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Tight compactly supported wavelet frames of arbitrarily high smoothness

Karlheinz Gröchenig & Amos Ron

1. Introduction

In 1988, Ingrid Daubechies constructed univariate compactly supported orthonormal

wavelet bases of arbitrarily high smoothness (cf. [D1,2]). Her construction has been widely

received, and rightly so, as a milestone in the theory and applications of wavelets, render-

ing multiresolution analysis great practical importance. However, generalizations of these

constructions to higher dimensions and general dilation matrices turned out to be difficult.

Aside from the straightforward tensor product construction of Daubechies’ wavelet (that is

tied to dyadic dilation, and dictates large rectangular support of the wavelet, and an expo-

nential growth in the number of mother wavelets as the spatial dimension increases), only

few, specific, constructions of multivariate orthonormal wavelet systems exist presently in

the literature. Indeed, even for the simple dilation matrix

(
1 −1
1 1

)
,

it is still unknown whether there exists a scaling function in C1(IR2) whose integer shifts

are orthonormal (cf. Cohen and Daubechies [CD] for results on this topic).

Tight frames generalize orthonormal systems. They preserve the unitary property of

the relevant analysis and synthesis operators, while sacrificing the orthonormality and the

linear independence of the system (in order to get more flexibility). Precisely, a system

X ⊂ L2(IR
d) is a tight frame if the analysis operator associated with X is unitary, i.e.,

if, for every f ∈ L2(IR
d),

‖f‖2
2 =

∑

x∈X

|〈f, x〉|2.

This identity implies that ∑

x∈X

〈f, x〉x = f, ∀f ∈ L2,

hence entitles one to use the same system X for both the decomposition and reconstruction

processes; in particular, a tight compactly supported wavelet frame based on a multires-

olution analysis employs finite masks during both processes. Albeit, until very recently,

tight wavelet frames were hardly considered an issue in wavelet theory; the main reason for

this was the lack of a general method for the construction of useful tight wavelet frames.
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The paper [RS1] marks a significant change in this state-of-the-art: it laid a foun-

dation to the theory of wavelet frames in general, thereby to tight wavelet frames, via

the new notion of quasi-wavelet frames. In particular, the paper suggests a new “unitary

extension principle” that allows one, at least in theory, to derive tight wavelet frames from

any multiresolution analysis, regardless of any conditions of orthonormality or linear inde-

pendence of the scaling functions. Furthermore, in [RS2] this unitary extension principle

is employed to derive various compactly supported spline tight wavelet frames in higher

dimensions, i.e., tight wavelet frames based on smooth piecewise-polynomials.

We show in this note that the theory of [RS1] and the construction methods of [RS2],

when combined with the existing literature on self-affine tilings for general dilation matri-

ces, lead to the following observation: given any spatial dimension d, any d × d dilation

matrix s, and any smoothness parameter k, there exists a compactly supported tight

wavelet system in Ck(IRd) which is s-invariant. In view of the present inability to con-

struct, for the majority of dilation matrices, compactly supported smooth orthonormal

wavelet bases, this result might be of practical interest. The details of this observation are

the content of the next section.

2. Smooth tight wavelet frames

We first review some of the very basic notions in multiresolution analysis, and then

present results from [RS1,2] that are pertinent to the discussion. We then recall some facts

concerning self-affine tilings. Finally, all these facts are combined to yield the construction

of the compactly supported smooth tight wavelet frames.

A dilation matrix s on IRd is a d × d integer matrix, whose spectrum lies outside

the closed unit disc. It induces two closely related dilation operators on functions; on the

“space domain” this is the operator

D : f 7→ |det s|−1 f(s−1·),

and on the frequency domain, the relevant operator is

D∗ : f 7→ f(s∗·);

the two operators are connected by the formula (Df)̂= D∗f̂ . A function φ ∈ L2(IR
d) is

said to be a scaling function (with respect to a given dilation matrix s), if in the Fourier

domain it satisfies an equality of the following type:

(2.1) D∗φ̂ = τφφ̂,
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where τφ is some 2π-periodic function, often referred to as the mask function. The

refinement equation (2.1) is equivalent to having Dφ lie in the closed span V0 of the

integer translates of φ, [BDR].

Now, let Ψ be any finite subset of V0. The assumption ψ ∈ V0 is equivalent to the

existence of a 2π-periodic function, τψ, that satisfies the wavelet equation

D∗ψ̂ = τψφ̂.

Let Γ be the quotient group ZZd/(sZZd), and let Γ̃ be its dual group i.e., the quotient group

2π(s∗−1ZZd/ZZd) (both of order |det s|). We may always identify any set of representers

of Γ (Γ̃) with the group itself. We then consider the following matrix-valued function ∆

on IRd, whose rows are indexed by F := Ψ ∪ {φ}, whose columns are indexed by Γ̃, and

whose (f, γ) ∈ F × Γ̃ entry is defined as

∆f,γ(ω) = Eγτf (ω) = τf (ω + γ),

where Et, t ∈ IRd, is the translation operator

Et : f 7→ f(· + t).

The unitary extension principle of [RS1] then reads as follows:

Result 2.2. [RS1: Corollary 6.7]. In the above notations, if φ̂(0) = 1, and if the columns

of matrix ∆(ω) are orthonormal for almost all ω ∈ IRd, then the system defined by

X := {DkEjψ : ψ ∈ Ψ, j ∈ ZZd, k ∈ ZZ}

is a tight (wavelet) frame.

Remark. The original proof in [RS1] requires a very mild smoothness assumption (which

does not even imply continuity); but it follows from a result in [CSS] that Result 2.2 is

valid without any smoothness condition. In any event, since we aim at very smooth scaling

functions φ, we need not worry about this technical detail.

In principle, one may be able to construct a tight wavelet frame from any scaling

function φ with mask τ0 by solving the following matrix extension problem: given the

mask function τ0, find a (possibly large) number of periodic functions τi, i = 1, . . . , r such

that the column vectors uγ(ω) = (τ0(γ + ω), . . . , τr(γ + ω))T , γ ∈ Γ̃, are orthonormal for

almost all ω. While that seems still to be a hard problem, a partial solution was provided

by an inductive method in [RS2]. The objective of this note is to show that the class of

refinable functions to which the [RS2]-method can be applied to, is broad enough to include

compactly supported φ’s of arbitrarily high smoothness. But, first, we need to provide the

necessary details of the [RS2]-construction.
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For this, let φ1, φ2 be refinable compactly supported distributions with respect to the

same dilation matrix s, viz.,

D∗φ̂j = τj φ̂j , j = 1, 2,

with τj , j = 1, 2 being 2π-periodic. Roughly speaking, the goal is to derive a wavelet

system from the scaling function φ1 ∗ φ2, based on the ability to do this separately with

each of the scaling functions φj , j = 1, 2. Suppose, indeed, that we are able to use the

unitary extension principle with respect to φ1, and to obtain a collection T1 = (τ)τ∈T1

of 2π-periodic functions that satisfy the extension principle, in other words the columns

of the matrix ∆(ω) associated with τ1 ∪ T1 are orthonormal for almost all ω ∈ IRd. As

with respect to φ2, the assumption here is even milder, viz., that we only need to find a

collection T2 = (τ)τ∈T2
so that

|τ2|
2 +

∑

τ∈T2

|τ |2 = 1.

The method in [RS2] provides then a unitary extension to τ0 := τ1D∗τ2, which is the

mask of the scaling function φ := φ1 ∗Dφ2 (instead of the expected extension to the mask

τ1τ2 of φ1 ∗ φ2). The wavelets masks that corresponds to φ are

T := T1 ∪ (τ1D∗T2);

i.e., the masks of T1 are augmented by the modified masks of T2, where the modification

is done by dilating each of these masks and then multiplying each by τ1. It is shown in

[RS2: §4], that τ0 ∪ T satisfies the unitary extension principle, and hence by Result 2.2

the wavelet system generated by Ψ := (ψτ )τ∈T, where

D∗ψ̂τ := τ φ̂,

is a tight wavelet frame, provided that φ is in L2(IR
d), and not merely a distribution.

In order to construct smooth tight wavelet frames with respect to s, we first find

tight frames that are not smooth at all, something that is relatively easy; we then use the

outlined method to improve on the smoothness. For that, we first invoke the following

simple lemma:

Lemma 2.3. For a given dilation matrix s with determinant n = |det s|, fix a set

Γ = {γ1, . . . , γn} of representers for the group ZZd/sZZd, and a set Γ̃ = {g1, . . . , gn} of

representers for the dual group. For any unitary n× n matrix U := (ujk), set

τj(ω) = n−1/2
n∑

k=1

ujke
iγk·ω .
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Then the n× n matrix ∆ with entries Egkτj , j, k = 1, . . . , n is unitary for all ω.

Proof: Let R(ω) be the n× n-matrix whose (j, k)-entry is n−1/2eiγj ·(ω+gk). This

matrix is unitary due to the well-known orthogonality relations of group characters (cf. for

instance [GH], Lemma 5.1). This implies that ∆(ω) is unitary, too, as the product UR(ω)

of two unitary matrices.

The lemma, when combined with Result 2.2, can be used for the construction of tight

wavelet frame in the following special case. Suppose Γ is a set of representers for the group

ZZd/(sZZd), and suppose that φ is a scaling function whose refinement mask τφ has the

special form

(2.4) τφ(ω) =
∑

γ∈Γ

aγe
iγ·ω,

so that (with n := |det s|) a := n1/2(aγ)γ∈γ is a unit vector. Then, there exists a unitary

matrix U whose first row is a, and the lemma, then, when combined with Result 2.2,

provides us with a tight compactly supported wavelet system generated by n−1 functions.

The next two results assert now that: (a) there exist L2-scaling functions with mask of the

form (2.4), and (b) these functions, though are not really smooth, have a minimal amount

of smoothness.

The first result is due to [GM]:

Result 2.5. [GM: Theorem 2]. Let s be a dilation matrix, and Γ a representer set of

ZZd/(sZZd). Set, with n := |det s|,

τ := n−1
∑

γ∈Γ

eiγ·ω.

Then the dilation equation

D∗φ̂ = τ φ̂

has an L2-compactly supported solution, with non-zero mean value. Furthermore, up to a

multiplicative constant, φ is the support function of a uniquely determined (compact) set

Ω which satisfies sΩ = Γ + Ω.

The wavelets that can be constructed by combining Result 2.2, Result 2.5, and Lemma

2.3, generate a tight frame, but lack smoothness: each wavelet is piecewise constant. On

the positive side, they inherit their smoothness properties from the corresponding scaling

function, and that scaling function is known to be “minimally smooth”.
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Result 2.6. [S: Lemma 3.1]. For any s-self-affine tile Ω, (i.e., a non-null measurable set

Ω satisfying sΩ = Γ+Ω for some set of representers Γ of ZZd/sZZd), there exists ε > 0 such

that

|χ̂(ω)| = O(|ω|−ε) .

Here, χ is the support function of Ω.

The statement in [S] assumes that the smallest s-invariant lattice containing Γ equals

ZZd, but can be modified to yield our stronger statement. Since this strengthening is critical

for the development here, we outline below the modified proof.

Proof of Result 2.6. With Ω and Γ as in the result, one immediately obtains that

D∗χ̂ = τ χ̂

with τ(ω) = |det s|−1
∑

γ∈Γ e
iγ·ω. Let Λ be the smallest s-invariant lattice that contains

Γ. Since Λ, as any lattice in IRd, is finitely generated, it is easy to see that, for a sufficiently

large N , the set

ΓN :=
N−1∑

j=0

sjΓ

generates Λ. Since we still have sNΩ = ΓN + Ω, it follows that χ is refinable also with

respect to sN , and with mask |det s|−N
∑

γ∈ΓN
eiγ·ω. This allows one to assume (by

replacing Γ by ΓN if necessary) that the original Γ generates Λ.

Let Λ⊥ be the lattice dual to Λ:

Λ⊥ := {ω ∈ IRd : λ · ω ∈ 2πZZ, ∀λ ∈ Λ} = {ω ∈ IRd : γ · ω ∈ 2πZZ, ∀γ ∈ Γ},

with the second equality following from the fact that Γ generates Λ. Then,

(2.7) |τ(ω)| = 1 ⇐⇒ (eiγ·ω = 1, ∀γ ∈ Γ) ⇐⇒ ω ∈ Λ⊥.

Also, if ω 6∈ Λ⊥, but s∗ω ∈ Λ⊥, then ω is a non-trivial character of the (well-defined) group

Λ/(sΛ), and hence

(2.8) τ(ω) =
∑

γ∈Γ

eiγ·ω = 0, s∗ω ∈ Λ⊥\(s∗Λ⊥)

(say, because every non-trivial character is orthogonal to the trivial one).

The proof now proceeds in the same manner as in [S], with the lattice 2πZZd there

being replaced by Λ⊥. The essence of the proof is the observation that maximal chains of

the form
∏k
j=1D

j
∗χ̂(ω), where each |Dj

∗χ̂(ω)| is “near 1”, must be preceded by a “near 0”

term χ̂(ω). That observation requires only (2.7) and (2.8) above.
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We can now easily combine Result 2.6 with the inductive method of [RS2]: we define

φk := φ ∗Dφ ∗Dφ ∗ . . . ∗Dφ︸ ︷︷ ︸
k−times

,

with φ being the scaling function of Result 2.5. Then

|φ̂k(ω)| = O(|ω|−kε),

and choosing k large enough, φk has any desired smoothness.

The function φk is refinable with mask

τ (k) := τ1 (D∗τ1)
k,

and the wavelets derived from φk are defined inductively as follows: for k = 0, we use the

construction that is detailed after Lemma 2.3. Next, we assume that Tk−1 are the wavelet

masks used in the derivation of a tight wavelet frame from φk−1. Since we can write

φk = φk−1 ∗Dφ,

and since the refinement mask of φk−1 is τ (k−1) = τ1 (D∗τ1)
k−1, the [RS2]-method provides

us with the new wavelets masks

(2.9) Tk := Tk−1 ∪ (τ (k−1) D∗T0),

and the wavelets are then defined in the Fourier domain as

D∗ψ̂τ := τ φ̂k, τ ∈ Tk.

Obviously, they have the same smoothness as φk. Note that each inductive step increases

the number of mother wavelets by |det s| − 1, hence (k + 1)(|det s| − 1) mother wavelets

are derived from φk.

We have thus proved:

Theorem 2.10. Given a dilation matrix s on IRd and a smoothness parameter n, there

exists a collection Ψ of wavelet functions with compact support in Cn(IRd), such that

X := {DkEjψ : ψ ∈ Ψ, j ∈ ZZd, k ∈ ZZ}

is a tight frame.

Remark. In practice, one would like the smoothness of the sequence (φk)k to increase

as fast as possible. Using k-fold convolution of Dφ is certainly far from being an optimal

strategy for a speedy increase in the smoothness of φk, as k → ∞. An obvious modification

is to take at each inductive step a different tile constructed as in Result 2.5 (by changing

the set of representers Γ that is used there). The construction details remain essentially

unchanged: one only needs to modify the set T0, that is used in (2.10) according to the

nature of the fractal φ used. We refer to [DDL] for a related construction.
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Remark. A significant improvement in the above construction is available in case the

matrix s satisfies a relation

sm = (det s)mI,

for some integer m. In that event, one can smooth the scaling function φ of Result 2.5, by

convolving it with a smooth box spline φξ instead of Dφ. For a given vector ξ ∈ ZZd\0 the

box spline φξ is defined as

φ̂ξ(ω) :=
m∏

j=1

∫ 1

0

e−i(s
jξ·ω)t dt.

The details of that construction are essentially in [RS2: §4] where the resulting wavelets

were dubbed boxlets for the case of dyadic dilation. In that case each additional convolution

increases the number of resulting wavelets by 1 only, and the smoothness of φk can be

increased by as much as m degrees per each inductive step.
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