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ABSTRACT. We show that the L,(£2)-norm of the error in surface spline interpolation of
a compactly supported function in the Sobolev space W2™ decays like O(§77T™) where
vp :=min{m,m +d/p —d/2} and m is a parameter related to the smoothness of the surface
spline. In case 1 < p < 2, the achieved rate of O(62™) matches that of the error when the
domain is all of R? and the interpolation points form an infinite grid.

1. INTRODUCTION

Let = be a finite set of scattered points in R? and let f : R? — C be a function which
is known only on =. A problem of practical importance is that of constructing a smooth
function which interpolates the known data f|: and provides a good approximation to f

on any domain which is near =. There are a number of methods which are currently being
investigated in the literature for which the reader is referred to the surveys [10], [6], and
[18]. In this paper we restrict ourselves to the method known as surface spline interpolation
which we now describe.

Let m be an integer greater than d/2, and let H be the set of continuous functions
5 : R?Y — C all of whose derivatives of total order m are square integrable. Let ||| - ||| be
the semi-norm defined on H by

sl s= N 31 2y ey »

where § denotes the Fourier transform of s given formally by S(w) = [p s(z)e™tv e da,
w € R% Duchon [7] has shown that if f € H and = is a bounded subset of R? satisfying

(1.1) Vg € (g = 0= ¢ =0),
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where II; := {polynomials of total degree < k}, then there exists a unique s € H which
minimizes |||s]|| subject to the interpolation conditions s;_ = fi_. The function s is called

the surface spline interpolant to f at = and will be denoted ];y T=f. When = contains
only finitely many points, Duchon further shows that Tt f is the unique function in S(¢; =)
which interpolates f at Z. Here ¢ : R? — R is the radially symmetric function given by

(ﬁ_{ 2 if d is odd

2m—d . .
|-"" " “log|-| if d is even,

and S(¢; =) denotes the space of all functions of the form

g+ Y Aed(-—8),

==
where g € II,,_1 and the \¢’s satisfy!
(1.2) D Aer(§) =0, Vrell, .
==

In order to discuss the extent to which Tk f approximates f, let us assume that Q@ C R
is an open bounded domain over which the error between f and Tz f is measured. We
assume that = C € and define the ‘density’ of = in {2 to be the number

§:=46(Z;Q) :=supinf |z —¢].
€ ge=

A common means of describing the asymptotic approximation attributes of an interpolation
method is via the notion of Ly-approximation orders. Surface spline interpolation in €2 is
said to provide L,-approzimation of order ~ if

If = T=fll, @ =007) asd—0

for all sufficiently smooth functions f. Duchon [8] has shown that if 2 is connected, has
the cone property, and has a Lipschitz boundary, then surface spline interpolation in €2
provides L,-approximation of order at least

~p :=min{m,m + d/p — d/2}
for p € [1..00]. More precisely, it was shown that for all f € H and p € [1.. 0],

(1.3)
Ilf — TEfHLp(Q) < const(m, Q)7 |||Taf — T=f]||, for sufficiently small §, and

(1.4)
| Taf —T=f]|] = 0 as d — 0.

'n case Z is infinite, we require additionally that only finitely many of the A¢’s are nonzero.
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The lengthy assumptions on €2 were employed because Duchon only wanted to assume that
f e W3 (Q). These assumptions assured the existence of a function in H whose restriction
to Q agreed with f. If one assumes straight off that f € H, then (1.3) and (1.4) hold
provided that Q is a bounded open subset of R? having the cone property. In the limiting
case when the points = are taken as the infinite grid hZ? and € is taken as all of R?, it is
known (cf. [5], [13]) that ||f — TEfHLp(Rd) = O(h*™) for all sufficiently smooth f.

The gap between v, and 2m is rather substantial, and it has been my aim of late to
narrow this gap. An upper bound on the possible L,-approximation order of surface spline
interpolation is obtained in [15] for the special case when Q = B := {z ¢ R¢: |z| < 1}. Tt
is shown that there exists a €' function f such that

1f = T=fllL, ) # o(6™ /) as § = 0.

Interestingly, what is actually proved is that ||f — TEfHLp(B\(l—h)B) + o(d™T1/P) where
B\(1—h)B can be interpreted as the boundary layer within € of depth h. Thus it appears
that our inability to achieve L,-approximation of order 2m is due primarily to boundary
effects. This corroborates experimental evidence reported by Powell and Beatson [19]. It
becomes interesting now to see if it is possible to approach L,-approximation of order 2m
is one changes the rules of the game so as to disabe the boundary effects. One approach
is to measure the error not on all of £, but rather on a compact subset of 2. Bejancu [1]
has considered the case when ) is the open unit cube (0..1)¢ and the interpolation points
are those points of the grid hZ? which lie in the closed cube [0..1]?. He shows that if K
is a compact subset of (0..1)? and f is sufficiently smooth, then

If = T=fll; () = O(R*™)  ash — 0.

In the present work, we use an alternate means of disabling the boundary effects. We
assume that f, the function being interpolated, is compactly supported within €. Before
stating our main result (see Corollary 5.1 for a more general statement), we define the
Sobolev spaces W,

Definition 1.5. The Sobolev space W.', v > 0, is the set of all f € Ly := Ly(RY) for
which

1y o= ||(1+ F7)7727]

< Q.
Lo

Theorem 1.6. Let §) be an open bounded subset of R? having the cone property. If = C Q
satisfies (1.1) and f € W™ is supported in Q, then

1F = Tl < const (@, m)™ ™ gz

for sufficiently small § := 6(Z; Q).

Note that, for p € [1..2], the exponent of § is 2m. Although ~, + m < 2m when

2 < p < oo, we at least have v, +m > m + 1/p. Our proof of Theorem 1.6 is accomplished
by showing that the factor |||Taf — Tz f|||, on the right side of (1.3), decays like O(8™).
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For this, it suffices to show that there exists s € S(¢; =) such that |||[Taf — s||| = O(™).
We do this by first showing, in Section 3, that there exists an s, € S(¢;hZ?) such that
[|Taf — sn|l| = O(8™), where h is a multiple of §. Then, in Section 4, we show that there
exists s € S(¢; =) such that |||s, — s||| = O(6™). The final result, Corollary 5.1, is then

proved in Section 5.

%L 92 H%d
81:‘111 81’;2 o axjd )
The natural numbers are denoted N := {1,2.3,...}, and the non-negative integers are
denoted Ng. For multi-indices a € N¢, we define |a| := a1 + as + -+ + a4, while for

Throughout this paper we use standard multi-index notation: D¢ :=

z € R?, we define |z| := \/:1;% + 23 + -+ 4+ 22. For multi-indices a, we employ the notation
() to represent the monomial z ++ 2%, x € R% The space of polynomials of total degree
< k can then be expressed as Iy := span{()® : |a| < k}. For x € R? we define the
complex exponential e, by e, (t) := ¢! ¢ € R% The Fourier transform of a function f
can then be expressed as ]/C\(w) := Jpa €—w(z)f(x)dr. The space of compactly supported
C'* functions is denoted C>°(R?). If i is a distribution and g is a test function, then the
application of p to ¢ is denoted (g, 11). We employ the notation const to denote a generic
constant in the range (0..o00) whose value may change with each occurence. An important
aspect of this notation is that const depends only on its arguments if any, and otherwise
depends on nothing.

2. PRELIMINARIES

The Besov spaces, which we now define, play an essential role in our theory.

Definition 2.1. Let Ay := B, and for k € N, let Ay := 2¥B\2*"!B. The Besov space
B;q, v E€R, 1< g < oo, is defined to be the set of all tempered distributions f for which

< 0.

£, = 27
" éq(NO)

f

Lo(Ag)

The spaces B;q are Banach spaces; the reader is refered to [17] for a general reference.

Definition. For v € (0..m], let M., be the set of all compactly supported distributions
1t which satisfy

(2.2) () =0 Vgelln

H/,LHB;;Om f0<y<m
and ] e, < o0, where [l vp, = =

ly, =
The set of all ¢ € M., for which suppp C A is denoted M., (A).

For pn € M., we define the convolution ¢ * ;1 by

(64 1) "= Gfi.
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Proposition 2.3. Let v € (0..m]. If pe M., ¢ €Il,,—1, and 0 < h <1, then
(i)  ¢*xp+qeH,
G il

(i) 1l ymr ) < const(m, )R [lull v,

)
sy S constm ) il and

Proof. The proofs of [16; Lem. 2.3, Prop. 2.4] can be adapted in a straightforward fashion
to obtain (i). For (ii),(iii) we have

< h™ || =hr" d
Lo(BI\R-1B) HMHLQ HMHMM , an

17 =3y < Bl 2y = el g,

which proves (ii) and (iii) for the case ¥ = m. So assume 0 < v < m, and let [ be the least
integer for which 2! > h~!. Then

5 s
MLQ(Rd\h—lB)_kz_:l |7

<omN oTkmyn
Lo(Ap) = kz::l H/“LHLQ(A;{)

<2m Y 27FmRm T )| < const(m, )27 [l o, < const(m,y)RY ||y, o and
k=1
l

l

~ ~ k(m—

H/“LHLQ(h—lB) < Z HMHLQ(AR) < 22 (m=) HMHMv
k=0 k=0

< const(m, 1)2"" 7 |l pp, < constlm, )BT sl v,
which completes the proof of (ii) and (iii). O
3. THE GRIDDED SURFACE SPLINE sp,(ft)

Let n € C.(RY) and ¢ € C2°(RY) satisfy

(3.1) sup |do,; — N(w — 277)| < const(d, m)|w|™, w € R?
jez
(3.2) 11— 5(w)| < const(d, m)— — weRY
14w
and put
V=m0

The existence of such functions n and o is known. For example,  can be realized as a
finite linear combination of the translates of a box spline (see [3]) and o can be realized
as a finite linear combination of the translates of any function in C2°(R¢) having nonzero
mean.

For p € M., and h > 0, we define

sn(p) = Z [O(/R) * p](hy) &(- = Rj).

The proof of the following result is motivated by the techniques developed in [2].
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Proposition 3.3. Letvy € (0..m], he (0..1]. Ifpe M, q € Il_q, and f := d*pu+q,
then

(i) su(p) € S(;RZ N (hsuppy +suppp))  and
(1) f = sa(p)ll] < const(m, v)R™ ||| o, -

Proof. Put pp := ¢(-/h) * p. Since supp pp, C hsuppt + supp p, it is clear that s;(u) €
span{p(-—&) : £ € hZN(hsupp Y+supp i) }. Hence, in order to prove (i), it remains only to
show that E cza tr(hg)r(3) =0 for all r € 1L, . If we put ¢ := pp(h-)r, then we obtain
from Poisson’s summation formula (cf. [20], Chapter 7) that Ejezd 9(7) = E]‘eZd g(277).

Now [, = hd{/)\(h-)ﬁ; hence, if r = E|a|<m i~lela, ()@, then

G= 3 @D (/) = Y aaD[ER(/R)).

|| <m |a|<m

Condition (3.1) ensures that D*[o/i(-/h)] = 0 at 275 whenever j € Z?\0 and |a] < m.
On the other hand, (2.2) ensures that D¥[noj(-/h)] = 0 at 0 for all |a] < m. Hence,
Ejezd pn(hy)r(y) = E]‘eZd 9(27j) = 0 which proves (i). We turn now to (ii). For brevity,
let us write s, in place of sp(p). According to [11], ¢ can be identified on RNO with
Co |-|_2m where ¢, is a nonzero constant depending only on m and d. For w € R?\0, we
have §,(w) = Zjezd d(w)pep (hy)e™ v If we define g := i (h+)e_pw, then we obtain
from Poisson’s summation formula that Ejezd 9(7) = E]‘ezd g(277). Hence,

Siw) = o(w) 3 g0) = alw) 3 (2mj)

JEZS jeZd

:g Zh fn(w +2mj /h) = Z (hw 4 277)f(w + 275 /h).
JEZA €7

Thus,

1 1 m,e o~
|c—¢||||f—8h||| = ol H|'| (f_Sh)‘

Lo (R4\0)

= 17" A= > bk +2m )i + 275 /)]

d
EZ L2

IA

Y (k- +2m))i(- + 275 /h))|| =T+ I1.
JEZANO

{7 = ||+
Lo
o]”

We consider first I. It follows from (3.1) and (3.2) that ‘1 — {/)\(w)‘ < const(d, m)w,
w
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w € R% Consequently,

2 2

2= ||l (= S

|l = e

Lo(h=1B) Lo(RE\R=1 B)
) 2
< const(d, m) H|| " Lo(h=1B)

+ const(d, m) H ™™

Ly (RiI\R=1 B)

_ const(d,n@)h2"1H;zui2(h_13)-+-const(d,rn)“y|—"l < const(d, m, 7 )h*" |[ull3.

Ly (Ré\h—1B)

by Proposition 2.3 (ii), (iii). Let C':= [—1 ..

partition R? = Uycpe 27h = (k + C) to write

%)d. In order to estimate 11, we employ the

2

=" Y b(h- 427 + 27 /h)

hezs JELTNO Ly (2mh=1 (k+C))

For j € ZN\0 and k € Z\{—j}, we have

|17 2 +2myac + 2mj /)

Lo (27h=1(k+C))
= [l = 2mi/n ™" SRR

La(27h=1(k+j+C))

h-=2m(k+ )™ . N

IENET
|- =275 /h

< const(d, m) ‘

Ly(2nh=1 (k+j+C))

h-—=27(k+ 7)™ _
gammewW LR RN [
|- — 27Tj/h| Loo (27h=1(k+j+C)) La(2mh=1(k+3+C))
- m |-+ 27 (k4 )" s
< const(d,m) ||o < . i H : ‘
< constd ) 17_astunsocn |1 2| e
~ B+ ] = ~
< comi(d oy B on |
> cons ( m) HO-HLOO(Zﬂ'(k—I—]—I—C)) 1+ |k| | | M Lo(2mh=1(k+4j4+C))
Therefore,
N> T (R 2w+ 2mj /h)
JEZAN{0,—k} Lo(27h=1(k+C))
~ B+ 317 ] =~
< const(d, m) Z ol (27(k4j+C)) o HH M‘ 4
ez o) 1+ |k Lo(2mh=1 (k+j+C))
const(d, m) 2 2m —m ~||?
S N D SR ST D S [T |
1+ |k Tk} Sz oK) La(2mh =1 (k+j+0C))

1
< t(d, 7mH-‘mA‘ < t(d, |1
> cons ( m)l + |k| | | H Lo(B\27h=1C) cons ( m 7)1+ |k| H/’LH/\A7
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by Proposition 2.3 (ii). Now if k& # 0 and j = —k, then

|7 B - 27 + 2mj )|

= ([l + 2k /nIT™ By

Lo(2mh=1(k+C)) Ly(2mh=1C)

< const(d,m) |-+ 2eh/m ™" il

m

h N Ry N
< COHSt(dam)W 1720l 2 mt1 0y < COHSt(dvmaV)W Iipvs

by Proposition 2.3 (iii). Therefore,

) 1
I < const(d,m, y)(h" [|fill p, ) Y (14 [B]™)?

g < const(d, m, 7) (7 ||| o, )?
keZd

since m > d/2; hence, I + II < const(d,m,~v)h" HMHMV' O

4. AN APPROXIMATION TO sp(p) FROM S(¢; =)

Let N be the set N := {ﬁ] 13 €7Z% 5, >0, and jy +--- 4+ jg < m}. It is known [4]
that A is ‘correct’ for interpolation in II,,; consequently, we have the following:

Lemma 4.1. There ezists ¢ € (0..1/4) (depending only on d,m) such that if * € rB,
#HN = #N and S(N;N) < 1, then there exists {aﬁ}ﬁeﬁ/’ such that

max |ag| < const(d,m,r) and ¢(x) = Z agq(§) Vqell,.
teN ceN

The following is equivalent to the standard definition of the cone property.

Definition 4.2. A set Q C R? is said to have the cone property if there exists eq,rq €
(0..00) such that for all @ € Q there exists y € ) such that |+ — y| = eq and

(I1—-the+ty+ratBCQ Vtel0..1].

The purpose of this section is to prove the following

Proposition 4.3. Let () be a bounded, open subset of R¢ having the cone property. If=
is a finite subset of 1 satisfying 6 1= 6(=; Q) < eyrq, then for ally € (0..m], p € M, (Q),
there exists s € S(¢; =) such that

[lsn(p) = slll < const(§2,m, b, 7)87 [pl] g, »

where h 1= /€.

Let rg be the smallest positive real number for which

suppt) C roB.



DURPFACE SDPFLINL IN1TERFOLATTION J

Let €, p, and = satisfy the hypothesis of Proposition 4.3. Let puj, € C*°(R?) be given by
pn := (-/Rh) * p, and note that supp s C suppp + hsuppyy C Q + hroB. For j € Z¢
satisfying pp(hj) # 0, there exists x; € Q such that |z; — hj| < hrg. By Definition 4.2,
there exists y; € Q such that |z; — y;| = eq and

(1—t)$j—|—tyj—|—TQtBCQ, VtE[O..l].

Substituting t = h/rq (necessarily < 1) we obtain z; +hB C €2, where z; := (1—h/rg)z; +
(h/ra)y;. Note that

(4.4) ‘] — h_lzj‘ <|hj—zj|/h+|z; —zj| /h < ro+eq/ro =11,
and §(h™'Z;h 71z, + B) < h716(Z;Q) = €. Since N C B, there exists Nj C = such that

#N; = #N and 6(h'N; —h7'z;; N) < 1. By Lemma 4.1, there exists {a; ¢ }een; such
that

(4.5) max laj¢| < const(d,m,r) and
(4.6) gG—h7"z) =) ajeq(h TN (€= 7)), Vg€l
EEN;

Two easily proved consequences of (4.6) are that for all ¢ € II,,,

(4.7) 9(0)= > ajeq(é/h—j) and q= Y ajeq-—(§/h—j)).

EEN; EEN;

Noting that s;(u) can be written as sp(p) = E]‘eZd tn(hj)o(- — hy), Dyn and Ron [9]
have suggested that in order to approximate s;(y) from S(¢; =), one should first find
‘pseudo-shifts’ ¢; € span{o(- — ¢) : £ € =} which approximate ¢(- — hj) and then put
Si= E]‘EZd i (hg)o;.

Definition. For j € Z< satisfying p,(hj) # 0, define

b= Y ajed(-— &),

EEN;

- if m —d ¢ 2Ny
;o= ajeC(-—¢&), where ( := '
j Z 7eC( ) |-|m—d10g|.| if m—d e 2Ny

EEN;

Lemma 4.8. If s := Z pr(hy)o;, then s € S(¢;Z) and
JEZA

(4.9) llsn () = slll < const(d,m) || 3 pn(Ri)(C(- = hj) = &)

N d
JEL Lo
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Proof. 1t is clear that s € span{¢(-—¢) : £ € =}, so in order to show that s € S(¢; =), it suf-
fices to show that E]‘eZd pn(hy) 256/\/}‘ ajeq(€) =0, for all ¢ € II,;,—1. It was shown in the

proof of Proposition 3.3 that s, (1) € S(¢;hZ% N supp pup); hence E]‘eZd q(hj)un(hy) =

0 for all ¢ € II,,—1. Therefore, if ¢ € II,,—1, then E]‘eZd pn(hy) 256/\@ ajeq(§) =
EjEZd tn(hj)q(hy) = 0 which proves that s € S(¢;=). Now, if ‘Ejezd n(R3)(C(G = hg) —¢)
0o, then the inequality is clear; so assume Ejezd tn(hy)(C(-—hy) — () € Ly. Then

‘LQ

() = sl =W D pa(h)lo(- = hj) = Y ajed(- = O]

JEZ8 EEN;
. —2 —2
= leol 1™ Y pn(hi)7 " ecnj = Y ajel |7 ee]
je€Z? EEN; Lo
= leol | Y pnlh)11 ™" ecny — > ajel ™™ e—g]
Jjez? EEN] Lo

= const(d, m) Z pr(hg)(C(-—hy) —(5) )

N d
JEL Lo

since

E‘ — const(d,m) |-|~™ on RN\0 (cf. [11]). O

The problem of estimating the right side of (4.9) would be much simpler if the function
¢ — (j(- + hy) was independent of j. The following lemma, proposition, and lemma will
allow us to carry forth our desired estimate despite the dependence of ( — (;(- + hj) on j.

Let p: R?— [0..00) be given by p(z) :=0if z € (1 +r;)B and

pla) i= max{|C(x) = 3 acCle —€)|},  ifa & (1+m)B.

ceN

where the maximum is taken over all Z,./\N/ satisfying z € r1 B, #/\N/ =#N, 5(./\7—2,./\/) < €,
and the coefficients {aﬁ}ﬁeﬁ/’ are determined by the requirement ¢(0) = 256/\7 agq(§),
Vq € 1I,,,. We will show that p belongs to the space L5 which was first introduced by Jia
and Micchelli [14] as the set of all ¢ € Ly for which

lgll, =1 D lat =) < o0,

—
JEL L2(C)

where C :=[-1/2..1/2)4.
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Lemma 4.10. ||p||, < const(d,m,r1).

Proof. Let x € Rd\(l +r1)B, and let Z,./\N/ be such that p(x) = |((z) — 256/\7 agC(z —§)|,
where the coefficients {a¢} are as described in the definition of p. Since 5(./\7 —z,N) <ey,
z € mB, and ¢(—2) = 256/\7 agq(§ — z) for all ¢ € II,,, it follows by Lemma 4.1 that
max, . i |a¢| < const(d,m,ry). Note that since N C iBande € (0..1/4), it follows that

N C(m+ %)B. Define the difference operator T by Tg := g — 256/\7 agg(-—§). It follows
from the requirement ¢(0) = 256/\7 agq(§) Yq € I1,,, that Tq =0 Vq € II,,,. Let ¢ € I, be
the mth-degree Taylor polynomial of ( at . Then

ple) = IT¢(2)| = 1T(C = @)(x)| = [((2) —ale) + Y ag(((e — &) — gl = €))

ceN

< | max |a r—§)—qlx —
< (M| A) ng & = ale =9
< const(d, m, ry)max{|D*((w)|: |a| =m + 1 and w € = + (r; + 3/4)B}
|7 (1 4 log J2]).

It follows from this that |||, < const(d,m,r1). O

< const(d, m,ry) |x

The following proposition, which demonstrates the utility of the space L, was proved
in [14].

Proposition 4.11. If ¢ € (5(Z%) and g € L2, then

Yocigl =D < el l9llz, -
je L
Lemma 4.12. If j € Z% is such that up(hj) # 0 and p; := ¢ — (;(- + hy), then
(1) lp; ()| <R p(x/h) Ve € RAR(L+r)B  and
(i1) 1251l o h1srey iy < CODSE(d, 2,71 )™ 42,

Proof. We first establish the identity
(413)  pie) = "2 /h) = Y ajella/h— (/R =), = & {0}U (N - hj).

EEN;
If m —d & 2Ny, then (4.13) is simply a consequence of the fact that ((y) = h™~4((y/h).
If m —d € 2Np, then ((z) = ((hx/h) = h™~4((x/h) + h™~4 l2/h|™ log h, and hence
pile) =h"~C(e/h) = Y ajeC(e/h—(/h—j))]

EEN;

+ = og hlla /B = S ajelafh — (¢/h— ).
EEN]

(4.14)
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Let T be the difference operator defined by T'¢g := g — 256/\/} ajeg(- — (§/h — J)), and
note that Tq = 0 Vg € II,, by (4.7). In particular, since |-|m_d e II,,, it follows
that [o/h]" ™" = Yeens aje lo/h — (&0 — )" ™" = [T(|]""")](x/h) = 0 which, in view
of (4.14), completes the proof of (4.13). In order to establish (i), let = = h7'z; —
J. Then (h7'N; — j) — 2z = h7'N; — h7'z; and hence §((h7'Nj — j) — 2, V) < €.
(i) now follows from (4.13) since by the definition of p and with (4.4),(4.7) in view,

C(x/h) — Ege/\/’j a;eClx/h— (/R —]))‘ < p(a/h). For (ii), we note that

12| onrzrymy = R[S/ = D ajeC-/h= (/R = j)) . by (4.13),
LEN; Lo(h(1411)B)

— pm—d/2 ¢ — Z ajeC(-—(§/h—17))
EEN; La((1471)B)

< comst(d,m,7“1)hm_d/2 HCHL2(2(1+T1)B) = const(d,m,rl)hm_d/z, by (4.5).

4

Proof of Proposition 4.3. Let s € S(¢; =) be as in Lemma 4.8, and for brevity, put B =
(1+r1)B. Then

const(d, m)llsn () — slll < || 32 n(hi) (S = i) = )| = || S salhi)psl- — hj)
]EZd Lo ]EZd Lo

| U N Y O Dl IS B S TAUX ) DOV G X

d N d
JEL Ly JEL Lo

< const(d, 1) Z |bn(hy) | loj(- = hj)HZLQ(h(HB')) + R Z pn(hy)p(-/h = J)

d d
JEL JEL Lo

= const(d,r) Z lien (R HPJHZLQ(hB) + Rl Z n(hy)p(-—7)
jezd jez? Lo

< const(d, m, rl)hm_d/z H/~LhH42(th) , by Lemma 4.12 (ii), Lemma 4.10, and Proposition 4.11.
Therefore,

(4.15) () = s[ll < const(d, m, ri)A™ 2 |l 1y gize) -

Claim 4.16. ||un|lo,pz0) = (h/27) )4/2 Z b(h - +2m§)ji(- + 275 /R)

d
JEL Lo(27h—1C)
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proof. Define G : 2rh™'C — Cby G := E]‘eZd tn(hy)e—pj and note that HGHM(%h_lc) =
(27 /)42 18|l gz y- Hence

(4.17) H/«LhHez(th) = (h/QW)d/Z HGHLQ(Zﬂ'h—lc) :

Fix x € 2rh~1C and put g := pp(h-)e_p, and note that G(z) = Zjezd g(7) = Zjezd 9(2my)
by Poisson’s summation formula (cf. [20], Chapter 7). Now, g = (un(h-)) (- + hx) =

h_dﬁ;(-/h + ) = (- + ha)u(-/h + ). Therefore,
G(z) = E]‘eZd 9(2mjy) = E]‘eZd Y(275 + ha)ji(2xy/h + @) which, in view of (4.17), proves

the claim.

Now,
D(h - +27)i(- + 275 /B < HAh-z'A- 2'h‘
ZM +2m))i(- + 2mj /) < Z vh- 2+ 2mifh)||
JEw Lo(2xh—1c) I
<] ey + 3 |70 17| [
Lo (27C) 1l a2y j;\o (he) | Lo (27h=1(j4+C)) T La(27h=1(j+C))

~ —m ~ o m]|?
< const(d,m, ) |l uamiscy 27" | 3 |10
JEZINO

< const(d, m,,y)h7™™ H/,LHM7 , by Proposition 2.3, (3.1), (3.2),

[

Loo (27(j+0C)) Lo(RI\2wh=1C)

which, in view of (4.15) and Claim 4.16 completes the proof. O

5. THE MAIN RESULTS
Combining Proposition 3.3 and Proposition 4.3 yields the following:

Theorem 5.1. Let © be a bounded, open subset of R¢ having the cone property, and
let = C Q satisfy § := §(=;Q) < min{eirg,e1}. If f € C(RY) is such that there exists
y€(0..m], p € M(Q), ¢ € Uy—y such that f = ¢ * i+ q on §, then

(1) o p+q—T=flll < const(§2,m, )07 ||pll , »  and

(i)) I = T=fl, g < const(S2,m, )8+ [y,
for all 1 < p < oo.
Proof. Since (i) follows from (ii) via (1.4) and (iii) follows from (i) and (ii) via (1.3), it
suffices to prove (ii). It is known [7] that

(5.2) llo*p+q—Teflll < o+ p—slll Vs e S(e;E).
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Put h = §/e; and recall from Proposition 3.3 (ii) that |||¢ * p — sp(p)]|| < const(m,~, )R H/“LHMV'
By Proposition 4.3, there exists s € S(¢; =) such that |||sp(p) — s||| < const(2,m,~,¢)d7 H/“LHMV'
Hence, by (5.2),

llo# p+q—=T=flI < [llo* = su(p)lll + [llsa () = sll| < const(€2,m,v,9)07 ||| oy,
which, after a suitable choice of ¢, proves (ii). O

Given a smooth f, the problem of finding 1 € M. (Q), ¢ € II,,,_1 such that ¢*u+q= f
on € is quite difficult. In the special case m = d = 2, Q = B, it is known [16] that if
f € C>=(R?), then there exists u € Ml/z(ﬁ), q € II; such that ¢« + g = f on 2. There
is one special case in which p is easily found. That is the case when f is a smooth function
supported in . The following corollary deals with this special case.

For v € (0..m], let F, be the space given by

- BjT" ify e (0..m)
T wim  ify =m.

Corollary 5.3. Let Q and = be as in Theorem 5.1, and let v € (0..m]. If f € F, s
supported in Q, then

(i)  f=Tof and
(i) F = T=fIll < const(9,m. )87 |||,

where § := 0(=; Q). Additionally, if 6 is sufficiently small, then
i) IF = T=f < const(Rm, )8+ £

for all 1 < p < oo.

Proof. As mentioned in the proof of Theorem 5.1, it suffices to prove (ii). Assume f € F,

. .= 1™

is supported in . Put p := !Amf, where A := 88—22 + 5—22 +-F 88—22 denotes the
Ce 3 3 Ty

Laplacian operator, and note that p € M.(Q) and H/,LHM7 < const(d, m,~) HfHﬁ We

show that f = ¢ * . Since ]/C\: (¢ * 1) “on R0, it follows that the difference f — ¢ * y is
a polynomial. For x & supp f, it follows from Green’s second identity [12; page 5] that

(=D~ (=D~
Co Co

since A™¢ = 0 on R%\0. Thus the polynomial f —¢*p = 0 on R% supp f; hence f = ¢*p.
If 6 > min{eirq, €1}, then choosing s = 0 in (5.2) yields

I1f = T= A1 < AN < const(m, v) [[£]] £, < const(€2,m, v)67 || f| £, -

On the other hand, if § < min{e;rq, €1}, then by Theorem 5.1 (ii),

¢ * p(x) =

/ Gz —t)A™ f(t) dt = / A"d(z — ) f(t)dt =0
supp f supp f

IIf = T= £l < const(§2,m, )07 [|u]] up, < const(§2,m, 7)Y ||l £, -
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