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Dependency relations among the shifts of a multivariate re�nable distribution

T. A. Hogan, R.-Q. Jia

1. Introduction

A function � is said to be re�nable if it satis�es the following re�nement equation

� =
X
�2ZZs

a(�)�(2 � � �); (1:1)

where a is a �nitely supported sequence on ZZ
s, called the re�nement mask. Re�nable

functions are an intrinsic part of subdivision schemes and wavelet constructions. In general,
any relevant properties of the function � must be determined from the mask a. In this
paper, we provide a characterization of linear independence of the shifts of a multivariate
re�nable function in terms its re�nement mask.

Let `(ZZs) denote the linear space of all sequences on ZZs. For a compactly supported
distribution �, de�ne

N(�) :=
n
c 2 `(ZZs) :

X
�2ZZs

c(�)�(� � �) = 0
o
:

Then � is said to have linearly independent shifts if N(�) is trivial, i.e., N(�) = f0g.
When � is a compactly supported continuous function, Dahmen and Micchelli [2] showed
that N(�) is non-trivial if and only if it contains an exponential, i.e., a sequence of the
form (z�)�2ZZs for some z 2 (C n f0g)s.

Linear independence is a necessary condition for orthogonality, or even biorthogonal-
ity, of re�nable functions. It is also a su�cient condition for stability. In fact, our results
provide a characterization of stability for the shifts of �, since we characterize all expo-
nentials in N(�) and � has stable shifts if and only if N(�) contains an exponential which
lies on the s-dimensional unit torus (cf. [8]). A characterization of stability for re�nable
functions in L2(IR

s) has also been provided by Lawton, Lee, and Shen in [10] but, as
our examples in Section 3 demonstrate, the results of this paper can be signi�cantly less
complicated to apply.

In the univariate case, a useful characterization of linear independence for the shifts of
� was given in terms of a by Jia and Wang in [9]. However, their techniques are inherently
univariate. Attempts to generalize their results to functions of several variables have been
made by Hogan [6] and Zhou [12]. In [6], the conditions of [9] were shown to be necessary
in several variables; and they were shown to be also su�cient for functions of a certain
type. These results were not satisfactory for two reasons: the proofs do not apply to
general multivariate functions; and the conditions, though easy to verify in the univariate
case, are more elusive in several variables. In [12], a fairly easily veri�able condition on
the mask a was provided which, together with stability, characterizes linear independence.
However, no satisfactory means were provided for determining the stability.
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We denote by Cc(IR
s) the normed linear space of all compactly supported continuous

functions on IRs equipped with the norm

kfk := max
x2IRs

jf(x)j; f 2 Cc(IR
s):

For a function f 2 Cc(IR
s),

f̂ (�) :=

Z
IRs

f(x)e�ix��dx; � 2 IRs;

where x � � denotes the usual inner product of the vectors x and � in IRs. This de�nition
naturally extends to distributions.

If the re�nement mask a satis�es

X
�2ZZs

a(�) = 2s; (1:2)

then it is known (cf. [1]) that Eq. (1.1) has a unique compactly supported distribution

solution � subject to the condition �̂(0) = 1. This distribution is said to be the normalized
solution to the re�nement equation with mask a.

Given a mask a, there is, in general, no explicit expression for the solution � to Eq.
(1.1). Instead, the solution is approximated by iterating the cascade operator

Ta : Cc(IR
s)! Cc(IR

s) : f 7! Taf :=
X
�2ZZs

a(�)f(2 � � �)

associated with a. This process is called a subdivision scheme.
Let h be the univariate hat function

h(x) := maxf1� jxj; 0g; x 2 IR:

De�ne f0 2 Cc(IR
s) by f0(x1; : : : ; xs) :=

Qs
j=1 h(xj ) and fn := Tafn�1 for n = 1; 2; 3; : : :.

Then we say that the subdivision scheme associated with the mask a converges if there
is a function f 2 Cc(IR

s) such that

lim
n!1

kfn � fk = 0:

If the subdivision scheme converges, then the limiting function f is the normalized solution
to the re�nement equation.

Throughout this paper, we assume that the subdivision scheme associated with the
mask a converges. Consequently, � is a continuous function with support in the convex
hull of the support of a.

Suppose a is supported on the closed cell

Ys

j=1
[Mj ;Nj ];

2



where Mj and Nj are integers and Mj < Nj , j = 1; : : : ; s. Let

K := ZZ
s \
�Ys

j=1
[Mj ;Nj � 1]

�
:

For � 2 ZZ
s, we de�ne

��(x) :=

�
�(x+ �) for x 2 [0; 1)s,
0 for x 2 IRs n [0; 1)s.

Clearly, �� = 0 for � 2 ZZ
s nK and � =

P
k2K �k(� � k). Let � := (�k)k2K . Then � is a

vector of functions supported on the unit cube [0; 1]s and continuous on [0; 1)s.

By E we denote the set f0; 1gs of all vertices of the unit cube [0; 1]s. For " 2 E, let
A" be the linear operator on CK given by

A"v(j) :=
X
k2K

a(" + 2j � k)v(k); j 2 K;

where v 2 CK . Now, for all " 2 E, if x 2 "=2 + [0; 1=2)s then, by Eq. (1.1),

�j(x) = �(x + j) =
X
�2ZZs

a(�)�(2x + 2j � �) =
X
k2K

a(" + 2j � k)�k(2x � "); j 2 K:

This shows that � satis�es the following vector re�nement equation:

� =
X
"2E

A"�(2 � � "): (1:3)

We point out that, although the arguments and results of this paper require that the
subdivision scheme converge and, hence, that � be continuous, these results can easily be
used to determine whether any re�nable distribution has linearly independent shifts, as
long as the mask a satis�es Eq. (1.2). To see how, de�ne the operator

� : `(ZZs)! `(ZZs) : c 7! 2�s
X
"2E

c(� � "):

Then the method used to prove Theorem 3.3 of [7] can be used to show that for any mask
a satisfying Eq. (1.2), if n is a positive integer such that 2n > �(fA" : " 2 Eg) then
the subdivision scheme associated with �na converges. (See Section 3 for a de�nition of
�(fA" : " 2 Eg).) Let  be the normalized solution to the re�nement equation with mask
�na. Then  is the n-fold convolution of � with the characteristic function of the unit cube
[0; 1]s, and it is well-known that N( ) = N(�). In particular, � has linearly independent
shifts if and only if  does.
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2. Results and proofs

Since the subdivision scheme is assumed to converge, 1 is a simple eigenvalue of
A0 and the other eigenvalues of A0 are less than 1 in modulus. By Eq. (1.3), we have
�(0) = A0�(0). So �(0) = (�k(0))k2K is the unique eigenvector of A0 corresponding to
the eigenvalue 1 and subject to the condition

P
k2K �k(0) = 1. By using the re�nement

equation again, we obtain
�(11=2) = A11�(0);

where 11 := (1; : : : ; 1) 2 E.
Let A be a �nite collection of linear operators on a vector space V . A subspace W

of V is said to be A-invariant if it is invariant under every operator A in A. Let u be
a vector in V . The intersection of all A-invariant subspaces of V containing u is itself
A-invariant. We call this the minimal common invariant subspace of the operators
A in A generated by u.

Let V be the minimal common invariant subspace of A" (" 2 E) generated by the
vector u := �(11=2) = (�(11=2 + �))�2K 2 CK . And for any two vectors u = (u(�))�2K
and v = (v(�))�2K in CK , de�ne

hu; vi :=
X

�2K
u(�)v(�):

Lemma 1. For a vector � 2 CK , the following two conditions are equivalent:

(a) h�;�(x)i = 0 for all x 2 [0; 1)s.
(b) h�; vi = 0 for all v 2 V .

Remark: A variation of Lemma 1 has been provided already by Theorem 2.7 of [5]. In
fact, it was that theorem which motivated our current work.
Proof. Suppose � is a vector in CK such that h�;�(x)i = 0 for all x 2 [0; 1)s. Since
u = �(11=2), we have h�; ui = 0. The linear space V is spanned by the vectors A"1 � � �A"ju,
where j = 0; 1; : : : and "1; : : : ; "j 2 E. With the help of the vector re�nement equation,
we have A"1 � � �A"ju = �(x) for some x 2 (0; 1)s. Hence, h�;A"1 � � �A"jui = 0. In other
words, h�; vi = 0 for all v 2 V . This shows that (a) implies (b).

To prove that (b) implies (a), let G be the set of those points (m1=2n; : : : ;ms=2n) for
which n = 1; 2; : : : andm1; : : : ;ms are odd integers between 0 and 2n. Evidently, G is dense
in the closed cube [0; 1]s. We claim that �(x) 2 V for each x = (m1=2n; : : : ;ms=2n) 2 G.
This will be done by induction on n.

When n = 1 and x = (m1=2; : : : ;ms=2), we must have m1 = � � � = ms = 1. Hence
x = 11=2 and �(x) = u 2 V . Suppose n > 1 and our claim has been veri�ed for n � 1.
Let x = (m1=2n; : : : ;ms=2n), where m1; : : : ;ms are odd integers between 0 and 2n. Set
� = (�1; : : : ; �s), where

�j :=

�
0 if mj < 2n�1,
1 if mj > 2n�1,

for j = 1; : : : ; s. By using the vector re�nement equation, we have

�(x) =
X
"2E

A"�(2x � ") = A��(y);
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where y = (m1=2n�1 � �1; : : : ;ms=2n�1 � �s). By the induction hypothesis, we have
�(y) 2 V . Since V is invariant under A�, it follows that �(x) = A��(y) 2 V . This
justi�es our claim that �(x) 2 V for each x = (m1=2n; : : : ;ms=2n) 2 G.

Let � be a vector in CK such that h�; vi = 0 for all v 2 V . By what has been proved,
h�;�(x)i = 0 for all x 2 G. But G is dense in [0; 1]s and � is continuous on [0; 1)s.
Therefore, we have h�;�(x)i = 0 for all x 2 [0; 1)s. This shows that (b) implies (a).

If dim(V ) = #K, then h�; vi = 0 for all v 2 V implies � = 0. So, by Lemma 1, a
su�cient condition for the shifts of � to be linearly independent is that dim(V ) = #K.
This condition is not however necessary in general. A simple necessary and su�cient
condition is provided by the following theorem.

Theorem 2. The shifts of � are linearly independent if and only if the Laurent polyno-

mials

pv(z) :=
X
�2K

v(�)z� ; v 2 V;

have no common zeros in (C n f0g)s. Moreover, c 2 N(�) if and only if c�v = 0 for all

v 2 V , where c�v 2 `(ZZs) is de�ned by

c�v(�) :=
X
k2K

c(�� k)v(k); � 2 ZZ
s:

Proof. According to [2], the shifts of � are linearly dependent if and only if there exists
z 2 (C n f0g)s such that

P
j2ZZs z

�j�(� � j) = 0: For z 2 (C n f0g)s, de�ne �z 2 CK by

�z(k) := zk (k 2 K) and note that for � 2 ZZ
s and x 2 �+ [0; 1)s,

X
j2ZZs

z�j�(x� j) =
X
j2ZZs

z�j
X
k2K

�k(x � j � k)

=
X
j2ZZs

z�j
X
k2K

zk�k(x � j)

= z��h�z;�(x � �)i:

So, by Lemma 1, � has dependent shifts if and only if there exists z 2 (C n f0g)s such that
pv(z) = h�z ; vi = 0 for all v 2 V .

Now, let c 2 `(ZZs). Then
X
�2ZZs

c(�)�(� � �) =
X
�2ZZs

c(�)
X
k2K

�k(� � �� k)

=
X
�2ZZs

X
k2K

c(�� k)�k(� � �):

So c 2 N(�) if and only if
P

k2K c(� � k)�k = 0 for all � 2 ZZ
s which, by Lemma 1, is

equivalent to c�v = 0 for all v 2 V .
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3. Examples

We provide two examples of bivariate functions with linearly dependent shifts. In
both cases, the symbol of the mask is not factorizable|so the characterizations provided
in [6] are not applicable. In the �rst example, the function actually has stable shifts, so the
dependency relations would not be identi�ed by the techniques of [10]. It is true, however,
that necessary conditions for independence were provided in [6] which would allow one to
determine that these functions have dependent shifts, if one could identify the zero set of
the symbol of the mask. In our second example, the symbol of the mask has no symmetric
zeros. This, along with the fact that the symbol is not factorizable, makes it especially
di�cult to identify its pertinent zeros.

To apply our results to these examples, we will need to know that the associated
subdivision schemes converge. To this end, we recall some de�nitions and results from [11]
and [3].

Let W be a �nite dimensional normed linear space with norm k � k. As usual, the
norm of a linear operator A on W is de�ned by

kAk := max
kvk=1

fkAvkg:

Let A be a �nite collection of linear operators on W . For a positive integer n, we denote
by An the n-fold Cartesian product of A with itself:

An := f(A1; : : : ; An) : A1; : : : ; An 2 Ag :
By convention, A0 := fIg, where I is the identity operator on W . De�ne

kAnk := maxfkA1 � � �Ank : (A1; : : : ; An) 2 Ang:
The (uniform) joint spectral radius of A was de�ned in [11] to be

�(A) := lim
n!1

kAnk1=n:

It is well-known that �(A) is independent of which norm is used in W and that

�(A) = inf
n�1

kAnk1=n: (3:1)

In the case s = 1, the joint spectral radius was used in [3] to derive su�cient conditions
to ensure continuity of the normalized solution to Eq. (1.1).

Now, de�ne

W :=
n
v 2 CK :

X
�2K

v(�) = 0
o
:

If
P

�2ZZs a(" � 2�) = 1 for all " 2 E, then W is invariant under every A", " 2 E. So
B" := A"jW is a linear operator on W for each " 2 E. According to [4], the subdivision
scheme associated with a converges if and only ifX

�2ZZs
a(�� 2�) = 1 8� 2 ZZ

s

and

�(fB" : " 2 Eg) < 1:
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The masks of our examples clearly satisfy the �rst of these conditions, and we don't mention
it again. By Eq. (3.1), then, the subdivision scheme converges if and only if there exists a
nonnegative integer n such that

kB"1 � � �B"nk < 1

for all ("1; : : : ; "n) 2 En. It is this characterization that we will make use of.

Example 1. Let � be the normalized solution of the re�nement equation

� =
X
�2ZZ2

a(�)�(2 � � �);

where the symbol of the mask a is given by

X
�2ZZ2

a(�)z� :=
1

12

n
z31 + z32 + 2(1 + z1 + z2) + 3(z21 + z22)

+ 4(z1z2 + z31z2 + z21z
2
2 + z1z

3
2 + z31z

2
2 + z21z

3
2) + 5(z21z2 + z1z

2
2)
o
:

The nonzero terms of the sequence 12a are shown in Figure(a) along with an outline of
the support of �. The lower left corner of this support is at the origin (0; 0). In this case,
K = f(0; 0); (1; 0); (2; 0); (0; 1); (1; 1); (2; 1); (0; 2); (1; 2); (2; 2)g.

1

3

2

2

4

5

4

2

4

4

5

3

4

4

1

(a)

1

2

2

1

2

2

2

2

2

2

1

2

2

1

(b)

Figures. The non-zero terms of the mask a along with an outline of the support of the
corresponding re�nable function �. (a) 12a from Example 1; (b) 6a from Example 2.
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We �rst show that the subdivision scheme converges. The vectors

dj(�) :=

8<
:
1 for � = (0; 0)
�1 for � = j
0 for � 2 ZZ

2 n fj; (0; 0)g
(j 2 K 0 := K n f(0; 0)g)

form a basis for W . For each " 2 E, let B" be the matrix representation of A"jW with
respect to this basis. Using Maple, we computed kB"1B"2B"3k for all ("1; "2; "3) 2 E3 and
found that

kB(0;1)B(1;1)B(0;0)k = 407

432

was the maximum such quantity. Since this is less than 1, the subdivision scheme associated
with a converges. The operator norm we used was

kBk := max
i2K0

X
j2K0

jB(i; j)j;

corresponding to the norm kPj2K0 c(j)djk := maxj2K0 jc(j)j in W .

Now, let w 2 CK be the eigenvector of A(0;0) corresponding to the eigenvalue 1 such
that the sum of its components is equal to 1. Using Maple, we obtain

w =
1

15
[0; 0; 0; 0; 3; 4; 0; 4; 4]T :

Moreover,

u := A(1;1)w =
1

180
[6; 17; 4; 17; 68; 32; 4; 32; 0]T :

De�ne

V0 := fug; Vn := Vn�1 [
[
"2E

A"Vn�1 for n = 1; 2; 3; : : : :

Then the minimal common invariant subspace of A(0;0), A(1;0), A(0;1), and A(1;1) generated
by u is V =

S
n2ZZ+

spanVn = spanVN , with

N := min fn 2 ZZ+ : dim(spanVn) = dim(spanVn+1)g :

(Note that N is necessarily less than or equal to #K). Using Maple again, we �nd that
dim(spanV2) = dim(spanV3) = 8, and that a basis for V (= spanV2) is provided by the
vectors vj 2 CK ; j 2 J := K n f(2; 2)g de�ned by

vj(k) :=

8<
:
0 for k 2 J n fjg
2 for k = j
(�2)5�j1�j2 for k = (2; 2).

Thus, the shifts of � are linearly independent if and only if the polynomials

pj1;j2 (z1; z2) := 2zj11 z
j2
2 + (�2)5�j1�j2z21z22; (j1; j2) 2 J;
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have no common zeros in (C n f0g)2.
For all nonzero z1 and z2, if p2;1(z1; z2) = 0 then z2 = �1=2 and if p1;2(z1; z2) = 0

then z1 = �1=2. On the other hand, pj1;j2(�1=2;�1=2) = 0 for all (j1; j2) 2 J . So these
polynomials have exactly one common zero in (Cnf0g)2, namely (�1=2;�1=2). Therefore,
we conclude that the shifts of � are linearly dependent. We have also determined all
possible linear dependence relations of the shifts of �. That is, N(�) is spanned by the
sequence c given by c(�1; �2) := (�1=2)�1+�2, (�1; �2) 2 ZZ

2.
Note that since (�1=2;�1=2) is not on the 2-dimensional torus,

TT2 := fz 2 C2 : jz1j = jz2j = 1g;

and � 2 L1(IR2), Theorem 1 of [8] implies that � has `p-stable shifts for any 0 < p �1.

Example 2. Let � be the normalized solution of the re�nement equation

� =
X
�2ZZ2

a(�)�(2 � � �);

where the symbol of the mask a is

1

6

�
z21 + z

3
1z2+ z

2
2 + z1z

3
2

�
+
1

3

�
1+ z1+ z2+ z1z2+ z

2
1z2+ z1z

2
2 + z

2
1z

2
2 + z

3
1z

2
2 + z

2
1z

3
2 + z

3
1z

3
2

�
:

The nonzero terms of the sequence 6a are shown in Figure(b) along with an outline of the
support of the function �. K is the same as in Example 1.

With W and B" de�ned as in Example 1, but with

kBk := max
j2K0

X
i2K0

jB(i; j)j

(which corresponds to the norm kPj2K0 c(j)djk :=
P

j2K0 jc(j)j in W ), we �nd that

max
("1;"2)2E2

kB"1B"2k = kB(0;0)B(0;1)k = 2=3:

Since this is less than 1, the subdivision scheme converges.
Now, using the same notation as in Example 1,

w = [0; 0; 0; 0; 1=3; 1=6; 0; 1=6; 1=3]T ; u = [1=9; 1=9; 0; 1=9; 1=3; 1=9; 0; 1=9; 1=9]T ;

and dim(spanV2) = dim(spanV3) = 7. The rows of the matrix

2
66666664

1 0 0 0 0 �1 0 0 0
1 0 0 0 0 0 0 �1 0
1 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0 1
0 �1 0 0 0 0 0 0 1
0 0 0 �1 0 0 0 0 1

3
77777775
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form a basis for spanV2. Thus, the shifts of � are linearly independent if and only if the
polynomials

1� z21z2; 1� z1z
2
2; 1 + z21 + z21z

2
2 ; 1 + z1z2 + z21z

2
2 ; 1 + z22 + z21z

2
2; z

2
1z

2
2 � z1; z

2
1z

2
2 � z2

have no common zeros. These polynomials have two common zeros: 1
2
(�1+p3i;�1+p3i)

and 1
2
(�1 � p

3i;�1 � p
3i). Therefore, we conclude that the shifts of � are linearly

dependent.
Since these common zeros actually lie on TT2, Theorem 1 of [8] implies that the shifts

of � are in fact not stable. Although this could be determined using results from [10], the
computations would be signi�cantly more complicated.
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