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Abstract. GC-sets are subsets T of R
d

of cardinality dimΠn for which, for each τ ∈ T, there are n hyperplanes

whose union contains all of T except for τ , thus making interpolation to arbitrary data on T by polynomials of degree

≤ n uniquely possible. The existing bivariate theory of such sets is extended to the general multivariate case and

the concept of a maximal hyperplane for T is highlighted, in hopes of getting more insight into existing conjectures

for the bivariate case.
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Introduction

As already simple bivariate examples involving two, three, or four points make clear, those interested
in multivariate polynomial interpolation must contend with the following

Basic Problem. Given a finite set T of data sites τ in R
d, how to choose a space F of polynomials so

that, for every choice of data values

a = (a(τ) : τ ∈ T) ∈ F
T

(with F either R or C), there is exactly one element f ∈ F that matches this information, i.e., satisfies

f(τ) = a(τ), τ ∈ T.

I will call such F correct for T. Others have used “unisolvent” or “poised” or “regular” instead of
“correct”.

While there is some work on this problem (see, e.g., [BR1], [BR2], [B]), most of the work to date on
multivariate polynomial interpolation has gone into the somewhat different problem of finding sets that are
correct of degree n, or n-correct, for short, i.e., sets T ⊂ R

d correct for

F := {
∑

|α|≤n

()αc(α) : c(α) ∈ F},

with
()α : R

d → F : x 7→ xα := x(1)α(1) · · ·x(d)α(d)

a nonstandard but handy notation for the monomial with exponent α ∈ Z
d
+ and

|α| := α(1) + · · · + α(d)

its (total) degree.
In effect, most of the work has focused, not on interpolation per se but, rather, on interpolation as a

means for constructing approximations from Π≤n(Rd) under the assumption that there is some leeway in
the choice of interpolation sites. At its most intricate, this line of research looks for good interpolation sites,
i.e., for sites for which the resulting linear projector has small norm, with [BoCMVX] a particularly striking
example.

The aim of this note is much less ambitious. It is to generalize (in a reasonable way, I hope) what is
known in the bivariate case about a particular kind of n-correct T to the general multivariate case, in hopes
of shedding some light on a conjecture made by Gasca and Maeztu nearly 25 years ago and still essentially
unsettled.
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Basic linear algebra

I find it most convenient to start a discussion of interpolation with its inverse, i.e., with the linear map

δT : f 7→ f T := (f(τ) : τ ∈ T) ∈ F
T

of restriction to, or evaluation at, the data sites. In terms of this map, (T, F ) is correct iff δT maps F 1-1
onto F

T. Hence, if (T, F ) is correct, then the inverse of δT F exists and is necessarily a column map, i.e.,
of the form

(δT F )−1a =:
∑

τ∈T

ℓτa(τ) =: [ℓτ : τ ∈ T]a, a ∈ F
T,

and with ℓτ (σ) = δτσ for all τ, σ ∈ T, i.e., [ℓτ : τ ∈ T] is the Lagrange basis for F with respect to T.

Basic facts about n-correct sets

From now on, assume that T ⊂ R
d is n-correct, hence

p =
∑

τ∈T

ℓτp(τ)

is the Lagrange form for p ∈ Π≤n.

(1) Fact [ChY: (c)(iii)]. Each ℓτ is of (exact) degree n.

Proof: If deg ℓτ < n, then multiplication of ℓτ with some degree 1 polynomial vanishing at τ would
give a nontrivial polynomial in Π≤n vanishing on T, contradicting the n-correctness of T.

One approach to the construction of n-correct sets uses a divide-and-conquer strategy. For its descrip-
tion, the following notions are needed.

Definition. For all p ∈ Π,

Z(p) := {z ∈ R
d : p(z) = 0}, ZT(p) := T ∩ Z(p).

(2) Fact [CaG1]. For all p ∈ Π≤n\0, #ZT(p) ≤ dimΠ≤n − dim Π≤n−deg p.

Proof: If #ZT(p) > dim Π≤n−dim Π≤n−deg p, hence #(T\Z(p)) < dimΠ≤n−deg p, then there would
be q ∈ Π≤n−deg p\0 vanishing on T\Z(p), and then pq would be a nontrivial element of Π≤n vanishing on
all of T, contradicting the n-correctness of T.

Definition. Call p ∈ Π≤n\0 maximal (for T) in case

#ZT(p) = dimΠ≤n − dimΠ≤n−deg p

or, equivalently,
#(T\Z(p)) = dim Π≤n−deg p.

(3) Fact. If p is maximal (for T), then:
(i) T\Z(p) is (n − deg p)-correct;
(ii) p divides any q ∈ Π≤n for which ZT(q) ⊃ ZT(p);
(iii) [ℓτ/p : τ ∈ T\Z(p)] is an unnormalized Lagrange basis for Π≤n−deg p with respect to T\Z(p);
(iv) ZT(p) is correct for Π≤n(Z(p)) := Π≤n Z(p).

Proof: Let r := deg p. If T\Z(p) were not correct for Π≤n−r, then, since #(T\Z(p)) = dimΠ≤n−r,
there would be a nontrivial q ∈ Π≤n−r vanishing on T\Z(p), hence pq would be a nontrivial polynomial in
Π≤n vanishing on all of T, in contradiction to the n-correctness of T. This proves (i). It follows that, for
any q ∈ Π, there is some f ∈ Π≤n−r that matches q/p on T\Z(p). If now also ZT(q) ⊇ ZT(p), then fp
is in Π≤n and matches q on all of T, hence must equal q in case q ∈ Π≤n. This proves (ii). In particular,
for every τ ∈ T\Z(p), p divides ℓτ , hence ℓτ/p is in Π≤n−r and vanishes on every σ ∈ T\Z(h) other
than τ , hence is, up to scaling, the Lagrange polynomial from Π≤n−r for this τ ∈ T\Z(p). Finally, as to
(iv), the linear map f 7→ f Z(p) carries Π≤n onto Π≤n(Z(p)) and has pΠ≤n−r ⊂ Π≤n in its kernel, hence

dimΠ≤n(Z(p)) ≤ dimΠ≤n −dimΠ≤n−r = #ZT(p), while [ℓτ Z(p) : τ ∈ ZT(p)] is a 1-1 map into Π≤n(Z(p)),
hence necessarily is a basis for it, and is a right inverse for δZT(p).
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Note that the degree of q comes into the proof of (ii) in an essential way. There is no way to extend the
argument to q whose degree exceeds the degree of correctness of T which, in turn, figures in the maximality
of p.

(4) Fact. If Σ is (n − r)-correct, and T is correct for Π≤n(Z(p)) for some polynomial p of degree r with
Σ ∩ Z(p) = ∅ for which Z(p) ⊆ Z(q) implies p|q, then Σ ∪ T is n-correct.

Proof: If f ∈ Π≤n vanishes on T, then, by the correctness of T for Π≤n(Z(p)), f vanishes on all of
Z(p), hence is of the form f = qp for some q ∈ Π≤n−r by assumption, and if f also vanishes on Σ, then, since p
does not vanish on Σ, this q necessarily vanishes on Σ, hence, by the correctness of Σ for Π≤n−r, is 0, therefore
also f = 0. This shows that δΣ∪T is 1-1 on Π≤n while #(Σ∪T) = dimΠ≤n−r + dimΠ≤n(Z(p)) = dim Π≤n,
hence Σ ∪ T is n-correct.

For the special case of a bivariate p of degree 1, this “recipe” is used in [Coa] and goes back at least
to [R] where n-correct sets in R

2 are constructed inductively, starting with a 1-point set T and, assuming
that the current T is (n − 1)-correct, choosing an arbitrary (n + 1)-set from a line that does not intersect
T and then adjoining that set to T (using the elementary fact, valid in the general multivariate case, that
deg(p) = 1 implies that p is a factor of any polynomial that vanishes on Z(p)). Such Radon sets were
already constructed in [Be], and even for R

d, but in a more complicated way.
For interpolation by complex-valued polynomials on C

d, the implication Z(p) ⊆ Z(q) =⇒ p|q needed in
(4) is available for any polynomial p without repeated factors (see, e.g., [CoLO: p. 178]), a fact used, e.g.,
in [LLF] for such recipes involving polynomials of degree greater than 1.

Recipes of Chung and Yao

In [ChY], Chung and Yao provide the following recipe for the construction of an n-correct set.
Let H be a collection of d + n hyperplanes in R

d in general position, meaning that, for r = 1, 2, . . .,
the intersection of any r of these is a (d − r)-dimensional flat. Then, in particular, for any d-set K in H ,
there is exactly one point, call it τK , common to all h ∈ K, and the resulting map,

(

H

d

)

→ R
d : K 7→ τK ,

from the collection of all d-sets in H to R
d, is 1-1, hence its range, call it TH , has cardinality #

(

H

d

)

=
(

n+d

d

)

= dimΠ≤n while, for any τK , the union of the n hyperplanes in H\K contains TH\τK but not τK .
Therefore, denoting by h also any particular polynomial of degree 1 for which Z(h) is the hyperplane h,

[
∏

h∈H,h(τ) 6=0

h/h(τ) : τ ∈ TH ]

is a map into Π≤n and a right inverse for δTH
, hence a basis for Π≤n, hence TH is n-correct.

Chung and Yao call any such TH a natural lattice.
Note that, in [Bo], L. Bos extends this elegant construction to suitable collections of higher-degree

algebraic varieties.

The above proof of the n-correctness of TH uses nothing more than the fact that, for each τ ∈ TH ,
there are ≤ n hyperplanes whose union contains TH\τ but not τ . Recognizing this, [ChY] introduce the
following

Definition [ChY]. T in R
d satisfies the geometric characterization of degree n if n > 0 and, for each

τ ∈ T, there is a set Hτ of ≤ n hyperplanes whose union contains T\τ but not τ .

Call such a T a GCn-set for short, or even just a GC-set if the degree of correctness doesn’t matter.
It is an n-correct set for which all Lagrange polynomials have as their zero set the union of ≤ n hyperplanes
(as [ChY: Theorem 1] makes clear).

To be sure, the restriction to n > 0 does not occur in [ChY] but is made here in order to avoid some
niggling discussions. Also, [ChY] requires that #Hτ = n for all τ ∈ T even though this already follows from
the seemingly weaker requirement that #Hτ ≤ n; see (6) below.
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(5) Fact. Any 1-correct set is a GC1-set.

Proof: All the Lagrange polynomials for a 1-correct set are affine polynomials, hence have hyper-
planes as their zero sets.

Basic properties of GC-sets

From now on, let T be a GCn-set, hence

ℓτ =
∏

h∈Hτ

h

h(τ)
, τ ∈ T,

where, here and below, we continue our convenient practice of denoting, for any hyperplane h in R
d, by the

very same letter h also any one polynomial of degree 1 whose zero set is h.
The various properties of GCn-sets given in this section can be found in the literature (see, especially,

[GM], [CaG1], [CaG2], [CaG3]) but usually only for d = 2 and, usually, with different proofs.

(6) [ChY: (c)(iv)]. For all τ ∈ T, #Hτ = n. In particular, ℓτ has no repeated factors.

Proof: #Hτ = deg ℓτ = n, the second equality by (1).

Definition. HT := ∪τ∈THτ .

(7) Fact. For all h ∈ HT,
(i) h is the unique hyperplane containing ZT(h);
(ii) d ≤ #ZT(h) ≤ dim Π≤n − dim Π<n.

Proof: If k were a hyperplane different from h with ZT(k) = ZT(h), then the flat spanned by ZT(h)
would lie in the (d− 2)-dimensional flat h∩ k and not contain τ , hence we could find a (proper) hyperplane
l containing ZT(h) and τ and, in this way, find the nontrivial polynomial (ℓτ/h)l in Π≤n which vanishes on
T, contradicting the n-correctness of T. This proves (i), hence the first inequality in (ii), while the second
inequality is a special case of (2).

Definition. Kτ := {h ∈ HT : h(τ) = 0}.

(8) Fact.
(i) For all τ ∈ T, ∩h∈Kτ

Z(h) = {τ}.
(ii) For all τ ∈ T, #HT ≥ #Hτ + #Kτ ≥ n + d.
(iii) #HT ≥ n + d, with equality iff T is natural.

Proof: If p ∈ Π≤n and p(τ) = 0, then

p =
∑

σ 6=τ

ℓσp(σ),

and each of these ℓσ has at least one of the h ∈ Kτ as a factor. Consequently,

Z(p) ⊇
⋂

h∈Kτ

Z(h) ⊇ {τ}.

But since p is otherwise arbitrary here, this implies that

{τ} =
⋂

p∈Π≤n,p(τ)=0

Z(p) ⊇
⋂

h∈Kτ

Z(h) ⊇ {τ},

proving (i). It follows that #Kτ ≥ d while Hτ ∩ Kτ = ∅ and, by (6), #Hτ = n, proving (ii), hence the
inequality in (iii). Further, #HT = n + d in case T is a natural lattice (from the very definition of a natural
lattice) while, conversely, #HT = n + d implies, with (ii), that #Kτ = d for all τ ∈ T showing HT to be in
general position, hence T is natural.
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Definition. Th := {τ ∈ T : h ∈ Hτ}.

(9) Proposition [S]. #Th ≤ dimΠ<n, with equality iff h is maximal.

The proof in [S] makes use of elementary ideal theory. But, in trying to understand the result, I came
across a simpler proof. For it, note that Th is necessarily a subset of

T\Z(h) = {τ ∈ T : h(τ) 6= 0}

but there is, offhand, no reason to believe that these two sets coincide. In fact, the following is true.

(10) Fact. #Th ≤ dimΠ<n ≤ #(T\Z(h)), with equality in one or the other iff h is maximal iff there is
equality in both.

Proof: The set {ℓτ/h : τ ∈ Th} is linearly independent and in Π<n, hence cannot be larger than
dimΠ<n, proving the first inequality, with equality iff {ℓτ/h : τ ∈ Th} is a basis for Π<n, hence {ℓτ : τ ∈ Th}
is a basis for hΠ<n, and this basis vanishes on T\Th, hence all elements of hΠ<n vanish on that set, including
h; in other words, then ZT(h) ⊆ T\Th ⊆ ZT(h), hence ZT(h) = T\Th, therefore #ZT(h) = #T − #Th =
dimΠ≤n − dim Π<n, i.e., h is maximal. The second inequality is a special case of (2), with the equality case
exactly the definition of h being maximal. Conversely, if h is maximal then, by (3)(ii), Th = T\ZT(h), and
this implies that both inequalities must be equalities.

Conjectures

About 25 years ago, Gasca and Maeztu made the following conjecture.

GM Conjecture ([GM]). For every GCn-set T in R
2, there is h ∈ HT with #ZT(h) = n + 1.

If true, it would imply, by induction, that every planar GC-set can be obtained by the Radon recipe
mentioned earlier.

The conjecture obviously holds for n = 1, 2 and has been proved by J. R. Busch in [Bu] for n = 3, 4,
and somewhat shorter proofs for these cases have been given by Carnicer and Gasca in [CaG3]. But already
for n = 5, the conjecture has not been settled so far.

For d = 2, n + 1 = dimΠ≤n − dimΠ<n, hence it seems reasonable to generalize the GM conjecture for
arbitrary d as

GMd Conjecture. Every GCn-set has an affine maximal, or, equivalently, some hyperplane containing
dimΠ≤n − dimΠ<n points of that set.

In the plane, Carnicer and Gasca have recently strengthened the GM conjecture by proving the following

(11) Theorem ([CaG3]). If every planar GCn-set for n ≤ ν has an affine maximal, then every such planar
GCn-set has at least three affine maximals.

This suggests to me the following

CGd conjecture. Every GC-set in R
d has at least d + 1 affine maximals.

Any 1-correct set in R
d has exactly d + 1 affine maximals, namely its d + 1 Lagrange polynomials.

As we saw earlier, any natural GCn-set in R
d has d + n affine maximals.

A second well-known class of GC-sets are the so-called principal lattices, so named by Nicolaides [N]
and discussed in [ChY] as another class of GC-sets. A principal lattice in R

d is the 1-1 affine image of the
set

{α ∈ Z
d
+ : |α| ≤ n}

for some n, hence has exactly d + 1 affine maximals, namely the d + 1 faces of the simplex spanned by its
d + 1 extreme points (and “simplex lattice” would have been a better name for such GC-sets).

These conjectures focus attention on the set

Hmax
T

of all affine maximals for the GC-set T, to be discussed next.
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Basic properties of the set of affine maximals

For d = 2, the following assertions about affine maximals (but without such terminology and with
different proofs) can already be found, e.g., in [CaG1].

(12) Fact. h ∈ Hmax
T ⇐⇒ h ∈ ∩τ∈T\Z(h)Hτ .

Proof: By (3)(ii), any affine maximal h is a factor of the Lagrange polynomial of any τ ∈ T\Z(h),
while, if the latter holds, then #Th = #(T\Z(h)), hence h is an affine maximal, by (10).

(13) Fact. If {h, k} is a 2-set in Hmax
T , then

(i) k Z(h) is an affine maximal for ZT(h) in Z(h);

(ii) k is an affine maximal for T\Z(h);
(iii) ZT(h) ∩ ZT(k) is a GCn-set in Z(h) ∩ Z(k).

Proof: #ZT(k) = dimΠ≤n−dimΠ<n = dimΠ≤n(Rd−1), by the very definition of an affine maximal

for a GCn-set in R
d. On the other hand, ZT(k) is the union of two sets,

ZT(k) = (ZT(k) ∩ Z(h)) ∪ (ZT(k)\Z(h)),

and, by (2),
#(ZT(k) ∩ Z(h)) ≤ dimΠ≤n(Rd−1) − dimΠ<n(Rd−1)

(as the set of points in Z(h) of the GCn-set ZT(k) in Z(k)), while, again by (2),

#(ZT(k)\Z(h)) ≤ dimΠ<n − dimΠ<n−1 = dimΠ<n(Rd−1)

(as the set of points in Z(k) of the GCn−1-set T\Z(h) in R
d) and, since these two upper bounds add up to

the cardinality of the union of these two sets, the inequalities must be equalities. In particular, h Z(k) is a

maximal for ZT(k) in Z(k), and this also proves (i) since h and k enter symmetrically. Also, the equality in
the second inequality proves (ii) and, since ZT(h) ∩ ZT(k) = ZT(k) ∩ Z(h), (ii) implies (iii) by (3)(iv).

(14) Fact. If K is an r-set in Hmax
T and h ∈ K, then

(i) for n > 1, K\h is an (r − 1)-set of affine maximals for T\Z(h), and
(ii) {k Z(h) : k ∈ K\h} is an (r − 1)-set of affine maximals for ZT(h). Therefore, by induction on r,

(iii) ∩k∈KZT(k) is a GCn-set in S := ∩k∈KZ(k). In particular,
(iv) the intersection of any d-set in Hmax

T consists of exactly one point from T, and
(v) any set of more than d affine maximals has an empty intersection. In other words,
(vi) Hmax

T is in general position, with any nonempty intersection of some of its elements containing the
maximal number of points from T.

(vii) Hmax
T ⊆ HT, with equality iff T is natural.

(viii) #Hmax
T ≤ d + n ≤ #HT, with equality in one iff there is equality in the other iff T is natural.

(ix) #Hmax
T > d iff, for every τ ∈ T, there is some h ∈ Hmax

T not containing τ iff every Lagrange polynomial
has a maximal as a factor.

Proof: By (13)(ii), we know that every k ∈ K\h is a maximal for T\Z(h), hence K\h is an (r−1)-set
of affine maximals for T\Z(h) unless T\Z(h) is only a singleton. This proves (i).

By (13)(i), we only need to prove for (ii) that, for any 3-set {h, j, k} of maximals, j Z(h) 6= k Z(h). For

this, recall from (3) that ZT(h) is a GCn-set in Z(h), with [ℓτ Z(h) : τ ∈ ZT(h)] the Lagrange basis. Hence, for

any τ ∈ ZT(h)\(ZT(j)∪ZT(k)), ℓτ Z(h) has both j Z(h) and k Z(h) among its n factors (e.g., by (12)) while,

by (6), any two such factors must be distinct. This leaves only the case when ZT(h)\(ZT(j) ∪ ZT(k)) = ∅.
But if, in that case, j Z(h) = k Z(h), then ∅ = ZT(h)\(ZT(j) ∪ ZT(k)) = ZT(h)\ZT(j) and this would

contradict the fact that, by (13), ZT(h) ∩ ZT(j) is a proper subset of ZT(h).
As to (vii), the inclusion follows already from (12), with equality in case T is natural while, conversely,

equality implies, by (vi), that HT is in general position and T = THT
. Finally, (vi) implies that the map

(

Hmax
T

d

)

→ R
d : K 7→ τK
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that associates each d-set in Hmax
T with the unique point in its intersection is a well-defined map into T

and 1-1, hence its range has cardinality
(

#Hmax

T

d

)

, and this cannot exceed #T = dimΠ≤n =
(

d+n

n

)

. This
shows that #Hmax

T ≤ d + n with equality iff T is natural, i.e., the first inequality in (viii), while the second
inequality (and its equality) are (8)(iv).

Finally, concerning (ix), if there are ≤ d affine maximals, then, by (iii), their intersection contains some
points from T and, for each of these points, there is no affine maximal not containing it. Conversely, if there
is some τ ∈ T contained in all affine maximals for T, then the intersection of all affine maximals is nontrivial,
hence there cannot be more than d affine maximals, by (v). The second iff relies on (12), i.e., on the fact
that an affine maximal h is a factor of every ℓτ with h(τ) 6= 0.

As a simple example for (ix), every planar GC2-set T has > 2 affine maximals since, for each τ ∈ T, the
other 5 points in T must lie on two lines, hence one line must have 3 points on it, providing an affine maximal
not containing τ . The argument in [CaG2] showing that every planar GC3-set has an affine maximal actually
shows, similarly, that, for every τ in a planar GC3-set, there is some affine maximal not containing it. Hence,
also every planar GC3-set has > 2 maximals. To be sure, since every planar GCn-set with n < 5 is known
to have an affine maximal, we know from (11)Theorem that every planar GCn-set with n < 5 has at least
three affine maximals.

Example Figure 1 captures a planar example from [ChY], but with the affine maximals highlighted.

 1  2  3
 4

 5

 6

 7

 8

 9

10

Figure 1. A planar GC3-set with four maximals

There are 4 maximals, evidently in general position, hence four sites on one, an additional three sites
on another, an additional 2 sites on a third, and one additional site on a fourth maximal, for altogether
10 = dimΠ≤3 sites. In particular, every τ ∈ T lies on at least one maximal, and those on only one maximal
have the other three maximals as the three factors in their Lagrange polynomial (hence, on each maximal,
there is exactly one such). Those on two maximals have the other two as factors in their Lagrange polynomial
but their third factor is not a maximal. Interestingly, in this example, #Kτ is minimal (i.e., equals d = 2)
for every τ contained in two maximals while, for some other τ , Kτ has as many as four elements. Also, #HT

exceeds the minimum (n + d = 5) by 3, while #Hmax
T fails to reach its maximum (n + d = 5) by 1.

The amount by which #Hmax
T fails to reach its maximum, n + 2, has been termed the default [CaG1]

or, better yet, the defect [CaG3] of a planar GCn-set T, as it can also be interpreted as a measure of the
extent to which T fails to be optimal, i.e., natural.

In the planar case, Carnicer and Gasca provide a kind of converse of (14)(i), namely the following

(15) Proposition ([CaG3]). Let T be a planar GCn-set, and h an affine maximal for it. Then, for any
r-set, r > 2, of affine maximals for the GCn−1-set T\Z(h), at most one of its elements is not an affine
maximal for T.

This proposition is at the heart of their inductive proof of (11), as follows. Assume we know (as we
would for n ≤ 3) that every planar GCn−1-set has three affine maximals. Then any GCn-set T having one
maximal, h say, would actually have at least three since the GCn−1-set T\Z(h) has at least three, and two
of these, by (15), would actually be affine maximals for T and necessarily different from h.
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A counterexample

With the CGd conjecture known to hold for any GC1-set, and also to hold for any planar GCn-set for
n < 5, it seems reasonable to consider it for GC2-sets in R

3. And there, it already fails, as the following
example shows.

Example Start with the standard quadratic principal lattice in R
3, i.e., T = {α ∈ Z

3
+ : |α| ≤ 2}, as

shown left-most in Figure 2.

Figure 2. A 1-point variation (b) of a 3D quadratic principal lattice (a) has only 3 maximals
but is still a GC-set (see (c)).

Move one of the sites, from the level |α| = 2 to the level |α| = 1, to obtain the point set T indicated
in the middle figure. The set has evidently only 3 affine maximals but is still a GC2-set. For the latter
claim, we have to show that, for each τ ∈ T, there are two planes containing all of T\τ , but not τ . This is
evident for the sole point lying on the three remaining affine maximals (the point 0). Any other point is like
the four points circled in the rightmost figure: there is one affine maximal not containing these four points,
and it serves as one of the planes for each of them. For each of the four, the other plane is the unique one
containing the other three of the four points, and this plane will not contain the point since the four points
are not coplanar.

The simplicity of this counterexample to the CG3 conjecture makes me now doubt even the GC2 con-
jecture, hence the original GM conjecture.

Amusingly, by (11), a counterexample to the GM conjecture is already provided by a planar GC-set with
only two affine maximals. However, if there were a planar GCn-set with exactly one or two affine maximals,
then there would be a smallest one, T say. By (11), n > 4. Suppose T had two affine maximals, h and k,
say. Then, by the minimality of T, T\Z(h) would either have to have > 2 affine maximals or none. But the
second possibility would contradict (14)(i), while the first possibility would imply, by (15), that T has more
than 2 affine maximals, also a contradiction.

Thus a smallest counterexample, T say, with some affine maximal would have exactly one such maximal,
h say, and, for it, T\Z(h) would necessarily be a GC-set without any affine maximal.

So, there is no hope of using a simple modification, like the one that produced the trivariate counterex-
ample, to get a planar counterexample. To put it positively, an example with just two affine maximals must
have n > 6.

Since we now know that the CGd conjecture does not hold in general, I cannot resist making the following

Definition. A CG-set is a GC-set in R
d with more than d affine maximals, or, equivalently, with every

Lagrange polynomial having a maximal as a factor.

A final, sobering, remark: According to a personal communication from L. Bos, the (several) interpola-
tion projectors based on GCn-sets that he was able to study (e.g., the natural lattices for a given triangle)
have norms that grow exponentially with n.
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variables”, Ann. Sci. Ecole Norm. Sup. 83(3), 271–341.

[CoLO] David Cox, John Little, and Donal O’Shea (1992), Ideals, Varieties, and Algorithms, Undergraduate
Texts in Mathematics, Springer (New York).

[GM] M. Gasca and J. I. Maeztu (1982), “On Lagrange and Hermite interpolation in IRk”, Numer. Math. 39,
1–14.
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