In ODEs, it is important to understand the solutions to the first-order ODE
\[Dx(t) = Ax(t), \quad x(0) = c, \]
in which \(A \) is a linear map on some finite-dimensional vector space, \(V \), and, correspondingly, \(x : \mathbb{R} \to V \) is a \(V \)-valued function to be determined.

The formal solution is
\[x(t) = \exp(tA)c, \]
with
\[\exp(B) := \sum_{j=0}^{\infty} B^j / j! \]
well-defined for every linear map \(B \) on \(V \), but such a formal expression doesn’t give much insight.

Let \(\oplus_j V_j \) be a finest \(A \)-invariant direct sum decomposition for \(V \), and let \(A_j \) be the restriction of \(A \) to \(V_j \). Assuming the underlying field to be algebraically closed, there is some \(\lambda_j \) in the spectrum of \(A_j \), hence \(B := A - \lambda_j \) has a nontrivial kernel, while the sequence \(\ker B^r : r = 0, 1, \ldots \) is increasing, hence must become stationary. If \(q \) is the smallest natural number for which \(\ker B^q = \ker B^{q+1} \), then ran \(B^q \cap \ker B^q \) is trivial, hence \(V_j \) is the direct sum of \(\ker B^q \) and \(\ker B^q \) and, the direct sum decomposition being finest, it follows that ran \(B^q \) must be trivial, i.e., \(B \) is nilpotent. Thus, on \(V_j \), \(A = \lambda_j + B \), the sum of a constant (hence diagonalizable trivially and also commuting with any linear map on \(V_j \)) and a nilpotent. Since the direct sum decomposition is \(A \)-invariant, it follows that \(A = D + N \), with \(D \) diagonalizable, and \(N \) nilpotent, and \(DN = ND \).

It follows that, on \(V_j \) and with \(N_j := A_j - \lambda_j \) nilpotent of order \(q_j \),
\[\exp(tA) = \exp(t\lambda_j + tN_j) = \exp(t\lambda_j) \exp(tN_j) = \exp(t\lambda_j) \sum_{i < q_j} (tN_j)^i / i!. \]

In particular, if \(q_j = 1 \), then \(\exp(tA) \) reduces on \(V_j \) to multiplication by the number \(\exp(t\lambda_j) \).

To this, Mike Crandall has the following to say.

Let \(p \) be any monic polynomial that annihilates \(A \) and factor it, i.e.,
\[p =: \prod_{j=1}^{m} (\cdot - \lambda_j)^{m_j} =: p_1 \cdots p_m. \]

(If \(p \) is of minimal degree, then the spectrum of \(A \) is necessarily the set \(\{ \lambda_j : j = 1:m \} \), but that matters only when we are looking for \(m \) and the \(m_j \) here to be as small as possible). Define
\[V_j := \ker p_j(A), \quad j = 1:m, \]
and
\[\ell_i := \prod_{j \neq i} p_j, \quad i = 1:m. \]
Since the ℓ_i have no zeros in common, any nontrivial polynomial of minimal degree in

$$I(\ell_i : i = 1:m) := \sum_i \ell_i \Pi$$

must be of degree 0 (since, otherwise, by the Euclidean algorithm, there would be a polynomial of positive degree dividing each of the ℓ_i, hence its zeros (sure to exist since we are over \mathbb{F}) would be common to all the ℓ_i). In particular,

$$1 = \sum_i \ell_i q_i$$

for some $q_i \in \Pi$.

It follows that

$$1 = P_1 + \cdots + P_m,$$

with

$$P_i := \ell_i(A)q_i(A), \quad i = 1:m,$$

linear maps that commute with $r(A)$ for any $r \in \Pi$. Further, P_i vanishes on each $V_j = \ker p_j(A)$ for $j \neq i$ (since ℓ_i contains the factor p_j for each such j), hence $P_i = 1$ on V_i. On the other hand, $\text{ran} P_i \subset V_i$ since

$$p_i(A)P_i = p(A)q_i(A) = 0.$$

Consequently, $\text{ran} P_i = V_i$ and $P_i = 1$ on its range, hence P_i is a linear projector, onto V_i, all i, and so,

$$P_i P_j = \delta_{ij}.$$

It follows that

$$V = \oplus_i V_i.$$

Further,

$$N := A - \sum_i \lambda_i P_i = \sum_i (A - \lambda_i)P_i$$

is nilpotent since $P_i P_j = 0$ for $i \neq j$, hence

$$N^q = \sum_i (A - \lambda_i)^q P_i = 0$$

for $q \geq \max_i m_i$.

2