhZd

:



SURFACE SPLINE APPROXIMATION 17

The coe�cients f�jgj2Zd above are given by �j := h�2m+d
X
`2Zd

f(h`)c`�j where fcjgj2Zd

is an exponentially decaying sequence de�ned by

X
j2Zd

cje�j = ! :=
1

c�
P

j2Zd j�+ 2�jj�2m
;

where c� is a nonzero constant depending only on d, m. Assuming f 2Wm
2 , it is a direct

application of Poisson's summation formula to show that
X
j2Zd

�je�j = h�2m!
X
j2Zd

bf (�=h+
2�j=h). Consequently,

(5.2) k�k`2 = (2�)�d=2h�2m







!
X
j2Zd

bf (�=h+ 2�j=h)








L2(2�C)

:

Much can be derived from (5.2). For example, it is possible to show that if 0 < 
 < m,
then k�k`2 � const(d;m; 
)h
�m+d=2 kfkBm+


2;1
and there exists an exponentially decaying

f 2 Bm+

2;1 such that k�k`2 6= o(h
�m+d=2) as h! 0. We refrain from proving this result,

but instead prove the following:

Proposition 5.3. If f 2W 2m
2 n0 satis�es




j�jk f



L1

<1 for some k > maxf2m;m+ dg

and � is as in Theorem 5.1, then

(i) k�k`2 � const(d;m)hd=2jjjf jjjH2m; 8h > 0; and

(ii) k�k`2 6= o(hd=2) as h! 0:

Proof. Noting that ! satis�es const(d;m) jxj2m � j!(x)j � const(d;m) jxj2m, x 2 2�C, we
obtain from (5.2) that

k�k`2 � const(d;m)h�2m

0@


j�j2m bf (�=h)



L2(2�C)

+
X

j2Zdn0




 bf (�=h+ 2�j=h)




L2(2�C)

1A
= const(d;m)hd=2

0@


j�j2m bf



L2(2�C=h)

+ h�2m
X

j2Zdn0




 bf



L2(2�(j+C)=h)

1A
� const(d;m)hd=2

0@jjjf jjjH2m + h�2m
X

j2Zdn0




j�j�2m



L1(2�(j+C)=h)




j�j2m bf



L2(2�(j+C)=h)

1A
� const(d;m)hd=2

�
jjjf jjjH2m +




j�j2m bf



L2(Rdn2�h�1C)

�
; by Cauchy-Schwarz ineq.,

� const(d;m)hd=2jjjf jjjH2m
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which proves (i). The above argument can be restructured to yield

k�k`2 � const(d;m)hd=2



j�j2m bf




L2(2�C=h)
� const(d;m)hd=2




j�j2m bf



L2(Rdn2�h�1C)

6= o(hd=2)

since



j�j2m bf




L2(Rdn2�h�1C)
= o(1). �
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