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Abstract. Stimulated by recent work by Gregory and Qu, it is shown that the limit of local

corner cutting is a continuously differentiable curve in case the corners of the iterates become

increasingly flat.

1



It was proved in [de Boor ’87] that corner cutting of any kind converges to a Lipschitz-
continuous curve, but the question of how one might guarantee that the limiting curve be
smoother than that was not considered there. Recently, Gregory and Qu [Gregory, Qu
’88] took up this question and established sufficient conditions for a certain systematic and
local corner cutting scheme to give a limiting curve in C1. Since [Gregory, Qu ’88] use
the same parametrization of the successive broken lines that made the argument in [de
Boor ’87] so simple, I became intrigued and took a look at what one might say in greater
generality. Specifically, I looked for conditions under which continuous differentiability
of the limiting curve could be inferred from the fact that the corners of the broken lines
flatten out eventually.

It is the purpose of this note to prove that the limit of any ‘local’ corner cutting
scheme is in C1 provided the corners of the broken lines become increasingly flatter. A
simple example is given to show that this condition is not necessary, while another example
shows that, without ‘localness’, the condition is not sufficient, in general. Finally, as an
application, the nice argument in [Gregory, Qu ’88] is redone.

1. Cutting corners

In this section, we recall the setup of [de Boor ’87].
We deal with a sequence (bn)∞n=0 of broken lines in which, for n > 0, bn is obtained

from bn−1 by a ‘cut’, i.e., by replacing a curve segment by the subtended secant to the
curve. This means that all the vertices of bn lie on bn−1, i.e., bn can be thought of having
been obtained from bn−1 by interpolation. This observation is used in [de Boor ’87] to
prove that, no matter just how the cutting was done to generate the sequence (bn) from an
initial broken line b0 with finitely many vertices, b∞ := limn→∞ bn exists as a Lipschitz-
continuous curve which is approached uniformly by bn, i.e., limn→∞ dist (bn, b∞) = 0.

The argument in [de Boor ’87] was based on parametrizing the curves appropriately.
If (vi) is the sequence of vertices of bn and (ti) is a corresponding arbitrary increasing
sequence of numbers, then bn can be parametrized by

(1.1) bn(t) := vi−1
ti − t

ti − ti−1
+ vi

t − ti−1

ti − ti−1
, ti−1 ≤ t ≤ ti, all i.

Since bn is obtained from bn−1 by interpolation, it is natural to choose the sequence (ti)
in dependence on the parametrization of bn−1, i.e., so that bn(ti) = vi = bn−1(ti) for all i.
With this,

bn = Pnbn−1,

where Pn is broken line interpolation at the points (ti). Therefore, ultimately, bn =
Pn · · ·P1b0, with Pn · · ·P1 a linear map. Hence, although the process of generating the
sequence (bn) is nonlinear (in that it is quite arbitrary), once we have decided on how to
cut, we can think of each bn as a linear function of b0. In particular, writing b0 in any one
of many reasonable ways as a sum

b0 =
∑

i

wiϕi
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of scalar-valued functions ϕi with vector coefficients wi ∈ IRd, we have

bn =
∑

i

wiPn · · ·P1ϕi,

and questions of convergence or of smoothness of the limit can be settled by settling
them for the (presumably simpler) sequences (Pn · · ·P1ϕ), with ϕ any one of the ϕi. A
particularly simple choice for the ϕi are the truncated powers (· − τi)+ (in addition to the
constant function), and this leads to the conclusion that the nature of the limiting curve
can be understood if one understands what the particular corner cutting process does to
the standard corner, i.e., the broken line with vertices (0, 0), (1, 0), (2, 1).

2. Examples

We are now ready to consider the smoothness of the limiting curve, having understood
that it is sufficient to consider the case that b0 is a piecewise linear (real-valued) function
on some interval. Implicit in this statement is the claim that the corners of the curve bn

become flat if and only if the corners of its component functions become flat. While the
increasing flatness of the component functions does indeed imply the increasing flatness
of the curve so parametrized, the converse does not hold for general corner cutting since
it is possible to obtain a nonregular parametrization thereby. (Take, e.g., b0 to have the
vertices (-1,0),(1,0),(1,1),(0,1),(0,0),(2,0), use arclength parametrization for b0, and obtain
b1 by cutting out the loop, e.g., by cutting across the parameter interval [1,5]. Then b1

has no corners, while b′1 has jumps.) But in ‘local’ corner cutting to be discussed, such
examples are not possible, as is argued at the end of the next section.

With b0 a piecewise linear function, each bn is of the same nature, and its derivative,
dn := b′n, is a step function. In the notation adopted in the preceding section,

(2.1) dn =
∑

i

(· − ti)
0
+ jumpti

dn,

with jumptd := d(t+)−d(t−) the difference between the limit from the right and the limit
from the left at t. We can take the absolutely largest jump, i.e., the number ‖jump()dn‖∞,

as a measure of the extent to which bn fails to be in C1.
It will be useful to visualize the process by which dn is obtained from dn−1. Suppose

that bn is obtained from bn−1 by replacing bn−1 on [s, t] by the linear interpolant to bn−1

at s and t. Then

∫ t

s

(

dn − dn−1

)

(x)dx = (bn − bn−1)(t) − (bn − bn−1)(s) = 0.

Also, dn is a constant (viz., the difference quotient [s, t]bn−1) on [s, t]. If now bn−1 has
just one vertex in [s, t], then dn−1 has just two steps there, hence dn − dn−1 has just two

steps there and, as
∫ t

s
(dn−dn−1) = 0, the two rectangles which make up this integral must

balance; see (2.2)Figure.
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rα

lβ

hlJ

hrJ

(2.2) Figure The change in the derivative as the result of a corner cut. The
two areas are of equal size.

More precisely, let J be the jump in dn−1 at that sole vertex in [s, t], let l and r be the
parametric distances of the corner from its left and right neighbor, and assume that the
two new vertices (which replace the vertex being cut off) occur at parametric distances lβ
and rα, respectively (with α, β ∈ [0, 1]). Then the two new jumps are of size hlJ and hrJ ,
with hl + hr = 1 and lβhl = rαhr, or,

(2.3) hl =
rα

lβ + rα
= 1 − hr.

(2.4) Figure These uniformly nonsmooth broken lines converge to a smooth limit.

Here is an example to show that the maximum jump need not go to zero for the limit
function to be C1. As shown in (2.4)Figure, the limiting function is smooth (it is the
zero function), while the maximum jump in the first derivative stays above 1 (in absolute
value). Note that, in this example, we have done two cuts simultaneously, i.e., in terms of
the setup adopted earlier, we are showing only every other iterate. Note also that, strictly
speaking, each of our cuts involves two corners. It will be important later on to know
that such an example (of a limiting curve being smooth even though the absolutely largest
jump in the derivative of the iterates is bounded away from zero) can also be given when
each cut involves only exactly one corner. Such an example can be supplied by applying,
e.g., Chaikin’s algorithm to the initial broken line in the above example, except that the
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points on the two segments flanking the middle segment are chosen closer and closer to
the farther endpoint.

We also illustrate the fact that having the maximum jump in the first derivative go
to zero is, in general, no guarantee that the limiting curve is C1. The essence of such an
example is the observation that the limiting d∞ will have a jump at any point at which
sufficiently many jumps (of the same sign) of the iterates dn accumulate. Individual jumps
may well become arbitrarily small, yet their combined strength may force a jump in d∞.
Since corner cutting does not increase the sum of the absolute jumps, this requires mi-
gration of jumps, and this can already be accomplished by cuts involving just one corner,
as long as such a cut is allowed to start at a neighboring corner. For (see (2.2)Figure) in
that case, part of the jump at the corner being cut away is transferred to the jump at the
neighboring corner, thus increasing it if it is in the same direction. A subsequent corner
cut can move most of that jump further.

(2.5) Figure By a sequence of edge cuts (as the one illustrated on the left),
all vertices (o) of the original broken line are shifted by the
same amount to the NNW (∗). After a succession of such cuts,
a broken line (•) with the same angles but vertices much more
clustered is obtained.

(Only the left half of a symmetric situation is shown.)

Without going into all the details, here is a specific example whose final form has
benefitted much from comments by Hartmut Prautzsch [Prautzsch ’89]. As he suggests,
only two kinds of cuts need to be used, a symmetric cut across a corner which therefore
replaces that corner’s jump by two jumps of half the size, and an edge cut, i.e., a cut
across two corners which results in an edge parallel to the edge cut away, hence leaves the
jumps at the edge’s endpoints unchanged. Note that such an edge cut can be effected by
two cuts across just one corner but including a neighboring corner as an endpoint (see the
detail in the left part of (2.5)Figure). The resulting (temporary) increase in vertex angle
cannot exceed the sum of two neighboring vertex angles.

(2.5)Figure shows the left half of the symmetric starting configuration (o). A sequence
of edge cuts starting with the third edge from the left (with a symmetric sequence of edge
cuts on the right, but not shown here) shifts all but the first two vertices shown the same
amount to the left, to the locations marked (∗). A next move would shift all but the first
three of these vertices the same amount to the left, then all but the first four vertices shown
the same amount to the left, etc, always maintaining symmetry. The new configuration
obtained in the end is also shown, with the new vertices marked (•). It has exactly the same
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angles as the original configuration, but the corners are now much more closely clustered
near the second (and second last) vertex.

Repetition of this process produces a sequence of broken lines converging to a broken
line with a corner at the second (and second last) vertex, while maintaining the original
angles (and not introducing any new or bigger angles). It is now a simple matter also to
make all the corners flatter: Start off the beginning of each repetition with a symmetric
cut across each active corner, i.e., each vertex other than the second and second last, (say
from position 2/3 on the left segment to position 1/3 on the right). This will double the
number of vertices and halve all angles. Since the process preserves angles, the resulting
sequence of broken lines has all its vertex angles go to 0 uniformly, yet converge to a curve
which is not C1.

Nevertheless, if the corner cutting is local, then having the absolutely largest jump in
the first derivative (or, equivalently, the largest vertex angle) go to zero does imply that
the limiting function is in C1. This is the content of the next section.

3. Local corner cutting

We say that the corner cutting is local in case any cut involves exactly one corner.
This means that the cut endpoints must lie in the interior of the two segments which form
the corner being cut. Schemes that cut all corners simultaneously fall into this category as
long as the cuts of neighboring corners do not share an endpoint. For we can then think
of them as having been carried out one cut at a time. In particular, the corner cutting
scheme considered in [Gregory, Qu ’88] is local in this sense, as are the schemes considered
in [de Rham ’47] so many years ago. It follows that every segment, of the original broken
line as well as of any subsequently generated broken line, is tangent to the limiting curve,
hence the situation depicted in (2.5)Figure could not have been generated by local corner
cutting. On the other hand, we can obtain any Lipschitz-continuous curve (with finitely
many regions of concavity/convexity) by local corner cutting, by starting off with any
sufficiently articulated broken line whose segments are tangent to the target curve, and
then using only cuts whose secant touches the curve.

(3.1)Theorem. The limiting curve produced by a local corner cutting scheme is C1 in

case the maximum jump in the first derivative of the iterates bn goes to zero as n → ∞.

The converse holds in case b0 is convex and for arbitrary corner cutting.

Proof: It is sufficient to consider the special case that b0 is the ‘standard corner’.
Then b0 is convex, hence so are all the iterates, with bn growing uniformly, and pointwise
monotonely, toward the limit function b∞, which is also convex. Let b be one of the iterates.
Then d := b′ is a monotone increasing step function. Recall from (2.1) that

d =
∑

j

(· − tj)
0
+ jumptj

d,
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with 0 < t1 < . . . < tm < 2 its breakpoints. We consider also the two step functions d+

and d−, given by the rule

d± =
m

∑

j=1

(· − tj∓1)
0
+ jumptj

d,

with t0 := 0 and (for the sake of neatness) tm+1 := 2. Then ‖d+ − d−‖∞ ≤ 2‖jump()d‖∞,

while d− ≤ d ≤ d+ pointwise, since d is monotone increasing.

(3.2) Figure Local corner cutting contracts the ‘envelope’ formed around
the derivative d by the step functions d− and d+.

Further, if b∗ is obtained from b by cutting off exactly one corner, and d∗ is, corre-
spondingly, the derivative of b∗, then (see (3.2)Figure)

(3.3) d− ≤ (d∗)− ≤ (d∗)+ ≤ d+.

This implies that the first derivative of all subsequent iterates lies between d− and d+.
Hence, if ‖jump()dn‖∞ −→ 0 as n → ∞, then

(

dn

)

is a Cauchy sequence in the complete
normed linear space of all bounded functions on [0, 2] (with the max-norm). Consequently,
dn = b′n converges uniformly to some bounded function d∞. Now consider the modulus of
continuity ω∞ of this limiting function. For any h > 0 and any n,

ω∞(h) = sup
0<t−s<h

(d∞(t) − d∞(s)) ≤ sup
0<t−s<h

(d+
n (t) − d−

n (s)) =: ωn(h).

Note that ωn is a nondecreasing step function, with 0 ≤ ωn(0+) = supj(dn(tj+2+) −
dn(tj−1−)) ≤ 3‖jump()dn‖∞ −→ 0 as n → ∞. Consequently, for every ε > 0, we can
find n and δ > 0 so that, for all h < δ, ωn(h) < ε. This proves that ω∞(0+) = 0, and so
establishes that d∞ is continuous.

We now know that bn converges uniformly to some Lipschitz-continuous function b∞,
while dn := b′n converges uniformly to some continuous function d∞. It is a standard result
that, therefore, b′∞ = d∞, i.e., the limiting function b∞ is in C1.

For the converse, assume that the sequence (bn) of convex broken lines, all defined on
the interval [0,2] say, converges uniformly to some function b. Assume further that b is
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continuously differentiable at the interior point p. This means that, for some modulus of
continuity ω (i.e., some positive function ω on (0,∞) with ω(0+) = 0),

[t, p]b := (b(t) − b(p))/(t − p) = b′(p) + O(ω(|t − p|)).

Now consider J := jumppbn for some n, and let ε := ‖b − bn‖∞. Then, for any small
positive h,

0 ≤ J ≤ [p + h, p]bn − [p, p − h]bn ≤ [p + h, p]b − [p, p − h]b + 4ε/h = O(ω(h)) + 4ε/h.

Since ω(0+) = 0 and ε = ‖b− bn‖ → 0 as n → ∞, this implies that J must be small when
n is large.

Remarks (i) The theorem fails already if the concept of a ‘local’ cut is relaxed to
permit inclusion of the segment endpoint(s), as the earlier example illustrates (and [de
Boor ’88] ignorantly contradicts).

(ii) In local corner cutting as defined here, each original segment and all segments
subsequently generated are tangent to the limiting curve. In particular, whatever the
parameter values τi assigned to the vertices of the initial broken line b0, there exists a
point σi between τi and τi+1 so that, for all n, bn(σi) = b0(σi). For each n, the curve
segment bn([σi−1, σi]) turns monotonely through the same total angle, with the maximum
angle (weakly) decreasing as n increases. This implies that the component functions are
convex on the parameter inverval [σi−1, σi], hence converge uniformly and monotonely
there. Further, arclength sn of bn as a function of the parameter t is a strictly monotone
broken line on that parameter interval (its slopes being bounded above by 1 and below by
‖b0(σi−1) − b0(σi)‖/|σi−1 − σi|).

Consider now the angle α at some vertex v = bn(τ) with τ ∈ [σi−1, σi]. Then, using
a dot to denote differentiation with respect to arclength,

‖jumpτb′n/s′n‖
2 = ‖ḃn(τ+) − ḃn(τ−)‖2 = 2(1 − cos(α)).

But s′n = ‖b′n‖ is bounded above and below. Hence ‖jumpτ b′n‖ can be bounded in terms
of

√

1 − cos(α). This proves that the jumps in the slope of the component functions must
go to zero if the corners of bn flatten as n → ∞, hence shows that b∞ is C1 in that case.

4. The Gregory-Qu result

As an application of (3.1)Theorem, we now consider the Gregory-Qu scheme, in which
bn is obtained from bn−1 by a simultaneous, non-interfering, cutting of all corners; hence
the scheme is local in the sense defined earlier. In fact, [Gregory, Qu ’88] assumes that
the new vertices generated are in the interior of old segments (i.e., that all α and β are
positive, in the notation used there and introduced below). But if we allow also trivial
cuts, i.e., cuts that begin and end at the same vertex (α = 0 or β = 0), then this scheme
models any local corner cutting.
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rαr rβr

lβllαl

hlJ

hrJ

(4.1) Figure The change in the derivative due to one step of the Gregory-Qu
process.

To prove that the limit is in C1, it is therefore sufficient to prove that the jumps in
the first derivative go to zero. For this, we discuss the scheme in terms of the step function
which is the first derivative of the broken line in question. A look at (4.1)Figure might be
helpful.

The single jump of height J , with left and right segments of length l, r, spawns
two jumps, a left one of height Jhl, with hl := rαr/(lβl + rαr) and with segments ll :=
l(1 − αl − βl) and rl := lβl + rαr, and a right one of height Jhr, with hr := 1 − hl and
with segments lr := rl and rr := r(1 − αr − βr). Since

hl =
1

1 + (βl/αr)l/r
= 1 − hr = 1 −

1

1 + (αr/βl)r/l
,

we can be assured that hl and hr are uniformly smaller than 1 (hence the limiting curve
is in C1) provided we can show that the local mesh ratio l/r is bounded away from 0 and
∞. For this, consider the local mesh ratios ll/rl and lr/rr spawned by the cutting of this
corner. We find

ll/rl =
l(1 − αl − βl)

lβl + rαr

= L(l/r),

with

L(t) :=
t(1 − αl − βl)

tβl + αr

.

This function is increasing on [0,∞), starting at 0 with a value of 0 and a slope of L′(0) =
(1−αl −βl)/αr at 0 and taking the limiting value L(∞) = (1−αl −βl)/βl. Consequently,
L maps the interval [0,∞) into the interval [0, L(∞)]. Further, if L′(0) > 1, then L has
an attracting fixed point in that interval, viz. the point F := (1 − αl − βl − αr)/βl =
(L′(0) − 1)αr/βl. This means that L maps any interval [1/M, M ] containing F (and
contained in [0,∞]) into itself.

By symmetry, rr/lr = R(r/l), with

R(t) :=
t(1 − αr − βr)

βl + tαr
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F

(4.2) Figure The function L contracts around the point F .

a function which maps [0,∞) into the interval [0, R(∞)], and which has the fixed point
G := (1− αr − βr − βl)/αr = (R′(0)− 1)βl/αr in case R′(0) = (1− αr − βr)/βl is greater
than one. This means that R maps any interval [1/M, M ] containing G (and contained in
[0,∞)) into itself.

We conclude that the local meshratios are bounded away from 0 and ∞ provided the
fixed points F and G are eventually bounded away from 0 and ∞. As [Gregory, Qu ’88]
point out, this can be guaranteed by having α and β eventually bounded away from zero,
i.e. having both α := lim inf α and β := lim inf β be positive, and having L′(0), R′(0) > 1

when formed with αl, αr = α := lim supα and βl, βr = β := lim supβ. This amounts to
the conditions

0 < α, β and α, β < 1 − α − β.

When these conditions are violated, we cannot be certain that the local meshratios
stay away from 0 or ∞, hence the reduction factors hl or hr may come close to 1. This
does not, of itself, imply that the limiting curve has corners. But the above discussion is
sufficient to show that the limiting curve has corners if L′(0) or R′(0) are uniformly below
1.

We discuss this only for the case of constant α and constant β. Assume, for example,
that α and β are such that

R′(0) =
1 − α − β

β
< 1.

Then, starting with the ‘standard corner’, the cutting process generates a sequence of
vertices proceeding to the right with associated local mesh ratios r/l equal to

R(1), R2(1) = R(R(1)), R3(1), . . .

which decay geometrically to zero. In fact, Rn(1) ∼ (R′(0))n as n → ∞. The corresponding
reduction factors therefore satisfy

(4.3) h(n)
r =

1

1 + (α/β)Rn(1)
= 1 − (α/β)Rn(1) + O((Rn(1))2) ∼ 1 − (α/β)(R′(0))n.
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We want to show that the corresponding sequence of jumps is bounded away from zero.
Since this is a decreasing sequence, it is sufficient to show that its limit, the infinite product

∞
∏

n=1

h(n)
r ,

is positive. This is the same as proving that the infinite series

∞
∑

n=1

lnh(n)
r

is finite. From (4.3), lnh
(n)
r ∼ −(α/β)(R′(0))n, i.e., the terms of the sum behave like that

of a convergent geometric series, hence the series converges.

The foregoing analysis also explains the fractal nature of the resulting curves (when
using constant α and β). For it shows that the height of a particular jump or the meshratio
at a particular breakpoint of the nth iterate is the result of two contending fixed point
iterations, L and R, with the influence of each entirely determined by the particular se-
quence of right and left turns taken to reach the breakpoint in question from the original
breakpoint. In particular, we expect any collection of jumps sharing the first few of these
turns to look like any other collection of jumps sharing the first few of these turns.

It would be interesting to explore further special situations when the fixed points
coincide. For example, both fixed points (for L and R) are 1 exactly when α + β = 1/2.
In this case, all the mesh ratios are the same, hence the left factors hl are all the same
as are all the right factors hr. The requirement that hl = hr is satisfied exactly when
α = β. Thus the imposition of both requirements leads to α = 1/4 = β which is Chaikin’s
algorithm.

References

de Boor, C. (1987), Cutting corners always works, Computer Aided Geometric Design
4, 125–131.
de Boor, C. (1988), Local corner cutting and the smoothness of the limiting curve,
CMS Technical Summary Report #89–18.
Gregory, John A. and Qu, R. (1988), Non-uniform corner cutting, ms.
Prautzsch, H. (1989), letter of Mar.3 .
de Rham, G. (1947), Un peu de mathematique à propos d’une courbe plane, Elem.
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