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Summary. A personal account of the author’s encounters with multivariate splines
during their early history.

1 Tensor product spline interpolation

My first contact with multivariate splines occurred in August 1960. In my first year
at the Harvard Graduate School, working as an RA for Garrett Birkhoff, I had not
done too well but, nevertheless, had gotten married and so needed a better income
than the RAship provided. On the (very kind and most helpful) recommendation
of Birkhoff who consulted for the Mathematics Department at General Motors Re-
search in Warren MI, I had been hired in that department in order to be of assistance
to Leona Junko, the resident programmer in that department.

Birkhoff and Henry L. Garabedian, the head of that department, had developed
a scheme for interpolation to data on a rectangular grid meant to mimic cubic
spline interpolation; see [BG]. They would use what they called “linearized spline
interpolation” and what is now called cubic spline interpolation, along the meshlines
in both directions, in order to obtain values of the first derivative in both directions
at each meshpoint, and then fill in each rectangle by a C1 piecewise low-degree
harmonic polynomial function that would match the given information, of value
and two first-order derivatives, at each corner and, thereby, match the cubic spline
interpolants along the mesh-lines.

It occurred to me that the same information could be matched by a scheme
that would, say, construct the cubic spline interpolants along all the mesh-lines
in the x-direction, and then use cubic spline interpolation to the resulting spline
coefficients as a function of y to obtain an interpolant that was a cubic spline in x
for every value of y, and C2 rather than just C1. Of course, one could equally well
start with the cubic spline interpolants along all the mesh-lines in the y-direction,
and interpolate the resulting spline coefficients as a function of x and so obtain an
interpolant that was a cubic spline in y for every x, and it took me some effort to
convince Birkhoff that these two interpolants are the same. This is now known as
bicubic spline interpolation [dB0], the tensor-product (I learned that term from Don
Thomas there) of univariate cubic spline interpolation, and has become a mainstay
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in the construction of smooth interpolants to gridded data. I did write up a paper
on n-variable tensor product interpolation, but Birkhoff thought publication of such
a paper unnecessary.

Much later (see [dB4]), I realized that it is quite simple to form and use in a
multivariate context tensor products of univariate programs for the approximation
and evaluation of functions, provided the univariate programs can handle vector-
valued functions.

Around 1960, there was related work (I learned much later) by Feodor Theil-
heimer of the David Taylor Model Basin, see [TS], and, in computer graphics, para-
metric bicubic splines were introduced around that time by J. C. Ferguson at Boeing,
see [Fe], though Ferguson set the crossderivatives DxDyf at all mesh points to zero,
thereby losing C2 and introducing flat spots.

In this connection, I completely missed out on parametric spline work, believing
(incorrectly, I now know) that it is sufficient to work with spline functions on a
suitably oriented domain. Nor did I get involved in the blending approach to the
construction of spline surfaces, even though I was invited by Garabedian on a visit
in 1962 to Coons at M.I.T. (my first plane ride) and saw there, first-hand, an ashtray
being machined as a Coons’ surface [C]. The paper [BdB] (which has my name on
it only grace Birkhoff’s generosity) contains a summary of what was then known
about multivariate splines. I had left General Motors Research by the time that Bill
Gordon did his work on spline-blended surfaces there; see, e.g., [G].

2 Quasiinterpolation

My next foray into multivariate splines occurred in joint work with George Fix,
though my contribution to [dBF] was the univariate part (Birkhoff objected to the
publication of two separate papers). Fix had worked out the existence of a local linear
map into the space of tensor-product splines of (coordinate-)degree < k for a given
mesh, which depended only on the value of derivatives of order < k0 ≤ k at all the
mesh points but did not necessarily reproduce those values (hence Fix’ name “quasi-
interpolate” for the resulting approximation) but did reproduce all polynomials of
(total) degree < k0 in such a way that the approximation error can be shown to be of
order k0 in the mesh size. However, there was an unresolved argument between Fix
and his thesis advisor, Garrett Birkhoff, about whether, in the univariate case, Fix’
scheme was “better” than Birkhoff’s “Local spline approximation by moments” [B],
and Birkhoff had invited me to Cambridge MA for July 1970 to settle the matter,
perhaps. ([B] started out as a joint paper but, inexplicably, did not so end up; I
published the case of even-degree splines later on in [dB1].) Fortunately, once I had
derived an explicit formula for Fix’ map, the two methods could easily be seen to
be identical.

For k0 = k, Fix’s univariate scheme amounted to interpolation in the sense
that it was a linear projector; nevertheless, it was called “quasi-interpolation” in
the spirit of finite elements of that time since its purpose was not to match given
function values but, rather, to match some suitable linear information in such a way
that the process was local, stable, and reproduced all polynomials of order k, thus
ensuring approximation order k. In this sense, Birkhoff’s local spline approximation
by moments is the first quasi-interpolation spline scheme I am aware of (with [dB2]
a close and derivative-free second).
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Unfortunately, it was only ten years later that I became aware of Frederickson’s
immediate reaction [Fr1] to [dBF] in which he constructed quasi-interpolant schemes
onto smooth piecewise polynomials on what we now would call the 3-direction mesh,
using bump functions obtained from the characteristic function of a triangle in the
same way we now obtain a bivariate box spline from the characteristic function of
a square; see [Fr2].

3 Multivariate B-splines

In 1972, I moved to Madison WI, to the Mathematics Research Center (MRC)
funded since 1957 by the United States Army Research Office to carry out research
in applied mathematics. It had an extensive postdoc and visitors program, the only
fly in the ointment its location far from the center of the University of Wisconsin-
Madison because its former housing there was bombed in August 1970, as a protest
against the Vietman war, by people who took the very absence of any mention of
military research in the semi-annual reports of that Army-financed institution as
proof of the importance of the military research supposedly going on there. I had
been hired at the time of I. J. Schoenberg’s retirement from MRC.

The univariate spline theory was in good shape by that time, and, thanks to my
contacts with Martin Schultz and George Fix, and to having been asked to handle
the MRC symposium on the “Mathematical Aspects of Finite Elements in Partial
Differential Equations” in the summer of 1973, I had begun to look at smooth
piecewise polynomials in two and more variables, as they were being used in finite
elements. That same summer, I participated in the Numerical Analysis conference
in Dundee and heard Gil Strang’s talk [St] there, in which he raised the question of
the dimension of the space of bivariate C(1)-cubics on a given triangulation. I felt
like a fraud for not being able to solve that problem right then and there. As it
turned out, except for “nice” triangulations, this problem is still not understood in
2009, and neither is the approximation power of such spaces known, although many
have worked on it; see [LS] for what was known by 2007.

At the same time, in practice, the finite element method did not work with
the space of all piecewise polynomials of a certain degree and smoothness on a
given triangulation, but with suitable subspaces, usually the linear span of suitable
compactly supported more or less smooth piecewise polynomials called bump or
hill functions. This, together with the essential role played by B-splines in the uni-
variate spline theory (as summarized, e.g., in [dB3]), made me look for “B-splines”,
i.e., smooth compactly supported piecewise polynomials, in the multivariate setting.
When discussing this issue in January 1975 with Iso Schoenberg in his home study,
he went to his files and pulled out a letter [Sc] he had written to Phil Davis in 1965,
with a drawing of a bivariate compactly supported piecewise quadratic function,
with several planar sections drawn in as univariate quadratic B-splines; see Figure
1. The letter was in response to Davis’ paper [Dav], meant to publicize the following
formula, due to Motzkin and Schoenberg,

1

2A

∫

T

f ′′(z) dxdy =
f(z0)

(z0 − z1)(z0 − z2)
+

f(z1)

(z1 − z0)(z1 − z2)
+

f(z2)

(z2 − z0)(z2 − z1)
,

(1)
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Fig. 1. Schoenberg’s sketch of a bivariate quadratic B-spline

valid for all functions f regular in the triangle T in the complex plane with vertices
z0, z1, z2, and with A the area of T . Schoenberg points out that, in as much as
the right side of (1) is the second divided difference ∆(z0, z1, z2)f of f at z0, z1, z2,
therefore the Genocchi-Hermite formula for the nth divided difference

∆(z0, . . . , zn)f =

∫ 1

0

∫ s1

0

· · ·

∫ sn−1

0

f (n)(z0+s1∇z1+ · · ·+sn∇zn) dsn · · · ds1 (2)

provides a ready generalization of (1) to an arbitrary finite collection of zi in the
complex plane. Moreover, it is possible to write the integral as a weighted integral
over the convex hull of the zi, i.e., in the form

∆(z0, . . . , zn)f =

∫

conv(z0,...,zn)

f (n)(x + iy)M(x, y; z0, . . . , zn) dxdy,

with the value at (x, y) of the weight function M(·, ·; z0, . . . , zn) the volume of σ ∩
P−1{(x, y)}, with P the orthogonal projector of R

n onto C ∼ R
2 ⊂ R

n, and σ any
n-simplex of unit volume whose set of vertices is mapped by P onto {z0, . . . , zn}.
This makes M(·, ·; z0, . . . , zn) the two-dimensional “X-ray” or “shadow” of an n-
dimensional simplex. Hence, M(·, ·; z0, . . . , zn) is piecewise polynomial in x, y of
total degree n − 2, nonnegative, and nonzero only in the convex hull of the zj ,
and, generically, in C(n−3). This is strikingly illustrated in Figure 1, which shows
Schoenberg’s sketch of the weight function for the case n = 4, with the zj the five
fifth-root of unity, giving a C1 piecewise quadratic weight function.

I was much taken by this geometric construction since it immediately suggested
a way to get a nonnegative partition of unity consisting of compactly supported
smooth piecewise d-variate polynomials of order k: In R

k, take a convex set C of
unit k-dimensional volume (e.g., a simplex), and subdivide the cylinder C × R

d

into non-trivial (k + d-dimensional) simplices. Then their shadows on R
d under the
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orthogonal projection of R
d+k onto R

d provide that partition of unity. For the case
d = 1, Schoenberg was very familiar with the resulting 1-dimensional shadows of
1 + k-dimensional simplices. By the Hermite-Genocchi formula, they are univariate
B-splines, a fact used by him in [CS] to prove the log-concavity of the univariate
B-spline.

In a talk [dB3] at the second Texas conference in 1976, on the central role played
by B-splines in the univariate spline theory, I finished with a brief discussion of what
little I knew about Schoenberg’s multivariate B-splines. In particular, I stressed the
lack of recurrence relations to match those available for univariate B-splines, and
should have pointed out that I had no idea (except when d = 1) how to choose the
partition of C × R

d into simplices in order to ensure that the linear span of the
resulting d-dimensional shadows has nice properties. A very alliterative solution to
this difficult problem was offered in [DMS] but, to me, the most convincing solution
is the one finally given by Mike Neamtu; see [N] and the references therein (although
Höllig’s solution [H2] is not mentioned).

Subsequently, Karl Scherer informed me that his new “Assistent”, Dr. Wolfgang
Dahmen, intended to provide the missing recurrence relations. It seems that Scherer
had given him [dB3] to read as an introduction to splines.

4 Kergin interpolation

In January 1978, I was asked by T. Bloom of Toronto (possibly because his col-
league, Peter Rosenthal, and I had been students together at Ann Arbor) my opin-
ion of a recent result of one of his students, Paul Kergin, and, for this purpose,
was sent a handwritten draft of Kergin’s Ph.D. thesis [K1]. The thesis proposed
a remarkable generalization of univariate Lagrange interpolation from Π≤k at a
k + 1-set Z = {z0, . . . , zk} of sites to the multivariate setting, with the interpolant
chosen uniquely from Π≤k (:= the space of polynomials in d variables of total de-
gree ≤ k) and depending continuously on the sites even when there was coales-
cence and, correspondingly, Hermite interpolation. To be sure, in d > 1 dimensions,
dim Π≤k =

(
k+d

d

)
is much larger than k + 1, hence Kergin had to choose additional

interpolation conditions in order to single out a particular element Pf ∈ Π≤k for
given f . This he did in the following way. He required that P be linear and such
that, for every 0 ≤ j ≤ k and every homogeneous polynomial q of degree j, and
every j + 1-subset Σ of Z, q(D)(id − P )f should vanish at some site in conv(Σ).

The thesis (and subsequent paper [K2]) spends much effort settling the question
of how all these conditions could be satisfied simultaneously, and, in discussions
with members and visitors at MRC that Spring, we looked for some simplification.
Michael Golomb pointed to the “lifting” Kergin used in his proof as a possible means
for simplification: If the interpoland f is a “ridge function”, i.e., of the form g ◦ λ
with λ a linear functional on R

d, then Pf is of the same form; more precisely, then
Pf = (Qg) ◦ λ, with Qg the univariate polynomial interpolant to g at the possibly
coalescent sites λ(Z).

Fortunately, C. A. Micchelli was visiting MRC that year, from 1apr to 15sep, and
readily entered these ongoing discussions on Kergin interpolation (and the missing
recurrence relations for multivariate B-splines). He extended (see [M1]) the linear
functional occurring in the Genocchi-Hermite formula (2) to functions of d variables
by setting
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∫

[z0,...,zn]

h :=

∫ 1

0

∫ s1

0

· · ·

∫ sn−1

0

h(z0 + s1∇z1 + · · · + sn∇zn) dsn · · · ds1 (3)

for arbitrary z0, . . . , zn ∈ R
d, recalled the Newton form

Qg =

k∑

j=0

(· − λz0) · · · (· − λzj−1)∆(λz0, . . . , λzj)g

for the univariate polynomial interpolant to g at the sites λ(Z), and realized that,
with Dy :=

∑
j
yjDj the directional derivative in the direction y,

Dx−z0
· · ·Dx−zj−1

(g ◦ λ) = λ(x − z0) · · · λ(x − zj−1)(D
jg) ◦ λ,

hence, using Genocchi-Hermite, saw that

(Qg) ◦ λ =

k∑

j=0

λ(· − z0) · · ·λ(· − zj−1)

∫

[λz0,...,λzj ]

Djg

=

k∑

j=0

∫

[z0,...,zj ]

D·−z0
· · ·D·−zj−1

(g ◦ λ),

and so knew that the ansatz

Pf =

k∑

j=0

∫

[z0,...,zj ]

D·−z0
· · ·D·−zj−1

f

for the Kergin projector was correct for all ridge functions (given Kergin’s result
concerning interpolation to ridge functions), hence must be correct.

I remember the exact spot on the blackboard in the coffee room at MRC where
Micchelli wrote this last formula down for me, and can still experience my aston-
ishment and admiration. I had no inkling that this was coming, hence declined his
gracious offer of making this a joint paper.

It turned out that P. Milman, who is acknowledged in [K2] for many helpful
discussions, also had this formula, resulting in [MM].

5 The recurrence for multivariate B-splines

Shortly after Micchelli had left MRC that fall, I received from him the one-page
letter shown in Figure 2, containing the sought-after recurrence relations for mul-
tivariate B-splines, a second occasion for me to be astonished. Micchelli had not
made my mistake, of concentrating on the geometric definition of the multivari-
ate B-spline, but had stuck with the setting in which Schoenberg first thought of
these multivariate B-splines, namely as the representers of the “divided difference”
functionals f 7→

∫
[z0,...,zn]

f defined in (3).

The formula was first published in MRC TSR 1895 in November 1978, a prelim-
inary version of [M1].
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Fig. 2. Micchelli’s recurrence relation for simplex splines

The paperclip shown in the upper left corner of Figure 2 holds a copy of an MRC
memo, saying: “Diese schoene Formel schickte mir Charlie Micchelli kuerzlich. Ihr
Carl de Boor”. The memo accompanied a copy of Micchelli’s letter which I mailed
to Wolfgang Dahmen, knowing from my short visit to Bonn in August 1978 that he
thought he was on the track to getting recurrence relations.

Dahmen’s response was swift: in a missive dated 30oct78, he submitted to me
directly for possible publication in SJNA the first version of [D5], containing a proof
of the recurrence relations but based on what we now call multivariate truncated
powers or cone splines since they can be thought of as shadows of high-dimensional
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polyhedral cones. A second version reached me 14nov78 which I promptly sent to
Micchelli for refereeing, who was wondering how Dahmen could have found out
so quickly about his formula. In January, Micchelli asked permission (granted, of
course) to contact Dahmen directly during his visit to Germany in February, and
this led to Dahmen’s application (granted, of course) for a research fellowship at
Micchelli’s home institution, the mathematics department at IBM Watson Research
Center in Yorktown Heights NY, and the rest is history. While Dahmen published
various results on multivariate B-splines alone, including papers in conference pro-
ceedings [D1], [D3], [D4], the construction of spaces spanned by such B-splines and
their approximation order [D6], requiring the determination of the polynomials con-
tained in such a span [D2], all leading up to his Habilitationsschrift [D7], his joint
results with Micchelli on the mathematics of box splines were the pay-off of their
joining forces in 1979. But, for that, the box splines had to make their appearance
first.

6 Polyhedral splines

It must have happened during my visit with Ron DeVore at the University of South
Carolina in April 1980 that he and I started a discussion on the relative merits in
multivariate piecewise polynomial approximation of using total degree vs. coordinate
degree whose outcome is [dBD]. The discussion was motivated by the fact that the
approximation order achievable from a space Ah, of piecewise polynomials on a
partition of mesh size h, is bounded by the maximum k for which Π≤k is contained
in the approximation space Ah, and it seems that a tensor product spline space of
coordinate degree k employs many more degrees of freedom (involving polynomial
pieces of total degree > k) than seem necessary to have Π≤k contained in it.

To be sure, it is not sufficient to have Π≤k ⊂ Ah (see, e.g., [dBH3]); rather,
Π≤k must be contained in Ah locally and stably, i.e., there must be a (local and
stable) quasiinterpolant scheme with range Ah available that reproduces Π≤k. It is
this requirement that becomes increasingly hard and eventually, impossible if one
increases the required smoothness of the approximating piecewise polynomials of
order ≤ k for a given partition or mesh. We only considered the bivariate case and
considered only two partitions, a square mesh, and, in order to get some feeling for
triangulations, the square mesh with all northeast diagonals drawn in (now called
a 3-direction mesh or uniform type I triangulation). But how to get the smooth
compactly supported piecewise polynomials needed? In the case of the 3-direction
mesh, Courant’s hat function offers itself for degree 1 and smoothness 0. But it was
the sudden (and very pleasant) realization that this function is the 2-dimensional
(skewed) shadow of a 3-cube that provided us with a recipe for the needed “bump
functions” for the 3-direction mesh, as appropriate shadows of higher-dimensional
cubes. We realized that other finite elements, e.g., the piecewise quadratic finite ele-
ment constructed by Powell in [P], and, earlier, by Zwart in [Z], or certain elements
discussed by Sablonnière, see [Sa], as well as those constructed by Sabin [S], could
also be obtained as shadows of higher-dimensional cubes.

However, these new multivariate B-splines might not have been looked at care-
fully all that quickly but for the arrival at MRC, in the summer of 1980, of Klaus
Höllig, for a 2-year postdoc. I had met Höllig the previous summer during an ex-
tended stay with Karl Scherer at the University of Bonn (during which Ron DeVore
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and I worked successfully in a local “Weinstube” on a problem of mixed-norm n-
width that had arisen in Höllig’s thesis work; see [dBDH]). Höllig produced in short
order the two papers [H1], [H2], rederiving Micchelli’s (and Dahmen’s) results via
Fourier transforms, and proposing a particular way of choosing a collection of sim-
plices so that their shadows span a linear space of piecewise polynomials of order k
with approximation order k. But, more than that, Höllig was swift to follow up on
the suggestion that Micchelli’s recurrence might be a simple consequence of Stokes’
theorem, hence there is a version for shadows of cubes and, more generally, for
shadows of convex polyhedra, as follows.

In the spirit of Micchelli’s view of Schoenberg’s multivariate B-spline, for a con-
vex body B in R

n and a linear map P from R
n to R

d, define the corresponding
distribution MB on R

d by

MBϕ :=

∫

B

ϕ ◦ P, all test functions ϕ,

with
∫

K
the k-dimensional integral over the convex K in case the flat ♭(K) spanned

by K is k-dimensional. Assuming that ♭(P (B)) = R
d, Mb is a nonnegative piecewise

polynomial function, with P (B) its support. Moreover, at each corner of its support,
it agrees with one of Dahmen’s truncated powers.

Assume that the boundary of B is the essentially disjoint union of finitely many
(n − 1)-dimensional convex bodies Bi. Then

DPzMB = −
∑

i

〈z, ni〉MBi
, z ∈ R

n, (4)

(n − d)MB(Pz) =
∑

i

〈bi − z, ni〉MBi
(Pz), z ∈ R

n, (5)

with ni the outside normal to ♭(Bi), 〈x, y〉 the scalar product of x with y, and bi a
point in Bi, hence 〈bi − z, ni〉 is the signed distance of z from ♭(Bi). The pointwise
equality has to be taken in the sense of distributions. The proof of (5) in [dBH1]
follows Hakopian’s proof of (5) in [Ha] for the special case that B is a simplex. Under
the assumption that B is a convex polytope, repeated application of (4) establishes
that MB is piecewise polynomial of degree at most n − d, and in Cn−ρ−2, with ρ
the greatest integer with the property that a ρ-dimensional face of B is mapped by
P into a (d − 1)-dimensional set.

In [dBH2], we called MB a polyhedral spline. Schoenberg’s B-spline became a
simplex spline, Dahmen’s truncated power a cone spline, and the one introduced in
[dBD] a box spline (though Micchelli prefers “cube spline”). These three examples
seem, at present, the only ones carefully studied, probably because their polyhedra
are the only ones whose facets are polyhedra of the same type.

7 Box splines

In contrast to the simplex splines, the construction of a collection of box splines
spanning a useful space of piecewise polynomials is quite simple. If the box spline
in question is
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M := MΞ : ϕ 7→

∫

[0..1)Ξ

ϕ(Ξx) dx

for some multiset or matrix Ξ of full rank of integer-valued nontrivial directions in
R

d, then
S(Ξ) := SMΞ

:= span(MΞ(· − j) : j ∈ Z
d)

is a cardinal, i.e., shift-invariant, spline space which contains all polynomials of
(total) degree k where k is maximal with respect to the property that, for any k-
subset Z of Ξ, Ξ\Z is still of full rank. The full space of polynomials contained in S(Ξ)
is, in general, larger; it is denoted by D(Ξ); it is the joint kernel of the differential
operators DH :=

∏
η∈H

Dη where H ranges over the set A(Ξ) of all H ⊂ Ξ that
intersect every basis in Ξ. In this connection, for any Z ⊂ Ξ, DZMΞ = ∇ZMΞ\Z and,
in particular, DΞMΞ = ∇Ξδ, with δ : ϕ 7→ ϕ(0). Also, MΞ ∗ MZ = MΞ∪Z. However,
linear independence of (M(· − j) : j ∈ Z

d) cannot hold unless Ξ is “unimodular”,
i.e., | detZ| = 1 for all bases Z ⊂ Ξ. Nevertheless, even when there is no linear
independence, one can construct, for k0 ≤ k, a quasi-interpolant scheme Q into
S(Ξ) whose dilation Qh : f 7→ Qf(·/h)(·h) provides approximation of order hk0

for every smooth enough f . It is also clear that Schoenberg’s theory of univariate
cardinal spline interpolation (see, e.g., [Sc2]) can be extended to multivariate box
spline interpolation in case of linear independence of (M(·−j) : j ∈ Z

d) (a beginning
is made in [dBHR]), and that the Strang-Fix theory [FS] of the approximation order
of spaces spanned by the shifts of one function is applicable here.

While Höllig and I derived such basic results, eventually published in [dBH2],
Dahmen and Micchelli pursued, unknown to us, vigorously much bigger game. We
first learned details of their remarkable results from their survey [DM3] in the pro-
ceedings of the January 1983 Texas conference and from their summary [DM2] sub-
mitted in August 1983, with the former the only reference in the latter, and from
reading [DM1], [DM4] and [DM5] for the details of some of the results announced
in [DM2].

Not only did they prove that (MΞ(· − j) : j ∈ Z
d) is (globally or locally)

linearly independent iff Ξ is unimodular (something proved independently by Jia
[J1], [J2]), they showed that the volume of the support of MΞ equals the number
of j ∈ Z

d for which the support of MΞ(· − j) has a nontrivial intersection with
the support of MΞ, and showed that support to be the essentially disjoint union
of τZ + Z[0 . . 1]Z for suitable τZ as Z runs over the set B(Ξ) of bases in Ξ, hence
vold(MΞ[0 . . 1]Ξ) =

∑
Z∈B(Ξ)

| detZ|. They also completely characterized the space

E(Ξ) of linear dependence relations for (MΞ(· − j) : j ∈ Z
d), i.e., the kernel of

the linear map M∗
Ξ : C

Z
d

→ S(Ξ) : c 7→
∑

j
MΞ(· − j)c(j) (with the sum well-

defined pointwise), and showed the space of polynomials in S(Ξ), i.e., the joint
kernel D(Ξ) of the differential operators DH, H ∈ A(Ξ), to have dimension equal to
#B. Remarkably, this last assertion holds even without the restriction that Ξ be an
integer matrix.

But there is more. Recall the truncated power TΞ : ϕ 7→
∫

R
Ξ
+

ϕ(Ξx) dx introduced

by Dahmen in [D5] for the case that 0 6∈ conv(Ξ), i.e., the shadow of a cone. Already
in [DM2], Dahmen and Micchelli define, under the assumption that 0 6∈ conv(Ξ),
the discrete truncated power t(·|Ξ) associated with Ξ as the map on Z

d for which
∑

α∈ZΞ
+

ϕ(Ξα) =:
∑

j∈Z
d

t(j|Ξ)ϕ(j)
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for any finitely supported ϕ, hence t(j|Ξ) = #{α ∈ Z
Ξ : Ξα = j}. In other words,

t(·|Ξ) counts the number of nonnegative integer solutions for the linear system Ξ? =
j with integer coefficients. They prove TΞ =

∑
j∈Z

d t(j|Ξ)MΞ(·−j), and so obtain the
remarkable formula ∇ΞTΞ = MΞ. Their subsequent study of the discrete truncated
power enabled them, as reported in [DM6], to reprove certain conjectures concerning
magic squares, thus opening up a surprising application of box spline theory.

On the other hand, box splines have had some difficulty in being accepted in
areas of potential applications. A particularly striking example is Rong-Qing Jia’s
beautiful paper [J3] which contains a carefully crafted account of the relevant parts
of the theory used in his proof of a long-outstanding conjecture of Stanley’s concern-
ing the number of symmetric magic squares. Referees from Combinatorics seemed
unwilling to believe that such conjectures could be successfully tackled with spline
theory.

In good part because of these (and other) results of Dahmen and Micchelli, there
was a great outflow of work on box splines in the 80s, and it was hard to keep up
with it. For this reason, Höllig, Riemenschneider and I decided to try to tell the
whole story in a cohesive manner, resulting in [dBHR2].

I now wish we had included in the book the exponential box splines of Amos
Ron [R] (followed closely by [DM7]). For, as Amos Ron has pointed out to me since
(and is made clear in [BR]), the (polynomial) box splines can be understood as a
limiting situation of the much simpler setup of exponential box spline. Here is an
example.

Recall the Dahmen-Micchelli result that the dimension of the space D(Ξ) of
polynomials in the span S(Ξ) of the shifts of the box spline MΞ equals the number
#B(Ξ) of bases in Ξ (provided Ξ is of full rank). This is (II.32)Theorem in the book,
and its proof (a version of the Dahmen-Micchelli proof) is inductive and takes about
three pages, with the main issue the claim that dimD(Ξ) ≥ #B(Ξ). However, this
inequality is almost immediate along the following lines suggested by Amos Ron:
Choose, as we may, λ : Ξ → R so that (pξ : x 7→ 〈x, ξ〉−λ(ξ)) is generic, meaning that
the unique common zero, vB say, of (pξ : ξ ∈ B) is different for different B ∈ B(Ξ).
Consider H ∈ A(Ξ). Since H intersects each B ∈ B(Ξ), the polynomial pH :=∏

η∈H
pη vanishes on V := {vB : B ∈ B(Ξ)}. Let ev : x 7→ exp(〈v, x〉). Then, for

arbitrary y ∈ R
d, Dyev = 〈v, y〉ev, hence, for p ∈ Π, p(D)ev = p(v)ev. In particular,

pH(D)ev = 0 for v ∈ V , hence pH(D)f = 0 for arbitrary f =
∑

α
f̂(α)()α ∈

Exp(V ) := span{ev : v ∈ V }. But p(D)f = 0 implies p↑(D)f↓ = 0, with p↑ the
“leading term” of p, i.e., the homogeneous polynomial for which deg(p−p↑) < deg p
and, correspondingly, f↓ the “least term” of f , i.e., the homogeneous polynomial for

which ord(f − f↓) > ordf := min{|α| : f̂(α) 6= 0}. Since (pH)↑(D) = DH and H was
an arbitrary element of A(Ξ), it follows that D(Ξ) = ∩H∈A(Ξ) ker DH ⊃ Exp(V )↓ :=
span{f↓ : f ∈ Exp(V )}. However, Exp(V )↓ has dimension ≥ #V = #B(Ξ), since
(δv : v ∈ V ) is linearly independent on Exp(V )↓. Indeed, for any v ∈ R

d and p ∈ Π,
p(v) = (p(D)ev)(0), hence if

∑
v∈V

c(v)δv = 0 on Exp(V )↓ yet (c(v) : v ∈ V ) 6= 0,

then f :=
∑

v∈V
c(v)ev 6= 0 and so 0 = f↓(D)f =

∑
|α|=ordf

f̂(α)2α! 6= 0 which is
nonsense.
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8 Smooth multivariate piecewise polynomials and the

B-net

I had given up quite early on the study of the space of all piecewise polynomials
of a given order and smoothness on a given partition in more than one variable,
preferring instead the finite element method approach of seeking suitable spaces of
smooth piecewise polynomials spanned by bump functions. This was surely quite
narrow-minded of me as, starting in the 70’s, a very large, interesting and often
challenging literature developed whose results are very well reported in the recent
comprehensive book [LS] by Ming-Jun Lai and Larry Schumaker.

However, in the early 80’s, Peter Alfeld, as a visitor at MRC, introduced me
to the wonderful tool of what is now called the B-form. In this representation, the
elements of the space S

(ρ)
k (∆) of piecewise polynomials of degree ≤ k on the given

triangulation ∆ and in C(ρ) are represented, on each triangle τ = conv(V ) in ∆, in
the form

p =
∑

|α|=k

c(α)
(
|α|
α

)
ℓα, (6)

with α = (α(v) : v ∈ V ) ∈ Z
V
+ ,
(
|α|
α

)
:= |α|!/

∏
v

α(v)!, ℓα :=
∏

v∈V
(ℓv)α(v), and

with ℓv := ℓv,τ the affine polynomial that vanishes on V \v and takes the value 1 at
v, i.e., the ℓv are the Lagrange polynomials for linear interpolation to data given at
V , hence (ℓv,τ (x) : v ∈ V ) are the socalled barycentric coordinates of x with respect
to the vertex set V of τ . Further, it turns out to be very helpful to associate the
coefficient c(α) = c(α, τ ) with the “domain point”

ξα,τ :=
∑

v∈V

α(v)v/k

(which happens to be the location of the unique maximum of ℓα
v (in τ )). For example,

v ∈ V is a domain point, namely ξkδv ,τ , with δv the vector whose only nonzero
entry is a 1 in position v, and all ℓw with w 6= v vanish at that point, hence the
corresponding coefficient, c(kδv), equals p(v). More generally, on the edge of τ not
containing v, i.e., on the zero set of ℓv, the only terms in (6) not obviously zero are
those with α(v) = 0, i.e., whose domain point lies on that edge. Hence continuity
across that edge of a piecewise polynomial function is guaranteed by having the
B-form coefficients of the two polynomial pieces abutting along that edge agree in
the sense that coefficients associated with the same domain point coincide. Tbis sets
up a 1-1 linear correspondence between the elements of S

(0)
k (∆) and their “B-net”,

i.e., the scalar-valued map ξα,τ 7→ c(α, τ ) on {ξα,τ : α ∈ Z
V
+ , |α| = k; τ ∈ ∆}.

Further, for any vector y, Dyℓv = ℓv↑(y), with ℓv↑ the homogeneous linear part
of the affine map ℓv, hence

Dy

∑

|α|=k

c(α)
(
|α|
α

)
ℓα = k

∑

|β|=k−1

(
∑

v∈V

c(β + δv)ℓv↑(y)

)
(
|β|
β

)
ℓβ. (7)

Hence, as Gerald Farin, in [Fa], was the first to stress, C1-continuity across the edge
of τ not containing v is guaranteed by the equalities
∑

w∈V

c(β + δw)ℓw,τ ↑(y) =
∑

w∈V ′

c(β + δw)ℓw,σ↑(y), |β| = k − 1, β ∈ Z
V ∩V ′

+ ,
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with V ′ the vertex set of the triangle σ sharing that edge with τ . Note that the
coefficients in these homogeneous equations are independent of the index β.

It is clear how ρ-fold iteration of this process produces the homogeneous linear
equations that the B-net coefficients of an element of S

(0)
k (∆) must satisfy for Cρ

continuity across the edge of τ not containing v. Each such equation involves the

“quadrilateral” of coefficients c(β + γ) and c(β + γ′), with β ∈ Z
V ∩V ′

+ , |β| = k − ρ,

and, γ ∈ Z
V
+ , γ′ ∈ Z

V ′

+ , |γ| = ρ = |γ′|.

Fig. 3. C1-conditions across an edge in the cubic case.

In Figure 3, the situation is illustrated for the cubic case, k = 3. It shows the
relevant domain points in the two triangles τ and σ sharing an edge, as well as the
quadruples of domain points whose corresponding B-net coefficients must satisfy the
same homogeneous linear equation for C1-continuity across that edge.

This figure makes it immediate why the question of the dimension and approx-
imation order of the space of bivariate C1-cubics on a given triangulation might
be difficult: there is only one domain point in the interior of each triangle, and its
coefficient is involved in three homogeneous equations. Hence, the determination of
an element of S

(1)
3 (∆) involves a global linear system. Correspondingly, it is not even

clear whether there is an element of S
(1)
3 (∆) with prescribed values at the vertices

of all the triangles, i.e., with the B-net coefficients corresponding to the vertices
prescribed.

On the other hand, it has been known for some time that there is a local quasi-
interpolant onto S

(1)
5 (∆) reproducing Π≤5 for any triangulation ∆ (though its sta-

bility will depend on the smallest angle in the triangulation). Checking the geometry
of the smoothness conditions, one realizes (see Figure 4) that 5 is the smallest value
of k for which there is on each edge a ”free” C1-smoothness condition, i.e., one not
touching a smoothness condition for any other edge. This led to the guess that, in
the general case, S

(ρ)
k (∆) has a local quasi-interpolant reproducing Π≤k if there is a

”free” Cρ-smoothness condition on each edge, i.e., one not belonging to the ”ring”
of Cρ-smoothness conditions associated with some vertex v by virtue of the fact that
its edge and the edge of a smoothness condition it touches both contain v. For, one
could hope to use such “free” conditions to “disentangle” or separate neighboring
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Fig. 4. C1-conditions across an edge in the quintic case.

vertex rings. If ξα is the apex of such a “free” C(ρ)-condition, it would have α(v) = ρ
for some v, and would have α(w) > ρ for all w ∈ V \v, hence k = |α| ≥ 3ρ + 2. For
that case, [dBH6] contains a “proof” that, for a triangulation in which all the angles
are bounded below by a constant, the approximation order is full, i.e., of the order
hk+1, where h is the mesh size. Unfortunately, the “proof” fails to take into account
the possibility that the quadrangles corresponding to smoothness conditions across
an edge can become nearly, but not exactly, flat which spoils a certain estimate
on which the “proof” relies. This is explained in more detail in [dB6] which also
contains a detailed account of the construction of a local basis for such spaces. A
satisfactory proof of the main claim of [dBH6] was first given in [CHJ].

The above description of B-form and B-net readily applies to d dimensions (with
the role of triangles played by d-simplices and the role of edges played by faces).
However, in d dimension, existence of “free” C(ρ)-smoothness conditions requires
k ≥ (d + 1)ρ + d for a generic partition into simplices. In particular, already for
d = 3 one would need k ≥ 7 for C(1), which discouraged me from pursuing the
study of all smooth piecewise polynomials on a “triangulation” in higher dimension.

Another result using B-nets in an essential way was the discovery in [dBH3] that,

even on a certain regular triangulation, namely the 3-direction mesh ∆3, S
(1)
3 (∆3)

does not have full approximation order, even though the space contains Π≤3 lo-
cally. This has been reproved in more generality and with very different methods in
[dBDR].

Altogether, the appearance of the B-net revolutionized the analysis of smooth
piecewise polynomials even (and particularly) in the bivariate case, as is illustrated
by its prominence in [LS].

3aug11 10//6: subset --> k-subset



Multivariate splines 15

9 References

[BR] Ben-Artzi, A., Ron, A.: Translates of exponential box splines and their related
spaces. Trans. Amer. Math. Soc. 309, 683–710 (1988)

[B] Birkhoff, G.: Local spline approximation by moments. J. Math. Mech. 16, 987–
990 (1967)

[BdB] Birkhoff, G., Boor, C. R. de: Piecewise polynomial interpolation and approxi-
mation. In: H. L. Garabedian (ed.) Approximation of Functions, pp. 164–190.
Elsevier, New York (1965)

[BG] Birkhoff, G., Garabedian, H.: Smooth surface interpolation. J. Math. Phys. 39,
258–268 (1960)

[dB0] Boor, C. de: Bicubic spline interpolation. J. Math. Phys. 41, 212–218 (1962)
[dB1] Boor, C. de: On local spline approximation by moments. J. Math. Mech. 17,

729–735 (1968)
[dB2] Boor, C. de: On uniform approximation by splines. J. Approx. Theory 1, 219–235

(1968)
[dB3] Boor, C. de: Splines as linear combinations of B–splines, a survey. In: G. G.

Lorentz, C. K. Chui, and L. L. Schumaker (eds.) Approximation Theory, II,
pp. 1–47. Academic Press, New York (1976)

[dB4] Boor, C. de: Efficient computer manipulation of tensor products. ACM Trans.
Math. Software 5, 173–182. Corrigenda: 525 (1979)

[dB5] Boor, C. de: The polynomials in the linear span of integer translates of a com-
pactly supported function. Constr. Approx. 3, 199–208 (1987)

[dB6] Boor, C. de: A local basis for certain smooth bivariate pp spaces. In: C. Chui,
W. Schempp, and K. Zeller (eds.) Multivariate Approximation Theory IV, ISNM
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[CS] Curry, H. B., Schoenberg, I. J.: On Pólya frequency functions IV: the fundamen-
tal spline functions and their limits. J. Analyse Math. 17, 71–107 (1966)

[Dav] Davis, Philip J.: Triangle formulas in the complex plane. Math. Comp. 18, 569–
577 (1964)

[D1] Dahmen, W.: Multivariate B-splines—Recurrence relations and linear combina-
tions of truncated powers. In: W. Schempp and K. Zeller (eds.) Multivariate
Approximation Theory, pp. 64–82. Birkhäuser, Basel (1979)
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