
An empty exercise
Carl de Boor

MATLAB is a most convenient, versatile and helpful interactive program for experi-
mental scientific calculations, even on PCs and particularly because of its graphics capa-
bilities. It makes high-quality algorithms for the solution of standard problems in Linear
Algebra available to the casual user. It even has an empty matrix (which is more than can
be said of most textbooks in Linear Algebra or Matrix Theory or of most programming
languages, with APL a notable exception; see, e.g., [BJ]).

The empty matrix provided by MATLAB is the 0 × 0-matrix []. The MATLAB
tutorial [M] gives two uses of [], points out that certain MATLAB matrix functions have
been given ‘mathematically plausible values’ at [], and finishes with the statement: ‘As
far as we know, the literature on the algebra of empty matrices is itself empty. We’re not
sure we’ve done it correctly, or even consistently, but we have found the idea useful.’

This note is intended to point out that empty matrices occur naturally, and that their
treatment need not be merely mathematically plausible, but is in fact entirely determined
by standard linear algebra considerations. In particular, it is necessary to allow for empty
matrices of various sizes 0 × n and m × 0 in addition to [], not only because that is what
the theory provides but because these various empty matrices are useful in the same way
the empty sum or the empty product is useful, viz. as a convenient and natural way to
start inductions.

While it is customary to use various graphic terms, such as ‘rectangular array’, or
‘rectangular arrangement’ and the like, to describe a matrix, it seems cleanest to stick to
the definition that an m × n-matrix A is a scalar-valued map from the set m × n to the
scalar-field IF. Here,

k := {1, 2, . . . , k}
is the set consisting of the first k natural numbers, and the scalar-field IF is just that, a
field, typically IF = IR or C. Bourbaki [B;p.73] seems to prefer to define a matrix as the
‘indexed family’ (aij)(i,j)∈m×n, but I fail to appreciate the distinction. Bourbaki defines
an ‘empty’ matrix, but only one such, viz. any matrix obtained when, in this definition,
m or n is zero.

I find it easiest to discuss empty matrices in terms of the linear maps which they
represent in standard fashion. Recall the n-dimensional coordinate space

IFn := {a : n → IF},

i.e., the set of all n-sequences in IF, or, equivalently, the set of all scalar-valued maps on
n, with the vector operation provided by pointwise addition and pointwise multiplication
by a scalar. Recall further that the matrix A ∈ IFm×n is usually identified with the linear
map

IFn → IFm : a 7→
∑

j

A(:, j)a(j)

which associates with each a ∈ IFn the particular linear combination
∑

j A(:, j)a(j) of
the columns A(:, j) of A with weight vector a. Recall, finally, that the resulting map

1

from IFm×n to the linear space L(IFn, IFm) of linear maps from IFn to IFm is linear and
invertible, with the inverse associating each A ∈ L(IFn, IFm) with the matrix A ∈ IFm×n

whose jth column A(:, j) is given by Aej , with ej the jth unit vector.
Consider now, in particular, the coordinate space IF0. Its sole element is the empty

sequence in IF, which therefore must be its 0 element. It follows that, for any vector space
X, there is exactly one linear map IF0 → X and exactly one linear map X → IF0, viz. the
0 map, i.e., the map which carries its entire domain to the 0 of its target. Correspondingly,
IFm×0 and IF0×n each consist of exactly one element. The unique m × 0-matrix has no
columns, but m rows, while each of the n columns of the unique 0 × n-matrix contains
the sole element of IF0. Inasmuch as we can also think of A ∈ IFm×n as acting on IFn by
carrying the n-vector a to the m-vector (〈A(i, :), a〉)i∈m (with the rows A(i, :) of A acting
as linear functionals on IFn), we can also describe the unique m × 0-matrix as having the
unique element of (IF0)′ in each of its m rows.

Since the algebra of matrices is set up to mirror the algebra of linear maps, it is now
clear how to include empty matrices in matrix algebra. Since IFm×n consists of just one
element in case m or n is zero, any linear combination of such empty matrices is again
that same empty matrix. The product AB of A ∈ IFm×n with B ∈ IFn×p continues to
make good sense even if one (or more) of m, n, or p is zero. AB is always an element of
IFm×p, hence the unique element of that set in case m or p is zero. Only the case n = 0
might require a moment’s thought. In this case, the domain of A is IF0, hence A is the
sole linear map from IF0 to IFm, i.e., ran A = {0}. Consequently, AB is the zero matrix of
size m × p.

Further, any norm of an empty matrix is zero, as the supremum of the empty set
of nonnegative numbers. This implies that the condition number of the square empty
matrix [] is 0. This makes [] the only matrix with a condition number less than 1 and the
only invertible matrix with zero norm. To be sure, [] is indeed invertible, since it is (or
represents) the identity id0 on IF0. More than that, p([]) = [] = id0 for any polynomial
p, hence for any function p. This implies that the spectrum of [] is empty and that its
characteristic polynomial equals its minimal annihilating polynomial, viz. the polynomial
()0 : t 7→ 1. Consistent with this (and other considerations) is the choice det([]) := 1.

Empty matrices are useful when considering bases. While the standard definition
describes a basis for the vector space X as a linearly independent and spanning sequence
v1, . . . , vn in X, it seems more to the point to define a basis as an invertible linear map
V = [v1, . . . , vn] from some coordinate space IFn to X, with [v1, . . . , vn] the map given by
the rule

[v1, . . . , vn] : IFn → X : a 7→
∑

j

vja(j),

and then call such n the dimension of X. Textbooks are somewhat tentative when it comes
to discussing a basis for the trivial vector space. Some will say that the trivial vector space
has no basis, which seems strange since the very same books will define the dimension of a
vector space to be the cardinality of a(ny) basis for it, hence would have to conclude that
the trivial vector space has no dimension. It would be better if these books would join
the rest in saying that the trivial vector space has the empty sequence as a basis, hence
is zero-dimensional. The very same conclusion is reached more readily in terms of the

2

definition of a basis advocated here, since IF0 is the only coordinate space IFn providing
an invertible linear from IFn to the trivial vector space. In this sense, the m× 0-matrix is
the unique basis of the trivial subspace of IFm.

There are good reasons for allowing empty matrices of all sizes in matrix-oriented
languages such as MATLAB, for the same reason that mathematics has found it convenient
to allow empty sums and products: it makes it possible to start off inductive processes
with ease. Here are two examples.

Example 1: Extraction of a basis from a spanning sequence. Given a spanning sequence
for the subspace X of IFm, i.e., given a W ∈ IFm×n with ran W = X, a basis V ∈ IFm×r

for X is obtained by the following standard algorithm, described here in ideal MATLAB:
V =zeros(m,0);
for j=1:n,

w=W(:,j);
if w~=V *(V \w), V =[V ,w];end

end

in which a column w of W is adjoined to the 1-1 linear map V (made up from the columns
of W already examined and selected) if it is found not to be already in the span or range
of V . Here, V \w provides the best least-squares solution to the equation V ? = w, hence
w ∈ ranV if and only if w=V *(V \w). It is most convenient to initialize V as the m × 0-
matrix, since this would avoid having to make special provisions for the case that W is
the zero matrix. In fact, the algorithm would also work well if n = 0, giving, in either
case, the correct conclusion that the dimension of ranW , i.e., the number of columns in a
basis for ranW , is zero. (There is no claim here that this is the most efficient way, in this
context, to ascertain whether or not w ∈ ranV , nor is there any discussion of the effects of
rounding errors on this algorithm. In fact, Gauss elimination, in the guise of the algorithm
for reducing W to row-echelon form, would be the efficient way.)

Example 2: Crout-Dolittle. This example is due to Warren Ferguson of SMU (and
quoted with his permission): In the Crout algorithm or the Dolittle algorithm for the
calculation of an LU factorization, one alternates between computing a column of the
lower triangular factor L and computing a row of the upper triangular factor U for the
given square matrix A. If A is of order n, and we are doing Dolittle, i.e., making L unit
lower triangular, then the natural loop is

for i=1:(n-1),
compute L(:,i)
compute U(i+1,:)

end
since neither the last column of L nor the first row of U needs to be calculated. More
explicitly, doing the calculation in place, and with the aid of empty matrices of various
sizes, the loop in an ideal MATLAB would be

r=1:0;
for i=1:(n-1)

s=(i+1):n; a(s,i) = (a(s,i) - a(s,r)*a(r,i))/a(i,i);
r= 1:i ; a(i+1,s) = a(i+1,s) - a(i+1,r)*a(r,s);

end

3

In particular, note that, on the first pass through the loop, r is empty, hence a(s,r) is a
matrix with n − 1 (= length(s)) rows and no columns, but its right factor matches this,
since it has no rows, hence the product is well-defined: it is a zero matrix with n− 1 rows
and 1 column, i.e., the zero column matrix of length n − 1.

As Warren Ferguson points out, in a MATLAB without all these empty matrices, one
would have to do the first pass through the loop separately. One could, of course, do it
the standard way, by having the ith pass through the loop compute L(:, i) and U(i, :). But
then both the first and the last pass through the loop would have to be done separately.

Acknowledgement. It is a pleasure to acknowledge illuminating discussions with
Hans Schneider on this empty topic, and to thank Cleve Moler for the APL reference.

References

[B] N. Bourbaki, Algèbre linéaire, (this is chap.II of Algèbre, i.e., vol.IV of Éléments de
mathématique), Hermann, Paris, 1947.

[BJ] J.A. Brown and M.A. Jenkins, The APL Identity Crisis, APL Quote Quad 12 (1981),
62–66.

[M] MathWorks, MATLAB User’s Guide, MathWorks Inc., South Natick MA, February
1989

4

