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On the evaluation of box splines

Carl de Boor
University of Wisconsin{Madison

The �rst (and for some still the only) multivariate B-spline is what today one
would call the simplex spline, since it is derived from a simplex, and in distinc-
tion to other polyhedral splines, such as the cone spline and the box spline. The
simplex spline was �rst talked about in 1976. However, it was only after Micchelli
[Micchelli, 1980] established recurrence relations for them that the topic of sim-
plex splines and other multivariate B-splines really took o�. Their cousins, the
box splines, were thought particularly attractive because their recurrence relations
turned out to be very simple indeed. It was, therefore, a shock to me when, in the
process of doing my bit on the book [de Boor, H�ollig, Riemenschneider, 1993], I
found that it was nontrivial to make e�ective use of these recurrence relations. It
is one purpose of this note to relate my di�culties and how I tried to deal with
them.

This is not the place to give an introduction to box spline theory, nor to review
the relevant literature. Rather, the reader is urged to consult [de Boor, H�ollig,
Riemenschneider, 1993] for missing details and the proper literature references (as
well as for many illustrations, two of which are reproduced below).

1 Box splines de�ned

The s-variate box spline M� := M(�j�) is de�ned in terms of its direction matrix
� 2 IRs�n, �(:; j) 2 IRsn0, j = 1; : : : ; n, as the distribution or linear functional
given by the rule

M� : C(IRs)! IR : ' 7! hM�; 'i :=

Z
'(�t)dt:

Here,

:= [0 : :1)n

is the half-open unit cube or `box' in IRn.
The distribution M� is always representable as an L1-function on ran�. In

particular, if � is of full rank, i.e., ran� = IRs, then M� is (represented by) an
L1(IRs)-function, and this function is piecewise polynomial (=: pp), of exact
degree n� s, with support the compact, convex set � . The breakplanes of this
pp function are given by certain translates of the hyperplanes spanned by s � 1
independent columns of �. Particularly simple examples include the Courant
element

C :=M� 1
0
0
1
1
1

�;
associated with the direction matrix

�
1
0

0
1
1
1

�
, and the Zwart-Powell element

ZP :=M� 1
0
0
1
1
1
�1
1

�;
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associated with the direction matrix
�
1
0

0
1

1
1
�1
1

�
. See the �gure below for a picture

of the support of these two box splines.
The above de�nition of the box spline is referred to as the analytic de�nition,

to distinguish it from the following (equivalent) inductive de�nition which some
prefer because of its intuitive appeal and because it often eases proofs. Here, one
starts either with

M� = �
�

=jdet �j; � 2 IRs�s

or with
hM[ ]; 'i := '(0); 8' 2 C(IRs)

and builds up from there via

M�[� =

Z 1

0

M�(� � t�)dt:

For example, with
B :=M� 1

0
0
1

� = �
[0::1)2

the characteristic function of the unit square in IR2, one obtains from it the Courant
element by

C =

Z 1

0

B(� � t�)dt; � := (1; 1);

and, from this, the ZP element by

ZP =

Z 1

0

C(� � t�)dt; � := (�1; 1);

as illustrated in the following �gure.
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x
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Figure. Courant and ZP by convolution

2 Recurrence relations

Here is the formal statement of the recurrence relations for box splines.
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Proposition. If the box splines M�n�, � 2 �, are continuous at x = �t =P
�2� � t�, then

(n� s)M�(x) =
X
�2�

t�M�n�(x) + (1� t�)M�n�(x� �):

The following �gure, from [de Boor, H�ollig, Riemenschneider, 1993], indicates
the various box splines of degree 1 and 0 which, in this way, participate in the
evaluation of the ZP element at any point in the indicated triangle in its support.

Figure. The ZP element obtained by recurrence

Here are the issues, perhaps minor, which one has to deal with if one wants
to convert the above formal statement into a program for the evaluation of M�(x)
for given � and x. For de�niteness, I only consider a program written in MATLAB.
This is attractive since, in this way, one can ignore various computing details.
Also, MATLAB permits recursion, hence makes it possible to write the program in
the recursive spirit of the above formal statement. Finally, MATLAB invites use
of `parallel processing', e.g., the simultaneous evaluation of M� at a sequence of
points, hence a MATLAB program can be used to advantage when writing programs
for machines with parallel architecture. For all MATLAB-related detail, the reader
is referred to the MATLAB documentation, e.g., to [Mathworks, 1989].

A �rst issue arises because there are many t for which �t = x. How is one to
select a particular t?
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One might try for a t with as many zero entries as possible, as that would
minimize the number of evaluations of lower-degree box splines needed. However,
since both t� and (1�t�) appear as weights in the formula, we would, even with such
a choice, have to evaluate each of the M�n� in any case at least once. Therefore,
since we intend to set up the routine to evaluate simultaneously at a set of points,
there is no real savings associated with having many zero entries in t.

It seems more important, if only for numerical stability, to make certain that
none of the entries of t is unduly large. Ideally, both t� and (1 � t�) ought to
be nonnegative for all �. However, it seems su�cient to make certain that t be
`small'.

For this, we compute t as the `2-smallest solution to �? = x, using the QR
factorization of � readily supplied by MATLAB.

A second issue concerns the case not dealt with in the proposition, namely,
what if M�n� fails to be continuous at x? This issue is closely related to the
question of just when to stop the recurrence, i.e., which M� to evaluate directly,
without further recurrence.

O�hand, since the recurrence relation only holds under the assumption that
all M�n� be continuous at x, one would have to stop as soon as this condition is not
met. However, since even high-degree box splines may be discontinuous because
of high multiplicities in their direction set, this would make it impossible to write
a general-purpose program.

One remedy proposed has been to de�ne M�(x) as some average value in case
M� is discontinuous at x, and, in this way, to extend the validity of the recurrence
relations to all x 2 IRs. However, in spite of some e�ort, I was unable to make
this work even in the simplest possible case in which the direction set is in general
position, hence M� has discontinuities only when n = s.

At the same time, all box splines are pp, hence have well-de�ned limiting
values even at points of discontinuity. Thus, the restriction to the case of having
all M�n� continuous at x is only there to avoid a certain discussion needed when
this condition is not met. This discussion concerns just how to choose and enforce
a particular direction along which this limiting value is to be taken. (In the
univariate case, it has become customary to make all splines continuous from the
right, except, perhaps, at the right-most point of the interval of interest.) Since
any discontinuity ofM� necessarily lies on one of its breakplanes, hence the normal
to such a hyperplane is perpendicular to s�1 independent columns of �, one must
choose this direction so as not to fall into the span of any s�1 independent columns
of �. Since this only excludes the vectors in the union of certain �nitely many
hyperplanes, such a choice is not hard to make. Thus, to resolve this issue, we
agree to enlarge the argument list to our MATLAB function to include some properly
chosen �xed direction, to be used as indication of the desired limiting direction
whenever, in a terminating call to the function, a decision has to be made on which
side of a hyperplane of discontinuity the current argument is supposed to lie. That
done, we are now safe to use the recurrence down to the level at which M� is a
(multiple of a) characteristic function, i.e.,

M� = �
�

=jdet �j; � 2 IRs�s:

For, its value at x is trivial to determine: In this case, � is square, hence (assuming
that � is of full rank) the equation �? = x has a unique solution, t, and x lies
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in � exactly when t 2 . Thus, if t� 2 (0 : :1) for all � 2 �, then the value is
1=jdet �j. If some t� 62 [0 : :1], then the value is 0. Finally, if some t� equals 0
or 1, then x lies on one of the breakplanes of M�, and the decision of whether
or not M� vanishes at x is made with the aid of the given �xed direction: if the
direction, when attached to x, points into � , then M�(x) = 1=jdet �j, otherwise
M�(x) = 0.

This raises the �nal issue, of what to do in case � is not of full rank, as is
certain to happen in case of repeated directions. It is also not clear, o�hand, how
to decide that one is in this case., i.e., how to determine rank�. However, having
decided to use the QR factorization of � to solve �? = x, that factorization is
now handy for settling whether or not � is of full rank. If it is not, then we know
that M�, as a linear functional or distribution, is supported only on a certain
hyperplane, hence, as a function on IRs, it is zero. Thus, we would set up our
MATLAB function to return the value 0 in this case, even if � is not yet square.

3 A failure

I won't list here the MATLAB function written along the lines of the preceding
discussion. For, even for such simple box splines as the Courant and the ZP
elements, it produced terrible output, as the following �gure indicates.

Figure. Faulty values for Courant and ZP obtained with the best intentions.

What went wrong? Simply put: The evaluation ultimately involves step func-
tions, and there is the

Sad Fact. Step functions are not computable.

To recall, a computable function has the property that, given more and more
digits of the argument, we can, perhaps with increasing e�ort, compute more and
more digits of the value of the function at that argument. In particular, any
computable function must be continuous.

The problem turns out to be a major issue in all of geometric modeling, as
such simple decisions as, whether or not a given point is inside or outside a given
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body, or whether or not two bodies intersect, can, strictly speaking, not be made
in �nite-precision arithmetic.

This conclusion is a bit shocking to someone working with splines, since splines
employ step functions in their very de�nition. Why has this not been recognized
as an issue before? While this problem arose already when the recurrence relations
for the simplex splines were �rst programmed, it was not noticed in the univariate
setting, since the only way to settle it worked in that setting very nicely. The only
way to deal with the above Sad Fact is by �at. This means that, for an argument
`near' the boundary of the set whose characteristic function is to be evaluated, one
uses some arbitrary rule, such as continuity from a certain direction.

Now, that is exactly what we already tried. However, the technical di�culty
with such arbitrary rules is to make them consistent. In the case of the box spline
recurrence, the decision on which side of a breakplane the given argument lies is
being made independently more than once. For example, with reference to the
�gure showing the recurrence used to evaluate the ZP element, assume that the
argument lies on the lower left vertex of the triangle singled out. Then, for the
particular choice of t, there are four step function evaluations involved and, in each
of them, such a decision has to be made, and made independently, given the very
nature of a recurrence.

There is no such di�culty in the univariate case precisely because the decision
in which knot interval a given argument lies is made once, and only then does the
evaluation commence. In fact, the standard algorithm does not really evaluate a
spline. Rather (as is pointed out, e.g., in [de Boor 1978: p. 136]), it provides,
for given argument, the value at that argument of the polynomial pointed to by
the choice of index. The standard choice of the index only makes certain that the
polynomial so selected is the one with which the given spline agrees on the knot
interval which contains the given argument.

The analogous procedure in the present case would require one to decide at
the outset on which side of any relevant hyperplane the given x lies. However, this
is much harder to do than in the univariate case, since it is nontrivial to locate a
given x with respect to all relevant hyperplanes generated by s � 1 columns from
�. In fact, which hyperplanes become relevant for the given x becomes obvious
only when step functions are to be evaluated.

For this reason, the MATLAB M-�le bxrec (listed in the Appendix) which real-
izes the recurrence relations employs the following compromise: It returns, for the
given arguments, not only a corresponding list of values, but also an indication of
which arguments (if any) were found to lie on some breakplane. These are identi-
�ed by the fact that a call to bxrec so labeled them, hence, ultimately, by the fact
that, during evaluation of one of the box splines of degree 0, the corresponding
argument was found to lie, within a certain `small' tolerance, on the boundary of
the corresponding parallelepiped. Now, the MATLABM-�le bxval (also listed in the
Appendix), which initiates the �rst call to bxrec, simply makes a new attempt
at evaluation at each argument x so labeled, using, instead of x, an argument
perturbed by a slightly less `small' tolerance, thereby identifying unambiguously
just which of the possibly many polynomial pieces one actually wishes to evaluate
`at' x.

One could have avoided the return of two pieces of information from bxrec

by simply returning the value NaN (not-a-number) whenever the value of a charac-
teristic function is in doubt. However, this leads to repeated testing for the same
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information.
For the record, here is a �gure computed with the aid of these MATLABM-�les.

It shows the level lines for the ZP element so computed, as that is a much more
sensitive indicator of trouble than a plot of the ZP element itself.
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Figure. Contour lines for the correctly evaluated ZP element.

4 Computational cost

It becomes quickly apparent that these MATLAB functions are only useful for rather
simple box splines, since the computational cost of using the recurrence grows very
fast with n � s. Precisely, the number of recurrent calls needed for evaluation at
one point is

C(n; s) := 2n � (2(n� 1)) � (2(n� 2)) � � � � � (2(s+ 1)) = 2n�sn!=s!:

E.g., for s = 2:

n: 2 3 4 5 6 7 8 9
C(s; n): 1 6 48 480 5,760 80,640 1,290,240 23,224,320

Even if one evaluates `in parallel', as does bxrec, the number of required calls
still is

Cp(n; s) := n � (n� 1) � (n� 2) � � � � � (s+ 1) = n!=s!;

giving, for s = 2:

n: 2 3 4 5 6 7 8 9
Cp(s; n): 1 3 12 60 360 2,520 20,160 181,440
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5 Using subdivision instead

The cost of using recurrences makes it interesting to consider alternatives. The
most widely used is based on the idea of subdivision, as �rst described in [Cohen,
Lyche, Riesenfeld, 1984] and [Dahmen, Micchelli, 1984].

The basic idea is quite geometric. Since the unit box can be subdivided
into (1=h)n boxes of sidelength h, the box spline

M := M�

is a certain linear combination of scaled and shifted versions of itself. This gives
the so-called re�nement equation

M(x) =
X

j2hZZs

M((x� j)=h)mh(j);

and the mesh functionmh so de�ned (on the scaled mesh hZZs) is the corresponding
mask.

The mask is nonzero only for those j 2 hZZs for which the corresponding scaled
and shifted box spline, i.e., the function M((� � j)=h), has its support entirely in
the support of M , i.e., in � . Further, the mask converges to M as h! 0, in the
sense that

M(hc+ j) � mh(j); j 2 hZZs;

with
c := c� := � (1; 1; : : : ; 1)=2

the center of the support of M = M�, and with the error usually of order h2,
uniformly in j. Moreover,

mh = bh��b
h
�� � � � ��=h

s;

with the star indicating (discrete) convolution, with �; �; : : : the directions in � 2
ZZs�n, and, e.g.,

bh� �a := h

1=h�1X
k=0

a(� � kh�);

and � the Kronecker Delta, i.e., �(x) = 0 for all x, except that �(0) = 1. Finally,
if f =

P
j2ZZs M(� � j)a(j), then also

f =
X

j2hZZs

M((� � j)=h)ah(j);

with
ah = mh�a : j 7!

X
k2ZZs

mh(j � k)a(k);

hence
f(hc+ j) � ah(j); j 2 hZZs:

Thus the spline function f is being approximated, usually to within O(h2), by the
multilinear interpolant of the mesh function ah.
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To my surprise, I found it nontrivial to implement the discrete convolutions
involved here even in the bivariate case. The technical di�culty stems from the
desire to make e�cient use of the fact that the various masks involved have �nite
support. Thus, to save others some time perhaps, the Appendix also contains a
listing of �ve MATLAB M-�les for carrying out bivariate discrete convolution, with
some of these speci�cally designed to construct discrete box splines.

The M-�le convol computes the convolution product of two arbitrary masks.
Its specialization, condir, convolves a given mask with one of the special masks
bh� , taking advantage of the fact that the latter have very simple structure. condir

is used in msxima to compute mh for given � and nh := 1=h 2 IN.
Finally, msmak and msbrk are used to make the other M-�les independent of

just exactly how the information about a mask is stored.
For accuracy's sake, the M-�les work, in e�ect, with integers only and are

in any case constrained to work with matrices, i.e., mesh-functions indexed by
j 2 ZZ2, while mh is indexed by j 2 hZZ2. Also, as already mentioned, the M-�les
try to record only the nontrivial part of the masks. Thus, mh is represented in the
form

mh(hj) = mask(j+z)hn�s;

with z so chosen that the matrix mask has as few rows and columns as possible,
yet still provides the entire nontrivial part of mh.

Thus, if m1 = msxima([1 0; 0 1], nh) and m2 = msxima([1 -1; 1 1],

nh), then convol(m1, m2) should give the same result as msxima([1 0 1 -1;

0 1 1 1], nh).
As a more elaborate example, the following MATLAB statements will generate

the nontrivial values of m1=8 for the ZP element.

xi = [1 0 1 -1; 0 1 1 1];

[s,n] = size(xi);

nh = 8;

[z,rc,mask] = msbrk(msxima(xi,nh));

% Recall that m^h(j) corresponds to the value of M at hc+j, for

% j in h Z^s , with h := 1/nh, and

c = xi*ones(n,1)/2;

% Also, the array mask describes m^h in the sense that

% m^h(h*j) = mask(j+z)/(nh^n h^s) ,

% with z the `center' also supplied by msbrk . Thus,

% mask(j+z) h^(n-s) = m^h(h j) approx. M(h (c+j))

% or

% mask(j) h^(n-s) approx. M(h(c-z+j))

% So, we'll evaluate the box spline at this mesh, i.e., at the

% following pointset, and compare.

[nx,ny] = size(mask);

xx = ((c(1)-z(1)+[1:nx])/nh)'; yy = (c(2)-z(2)+[1:ny])/nh;

xxx = xx(:,ones(1,ny)); yyy = yy(ones(nx,1),:);

values = reshape(bxval(xi, [xxx(:),yyy(:)]'), nx,ny);

differ = values - mask/nh^(n-s);

max(max(abs(differ))) - ((1/nh)/2)^2, mesh(abs(differ))
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I do not bother to plot the resulting approximations (i.e., the entries of the
matrix maskhn�s) since they agree with the exact values (recorded in values) to
better than graphical accuracy. Rather, here is a plot of the absolute error in these
values (recorded in differ).

Figure. The absolute error in the values for the ZP element obtained by
subdivision, with h = 1=8.

Perhaps surprisingly, the error is quite systematic, its absolute maximum
equal to (h=2)2 (plus noise). One concludes that extrapolation to the limit (as
already recommended in [Dahmen 1987]) should be very e�ective.

6 Other approaches

While the subdivision approach is the most popular, the use of FFT and its
inverse, as is advocated in [Jetter, St�ockler, 1991], might be even faster. Both of
these approaches are e�cient because, by computing values at a �ne grid, the cost
per function value can be kept low. Hence, they are of interest only if one needs
function values at all the points of a rectangular grid. In the case of subdivision,
the grid, as we saw, is even tied to the lattice generated by the columns of �.

Rong-Qing Jia, Sherman Riemenschneider and Dennis Wong have found that,
for the box splines on the three- and four-direction mesh, it is possible to reduce
signi�cantly the cost of using the recurrence relation, by making explicit use of the
details of such very simple direction sets.

For the very same box splines, one �nds in [Chui, 1988] and [Lai 1992] means
for the determination of their BB-net, i.e., the Bernstein{B�ezier form of their
polynomial pieces. It seems tempting to develop a general program, based on
the inductive de�nition of the box spline, which uses discrete convolution to build
up the BB-net of a box spline starting from the trivially obtainable BB-nets for
a piecewise constant box spline. Of course, such a program would have to be
restricted to box splines with triangular, or, more generally simplicial, polynomial
pieces.
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In [D�hlen, 1989], box splines are evaluated by using simplex splines of one
dimension lower. In particular, for bivariate box splines, this brings to bear the
standard algorithms for the evaluation of univariate B-splines.

Finally, [Cavaretta, Dahmen, Micchelli, 1991] (and others) propose to use
the re�nement equation for box splines (or, for that matter, for any function
satisfying a re�nement equation) to compute the values of the box spline on the
mesh ZZs=2k from those on the (coarser) mesh ZZs=2k�1. This is possible since, for
any x 2 ZZs=2k, all the points (x� j)=h appearing in the re�nement equation

M(x) =
X

j2hZZs

M((x� j)=h)mh(j)

with h = 1=2 are in the coarser mesh ZZs=2k�1. Indeed, for such x and h and any
j 2 hZZs,

(x� j)=h = 2x� 2j 2 2ZZs=2k � 2ZZs=2 = ZZs=2k�1;

at least for positive k. This only requires some initial calculation of the values
of M on ZZs. For this, [Cavaretta, Dahmen, Micchelli, 1991: p. 18] recommend
forming from the re�nement equation the following system of equations

M(�) =
X
�2ZZs

M(2�� �)mh(�=2); � 2 ZZs

and solving it for the vectorMjZZs . Since M has compact support, and the support
is even known, this is easily written as an ordinary matrix eigenvalue problem, by
restricting �, � to some set K, the only requirement being that K contain the
support ofMjZZs . Moreover, the eigenvalue involved, 1, can be shown to be simple,
hence the corresponding eigenvector is uniquely determined up to scaling. Thus,
replacing any one of the equations in this system by a normalizing equation, such
as

1 =
X
�2K

M(�);

gives a linear system whose unique solution contains the nontrivial part of MjZZs .
Actually, the same argument could have been made forMjZZs=2k for any k 2 IN,

with only the normalizing constant changing, from 1 to 2k, and, of course, the
system now reading

M(�) =
X

�2ZZs=2k

M(2�� �)mh(2k�1�); � 2 ZZs=2k:

However, the linear system to be solved is full, hence even for k = 0 there are limits
imposed by machine size. E.g., with Mr;s;t the typical box spline for the three-
direction mesh (the numbers r, s, and t specifying the multiplicities of the three
directions in �) and a straightfoward MATLAB program, PC-Matlab can handle in
this way M4;4;4 but cannot handle M5;5;5, and a DEC 5000 trying for M15;15;15 in
Pro-Matlab, ran out of memory while in the process of assembling the matrix of the
linear system. For comparison, the programs developed by Jia, Riemenschneider
and Wong (mentioned earlier) can obtain all the grid values of M20;20;20 in 15
seconds (albeit in C rather than MATLAB, and on an HP workstation).

As is made clear in [Dahmen, Micchelli, 1993], the same approach provides fast
calculations even for integrals of products of derivatives of box splines, although
it requires more work to end up with the desired vector belonging to a simple
eigenvalue.
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Appendix: Listing of M-�les

Here, for the record, is a listing of the various M-�les referred to earlier in this
note. Someone interested in making use of these �les would be better o� obtaining
them by anonymous ftp from the machine stolp.cs.wisc.edu, where they are
available in the encoded tar �le box-spline.mfiles. The procedure is standard:
use the command ftp stolp.cs.wisc.edu (or, equivalently, the command ftp

128.105.2.127), give your name as anonymous, use your login name as the pass-
word, then issue the command get box-spline.mfiles message. This puts a
�le called message into your current directory, and its �rst few lines will tell you
how to get the individual M-�les from there. All this presupposes that you are on
a machine running unix.

function values = bxval(xi,xx)

%

% values = bxval(xi, xx)

%

% returns the values of the box spline with directions xi at the

% points xx(:,j), j=1,2,...

% C de Boor: 23 jun 92

[dx,ignored] = size(xi); [d,ignored] = size(xx);

if (dx ~= d),

error('directions and points are of different dimensions.'), end

perturb = max(max(abs(xi)))*1.e-10; % <<< note use of tolerance

[values, undef] = bxrec(xi,xx);

while ~isempty(undef), % perturb any point on the mesh, then retry

[vu, uu] = ...

bxrec(xi,xx(:,undef)+(rand(d,1)*perturb)*ones(1,length(undef)));

values(undef) = vu;

undef = undef(uu);

end

function [values,undef] = bxrec(xi,x)

%

% [values, undef] = bxrec(xi, x)

%

% recursive m-file for computing (however expensively) M_{xi}(x).

% Note that x(:,undef) have been found to lie `on' the mesh for

% M_{xi}, hence need to be perturbed by the calling program. For

% this reason, it is better to use bxval which calls on bxrec

% and perturbs the argument if need be until it gets it `off'

% the mesh.

% The action could be speeded up somewhat by recognizing

% multiplicities explicitly.
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% C de Boor: 4 jul 92/ 12 aug 92

[s,n] = size(xi); [ignored,nx] = size(x);

values = zeros(1,nx); undef = [];

% zero values will be returned unless xi is of full rank.

% Compute the QR factorization for xi as a means of telling

% whether or not xi is of full rank. Since the factorization is

% needed for this, it also comes in handy for determining a

% reasonable solution of xi? = x .

[q,r,e] = qr(xi); ad = abs(diag(r));

% q is unitary, r is upper triangular,

% with absol. decreasing diagonal elements,

% and e is a permutation matrix.

if ad(1) < (1.e+10)*ad(s),% If xi is of full rank,

t = (r*e')\(q'*x);% compute t as the smallest solution of xi?=x.

% Further,

if (s==n), % if xi is square, return the characteristic function

% of xi(\boxx) , divided by abs(det(xi)) , retaining in

% undef those j for which x(:,j) is on the mesh.

undef = find(min([abs(t);abs(1-t)])<1.e-12);

ok = 1:nx; ok(undef)=[];

values(ok) = (0<=min(t(:,ok))&max(t(:,ok))<1)/prod(ad);

else, % use the recurrence relations, but only for the x(:,j)

% in the smallest axiparallel cube containing supp M_{xi}, ...

g = find(max(x-sum(max(xi',zeros(n,s)))'*ones(1,nx))<=0& ...

min(x-sum(min(xi',zeros(n,s)))'*ones(1,nx))>=0);

lg = length(g);

j=1; xicut = xi(:,2:n); % xicut contains all directions but the

% one currently left out.

while lg>0, % compute and add the jth term of the recurrence:

[vj, uj] = bxrec(xicut,[x(:,g),x(:,g)-xi(:,j)*ones(1,lg)]);

values(g) = ...

values(g) + t(j,g).*vj(1:lg) + (1-t(j,g)).*vj(lg+[1:lg]);

if ~isempty(uj), % remove undefineds from further consideration

indic = zeros(1,lg); [1:lg,1:lg];

indic(ans(uj)) = ones(1,length(uj)); uj = find(indic==1);

undef = [undef, g(uj)]; g(uj) = []; lg = length(g);

end

if (j == n), break, end

xicut(:,j) = xi(:,j); % increment j and update xicut .

j = j+1;

end

values = values/(n-s);

end

end
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function m = convol(m1,m2)

%

% m = convol(m1, m2)

%

% returns the discrete convolution of the two masks contained in

% m1 , m2 (as encoded by msmak.m and decoded by msbrk.m ).

% If one or the other of these functions is itself a convolution

% product, it is more efficient to apply the sequence of factors.

% C de Boor: 11 oct 90/ 25 jun 92

% if mi = maski(.+zi) , and m = m1*m2 = sum_j m1(.-j)m2(j) ,

% with * here denoting convolution, then

% mask(.+z) = sum_j mask1(.-j+z1)mask2(j+z2)

% or

% mask(.+z-z1-z2) = sum_j mask1(.-j)mask2(j)

% showing that the mask of the convolution product is built up by

% adding, for each j in supp2 := supp(mask2), the matrix

% mask1 mask2(j) to the area supp1+j +z-z1-z2 of mask .

% It is assumed below that, in fact, each mask is an ordinary

% matrix, i.e., indexed from 1 to ... .

% While the center z is arbitrary, the required support of mask

% is minimized if we choose z as is done below.

% Make the second mask the smaller one:

if (length(m1) < length(m2)), junk = m1; m1 = m2; m2 = junk; end

oo = [1;1];

[z1,rc1,mask1] = msbrk(m1); supp1 = [oo rc1];

[z2,rc2,mask2] = msbrk(m2); supp2 = [oo rc2];

% compute support and center of convolved mask:

supp = supp1+supp2-(z1+z2)*ones(1,2);

z = oo-supp(:,1); supp = supp + z*ones(1,2); rc = supp(:,2);

% compute convolved mask:

mask = zeros(rc(1),rc(2)); shsupp1 = supp1+(z-z1-z2)*ones(1,2);

rangex = shsupp1(1,1):shsupp1(1,2);

rangey = shsupp1(2,1):shsupp1(2,2);

for i=1:rc2(1);

for j=1:rc2(2);

mask(rangex+i,rangey+j) = ...

mask(rangex+i,rangey+j) + mask1*mask2(i,j);

end; end

m = msmak(z,mask);

function m = condir(m1,dir)

%

% m = condir(m1, dir)

%

% this specialization of convol.m returns the discrete convol-
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% ution of the mask contained in m1 with the one-direction

% mask specified in dir = [x; y]*[0:(n-1)] .

% C de Boor: 12 oct 90/ 25 jun 92

oo = [1; 1];

[z1,rc1,mask1] = msbrk(m1); supp1 = [oo rc1];

[jj,n] = size(dir); dor = dir+ones(jj,n); z2 = [1; 1];

if (dir(1,n)<0),

z2(1) = 1-dir(1,n); dor(1,:) = dor(1,:)-dir(1,n)*ones(1,n); end

if (dir(2,n)<0),

z2(2) = 1-dir(2,n); dor(2,:) = dor(2,:)-dir(2,n)*ones(1,n); end

supp2 = [oo abs(dir(:,n))+oo];

% compute support and center of convolved mask:

supp = supp1+supp2-(z1+z2)*ones(1,2);

z = oo-supp(:,1); supp= supp + z*ones(1,2); rc = supp(:,2);

% compute convolved mask:

mask= zeros(rc(1),rc(2)); shsupp1 = supp1+(z-z1-z2)*ones(1,2);

rangex = shsupp1(1,1):shsupp1(1,2);

rangey = shsupp1(2,1):shsupp1(2,2);

for i = 1:n;

mask(rangex+dor(1,i),rangey+dor(2,i))= ...

mask(rangex+dor(1,i),rangey+dor(2,i)) + mask1;

end

m = msmak(z,mask);

function mask = msxima(Xi,nh)

%

% mask = msxima(Xi, nh)

%

% returns the (unscaled) mask associated with the directions Xi

% when subdividing each direction into nh pieces. The properly

% scaled mask is obtained from this by division by nh^(n-2) .

% C de Boor: 12 oct 90

mask = msmak([1;1],[1]);

[s,n] = size(Xi);

if (s~=2), error('msxima now only works for bivariate Xi .'),end

for j=1:n

mask = condir(mask,Xi(:,j)*[0:(nh-1)]);

end

function m = msmak(z,mask)

%

% m = msmak(z, mask)
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%

% returns in m the mesh-function contained in mask with center

% z (to be decoded by msbrk.m ). mask is understood to

% contain the nontrivial part of the two-dimensional mesh-function

% ZZ^2 --> RR: j |--> mask(j+z) .

% E.g., msmak([1;1], 1) provides the delta-mask. (See convol.m

% for more detail.) Note that this requires one to look at the

% matrix mask sideways. Also, since mask is a matrix, indexed

% in the standard way, i.e., with support equal to [1:r]x[1:c] ,

% the center z must necessarily lie at, or to the south-west

% (i.e., left and below) of the lower left corner of the smallest

% rectangle containing the support of the mesh-function, with mask

% smallest if z is equal to that corner. E.g., the delta-function

% is also provided by

% msmak([3;2], [0 0 0 0; 0 0 0 0; 0 1 0 0])

% C de Boor: 10 oct 90/ 25 jun 92

m = [z(:); size(mask)'; mask(:)];

function [z,rc,mask] = msbrk(m,print)

%

% [z, rc, mask] = msbrk(m [,print])

%

% returns the details of the mesh-function contained in m , i.e.,

% of the map

% ZZ^2 --> RR : j |--> mask(j+z)

% with size(mask) =: rc .

% If a second argument is present, the details are printed out.

% C de Boor: 10 oct 90

l = length(m); z = m(1:2); rc = m(3:4);

if (l-4 ~= rc(1)*rc(2)),

error('The input does not seem to contain a mask.'), end

mask = reshape(m(5:l),rc(1),rc(2));

if (nargin > 1), z, rc, mask, end


