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Fourier analysis of the approximation power of
principal shift-invariant spaces

Carl de Boor & Amos Ron

1. Introduction

Spaces spanned by finitely or countably many translates of one or several functions play an
important role in spline theory, radial basis function theory, sampling theory and wavelet theory.
Spline theory stresses the case when the generating functions are compactly supported, while sam-
pling theory singles out the case when the spectrum (i.e., the support of the Fourier transform) of
the generating functions is compact. In the radial basis function theory, neither of these is assumed,
and instead, the computational simplicity as well as the positive definiteness (i.e., the positivity of
the Fourier transform) of the generating functions is preferred. Finally, wavelet theory focuses on
the interrelation between the initial space and its dyadic dilates. In all these areas, the underlying
space s is meant for approximation or decomposition of functions, and thus, the determination of
its approximation properties is of basic significance.

The present literature is mainly concerned with a space s which is the algebraic or topological
span of the integer translates of one generating function ψ. More precisely, we hold a collection
{ψh}h∈I of complex-valued measurable functions defined on IRd, where I is either the open interval
(0 dh0), or a discrete subset of such an interval (e.g., {2−n : n ∈ IN}). For each h, we look at
all linear combinations

∑
α∈hZZd ψh(· − α)a(α), for which this sum converges in a certain sense,

and denote by sh the space of all limit functions obtained in this way. Roughly speaking, we
call sh the span of the hZZd-translates of ψh, and this is an exact description of sh in case ψh is
of compact support, a case in which the sum

∑
α∈hZZd ψh(· − α)a(α) is locally finite, and hence

arbitrary linear combinations are allowed in this sum. Approximation properties are primarily
studied via approximation orders: for the given scale {sh}h, one examines the rate of decay (as
h → 0) of dist (f, sh), where f varies over some space of admissible functions, which must contain
all test functions in D(IRd) (namely, all C∞(IRd) compactly supported functions), and the distance
dist (f, sh) between f and sh is measured in some norm, usually a p-norm (1 ≤ p ≤ ∞), or a
weighted p-norm. We say that the approximation order of the scale {sh}h is k (or O(hk)), for
some positive (usually integer) k, if, for every admissible f , dist (f, sh) = O(hk), with a constant
that depends on f (and clearly not on h), while, for some admissible f , dist (f, sh) 6= o(hk).

Although a discussion of the above model can already be found in Schoenberg’s work [S]
(for univariate functions), the first comprehensive analysis of approximation orders was carried out
about twenty years ago primarily by people from the finite element group, the best known reference
for which is [SF]. Strang and Fix considered the “compactly supported stationary case”, namely,
when ψ1 is compactly supported and ψh is its h-dilate (i.e., ψh = ψ1(·/h)), and showed (for the
2-norm) that approximation orders are characterized by the polynomials in s1. Some modifications
and improvements of these results (known these days as “The Strang-Fix Conditions”) can be
found in [DM2], [BJ] and [R2]. However [DR], the polynomials in spline spaces are unrelated to
approximation orders if the {ψh}h are not the dilates of one function. Discussion of approximation
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orders for compactly supported piecewise-exponentials {ψh}h can be found in [DR], [BR] and [LJ].
We know of no study of approximation orders for general compactly supported {ψh}h.

In the study of the above problem, one usually considers separately the questions of lower

bounds and upper bounds on the approximation order (and hopes of course to match them). The
standard approach to lower bounds is via the quasi-interpolation argument: first, a spaceH ⊂ ∩hsh
is identified, and then the local approximation properties of H are converted to approximation
orders of {sh}h with the aid of local linear operators (=quasi-interpolants) whose restriction to H
is the identity. The space H consists of polynomials in the stationary case, and of exponential-
polynomials in the piecewise-exponential case, but need not to be so in general (cf. [BAR]). Further,
the condition H ⊂ sh, all h, is convenient, but not essential, as the quasi-interpolation argument
of [R2] shows. For earlier constructions of quasi-interpolants see, e.g., [SF] and [BF]. An updated
discussion, together with a partial bibliography, can be found in [B2] and [BR].

In contrast to lower bounds, there does not seem to exist a standard approach to the upper
bound question. We already mentioned [SF] and [BJ], and we add [LC], [JL] and [HL], where
weaker forms of approximation orders (“local”, “controlled-local”) are characterized, under the
assumption that the generating functions are either compactly supported or maintain a high order
0 at ∞ (where “high” is defined relative to the desired approximation order, and several generating
functions are allowed in each h-layer). However, all these results are confined to the stationary case,
and further, the fast decay at ∞ that is required from the generating functions excludes various
functions of interest. Sharp upper bounds on the approximation order of polynomial box spline
spaces and exponential box spline spaces (integer direction case) were derived in [BH] and [LJ]
respectively, based on the local structure of the spline space, which in general is a rare possibility
(see the box spline section in this paper). Optimal schemes for approximating bounded exponentials
in the non-scaling (still, compactly supported) case were introduced in [R2]. These results will be
presented in the sequel, since they form the starting point for the upper bound analysis here.

We introduce and analyze in this paper a new approach for the determination of the approx-
imation orders of the scale {sh}h. In this approach, only modest decay rates are required of the
generating function ψh (e.g., some maximal function ψ#

h should be integrable), and the questions
of upper bounds and lower bounds are attacked almost simultaneously, so that, for all special cases
studied here, they match each other and the approximation order is determined. Using Fourier
analysis methods, we further need not restrict our attention to integral approximation orders. On
the other hand, for the lower bound part, we place some smoothness conditions on the generating
functions, which are met in all examples we know from the radial basis function theory, but exclude
splines of low smoothness, so that we have here the usual smoothness-localization trade-off. This
approach makes no use of quasi-interpolation arguments; in particular, polynomial or exponential
reproduction is not required. In addition, the approximation scheme is constructive enough for the
determination of realistic estimates for the constant which is hidden in the O(hk) expression.

In spite of the generality of the results here, we are able to apply them directly to obtain
upper and matching lower bounds for the case when the generating function is a(n exponential)
box spline with rational directions. We believe that none of the methods now in the literature
could provide either bounds. We show the important fact that many of the lower bounds known
for radial basis (and related) functions underestimate the correct approximation order, and explain
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this phenomenon. Finally, we show that the use of basic mollifiers for the generating function (e.g.,
the Gaussian kernel) leads, if properly used, to infinite approximation orders.

As mentioned, lower bounds on the approximation order were derived previously with the
aid of quasi-interpolants, and the difficulty we observed in the implementation of this method
encouraged us to start the work reported here. While the quasi-interpolation argument is an
extremely useful and powerful tool in the compactly supported stationary case, its application in
other known situations is complicated. For example, for piecewise-exponentials, the space H of
exponential-polynomials in ∩hsh might be hard to determine, its local approximation properties
might be even harder to analyze (cf. [DR]), and the lower bounds attained in this way might
underestimate the true approximation order (all these three are valid difficulties in the exponential
box spline/rational direction case). But the major drawback of the quasi-interpolation argument
appears in the area of radial basis functions (cf. [P] and the references therein). In almost all
examples there, ψh is the h-dilate of ψ1, hence one expects to use polynomial reproduction in
the quasi-interpolation argument. Still, if the function ψ1 does not decay fast enough, standard
polynomial reproduction arguments (namely, Poisson’s summation formula) do not apply. Further,
even if all desired polynomials are shown to be reproduced, more subtle information on the rates of
decay of ψ1 is required, [DJLR], [Bu1-3]. At the outset of our present study, we tried to apply to
these cases the quasi-interpolation argument from [R2], which involves only bounded exponentials,
but found that, although the polynomial reproduction argument can be circumvented in this way,
no better approximation orders are obtained.

The crux of all the analysis here is the linkage between the Fourier transform and Fourier
series via the periodization argument, and which is best expressed by Poisson’s summation for-
mula. Starting with [S], this tool has always been the chief Fourier analysis argument for polyno-
mial/exponential reproduction. The results of this work show that the periodization argument is
not only an important technical tool, but is at the center of the approximation order analysis: the
rearrangement of the error into Fourier series allows us to distinguish between terms that can be
reduced by an optimal selection of the approximant, and terms that can be small only because of
the good approximation properties of the spaces {sh}h.

We have chosen in this paper to focus on the L∞ case, namely, measure the error in the
∞-norm, primarily since this substantially simplifies the analysis of upper bounds (by making the
exponential functions admissible for approximation). On the other hand, this norm is probably one
of the harder choices in the lower bound analysis (certainly when compared to the 2-norm): Since
the approximation is performed entirely in the Fourier transform domain, we needed to bound the
Sobolev (or potential) norm of the function to be approximated in terms of its Fourier transform,
and thus our notion of “admissibility” falls short of the usual Sobolev space. Further, as we already
mentioned before, our lower bound conditions exclude generating functions of low smoothness, and
this is again related to the choice of the norm: the error in the approximation scheme can be written
and analyzed in terms of certain Fourier multipliers, whose Fourier transform is explicitly known.
However, to obtain sharp results with the aid of these multipliers requires, because of the use of
the ∞-norm, information about the behaviour of the multiplier in the original domain, which, as a
rule, is not easily accessible.

Throughout the paper, C stands for the unit cube [−1/2 d1/2]n, and Bη for the L2(IRd)-ball
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of radius η centered at the origin. We use the notation eθ, θ ∈ IRd, for the complex exponential

eθ : x 7→ eiθ·x,

and denote by φ∗′ the semi-discrete convolution

φ∗′ : f 7→
∑
α∈ZZd

φ(· − α)f(α),

where f is any function defined (at least) on ZZd. The Fourier transform of the summable function
f is defined by

f̂(θ) :=
∫

IRd

e−θ(t)f(t) dt,

and is extended by duality to all distributions in D′(IRd). We also make use of the discrete
Fourier transform (or symbol) f̃ of the function f (of polynomial growth), defined as

f̃ :=
∑
α∈ZZd

e−αf(α).

Note that

(1.1) f̃(w) = (f∗′ew)(0) = (e−wf∗′1)(0)

in case f|ZZd
∈ `1(ZZd). We denote by Π the ring of all polynomials in d variables, and Πn is the

subspace of polynomials of degree at most n. Also, Π<n := Πn−1.
As a rule, α, β are generic points of ZZd, 2πZZd, respectively, and θ, w are generic points of the

Fourier transform domain. Also, the default norm is ‖ · ‖ := ‖ · ‖∞, while, for x ∈ IRd, |x|p is its
p-norm, and |x| := |x|2 is its Euclidean norm.

2. BOUNDS ON THE APPROXIMATION ORDER

2.1. Principal shift-invariant spaces

We are interested in characterizing the approximation order of the spaces {sh}h. This is,
by definition, the maximal nonnegative k for which

dist∞(f, sh) = O(hk), when h→ 0,

for every k-admissible f .
In order for this definition to make any sense, we need to define precisely the spaces {sh}h, as

well as explain the notion of “k-admissible”. We start with the former.
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We take sh to be an appropriate closure of the linear hull of the hZZd-translates of some
function, its generating function. Specifically, we take sh to consist of functions of the form∑
α∈hZZd ψh(· − α)a(α), with, possibly, some restriction imposed on the coefficient sequence a.

Because of the nature of the results in this paper, it is convenient to scale up sh, i.e., to look at the
space

(2.1) Sh := {f(h·) : f ∈ sh}.

The space Sh is a principal shift-invariant space, which means, by definition, that it is “spanned”
by the integer translates of one generating function φh (which happens to be ψh(h·)). Denoting by

S(φ)

the principal shift-invariant space generated by the integer translates of φ, we can then write
Sh = S(φh). Since the ∞-norm is scale-invariant, we have

dist∞(f, sh) = dist∞(f(h·), S(φh)),

hence the change from sh to the scaled space Sh = S(φh) requires nothing more than switching
from f to the correspondingly scaled f(h·). As a simple example, note that in the stationary case,
when ψh is the h-dilate of ψ1, the scale-up procedure undoes the dilation and hence φh = φ1 = ψ1

for all h. In other words, Sh does not change with h.
Thus our setting is as follows: we hold in hand a collection {Sh}h of spaces, each of which is a

principal shift-invariant space generated by some h-dependent function φh. Then for a “reasonable”
function f , we consider the quantities dist∞(f(h·), Sh). Whenever these quantities decay to 0 like
hk, we say that {Sh}h provides approximation order k for f . If dist∞(f(h·), Sh) = O(hk) for all
k-admissible functions, then we say that {Sh}h provides approximation order k.

We have not yet defined the topology used in the definition of the principal shift-invariant
space S(φ). While the derivation of lower bounds is largely independent of the topology used in the
definition of this “spline” space (since only a small subset of the space is usually employed in the
analysis), upper bounds are intimately related to the way S(φ) is defined: results on upper bounds
become stronger with the weakening of the topology in which the limits

∑
α∈ZZd φ(· − α)a(α) are

calculated. In the absence of a standard definition for the space S(φ), we have chosen here the
following one, which is motivated by the particular way in which we shall derive upper bounds in
the next section.

Definition. The principal shift-invariant space S(φ) is the space of all locally bounded func-

tions φ∗′a, for which the double sum

φ∗′(φ∗′a) =
∑

α,β∈ZZd

φ(x− β)φ(β − α)a(α)

is absolutely convergent for every x ∈ IRd.

If φ has compact support, then S(φ) contains φ∗′a for arbitrary a. Furthermore, if φ has some
decay at ∞, then S(φ) contains all φ∗′a for which a does not grow too fast at ∞. Here is a sample
proposition:
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Proposition 2.2. Assume that, for every p ∈ Πn, the series φ∗′p converges pointwise absolutely

to a locally bounded function, and let An be the space of all sequences a : ZZd → C of (at

most) polynomial growth n at ∞. Then φ∗′An ⊂ S(φ). In particular, φ∗′An ⊂ S(φ) in case

|φ(x)| = O(|x|−m) for some m > n+ d, as x→ ∞.

Proof: We will show that, for a ∈ An, (φ∗′a)|ZZd
∈ An, from which it will follow (because of the

assumption on φ) that φ∗′(φ∗′a) converges absolutely to a locally bounded function, and therefore,
by the definition of S(φ), φ∗′a ∈ S(φ). Without loss, we may assume that both φ and a are
nonnegative (otherwise take absolute values).

By assumption, we can find a constant const such that ‖φ∗′p‖L∞(C) ≤ const for all normalized
monomials p : x 7→ xα/α!, α ∈ ZZd+, |α|1 ≤ n. It follows that

‖φ∗′p‖L∞(C) ≤ const max
|γ|1≤n

|Dγp(0)|

for all p ∈ Πn. Now, let y ∈ IRd, and set y =: ty + αy, with ty ∈ C and αy ∈ ZZd. Since
(φ∗′p)(· + αy) = φ∗′(p(· + αy)), we deduce that (φ∗′p)(y) is the value at ty of φ∗′(p(· + αy)), and
therefore, by the argument above, |φ∗′p(y)| ≤ constmax|γ|1≤n |Dγp(αy)|. Thus φ∗′p = O(| · |deg p)
at ∞, and hence (φ∗′p)|ZZd

∈ An for any p ∈ Πn.
As for φ∗′a, by definition of An, a ∈ An can be bounded by some p ∈ Πn (in the sense that

a(α) ≤ p(α) for all α), hence φ∗′a is dominated by φ∗′p and therefore (φ∗′a)|ZZd
∈ An.

For the approach taken in this paper, it is important that the sum φ∗′eθ be well-defined for any
exponential eθ, θ ∈ IRd. Therefore, we assume that each operator φ∗′ is well-defined and bounded
as a map from `∞ to L∞, and denote the corresponding norm by ‖φ∗′‖. Some conditions related
to the boundedness of ‖φ∗′‖ are recorded in the following proposition whose proof is standard.

Proposition 2.3. The norm of the operator φ∗′ is ‖∑
α∈ZZd |φ(· − α)| ‖, hence, this operator is

bounded if and only if the series
∑
α∈ZZd |φ(· − α)| is pointwise convergent to a bounded function.

This proposition implies that φ ∈ L1(IRd) whenever φ∗′ is bounded, and, hence, that the
Fourier transform φ̂ of φ is a well-defined continuous function. Also, a sufficient condition for the
boundedness of φ∗′ is the integrability of the maximal function φ#(x) := ‖φ‖L∞(x+C).

2.2. Admissibility

Next, we turn to the definition of the space of admissible functions associated with the ∞-norm:

Definition. A function f of at most polynomial growth at ∞ is termed here k-admissible if

(1 + | · |k)f̂ is a Radon measure of finite total mass. For such a function f , we denote by

‖f‖′k
the total mass of (1 + | · |k)f̂ .

It follows that f is k-admissible (for some k ≥ 0) only if f̂ is a measure of finite total mass.
In particular, any admissible f is bounded. It is worthwhile to keep in mind two examples of
admisssible functions. The first is the exponential f = eθ, θ ∈ IRd. In this case, f̂ = δ−θ, and since
f̂ is compactly supported, f is admissible of all orders. However, ‖f‖′k = 1 + |θ|k, and this grows
with k and/or θ. The other example occurs when f̂ is a function. In this case, f is k-admissible
whenever (1 + | · |k)f̂ ∈ L1(IRd).
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As usual, in case k is integral, the admissibility condition can be interpreted in terms of the
kth order derivatives of f :

Proposition 2.4. A function f is k-admissible for some k ∈ ZZ+ if and only if the Fourier trans-

forms of f and of all its kth order derivatives are measures of finite total mass.

Proof: Let fα be the αth order (distributional) derivative of f , hence f̂α : w 7→ (iw)αf̂(w), and
choose cα so that

∑
α cα|xα| = |x|k1 for x ∈ IRd, i.e., cα =

(
k
α

)
for |α|1 = k and cα = 0 otherwise.

Then
∑
α cα|f̂α| = | · |k1 |f̂ |, therefore, if f̂α is a measure of finite total mass for each α ∈ ZZd+ with

|α|1 = k, then so is | · |k1 |f̂ |, hence so is | · |k|f̂ |. Thus, if also f̂ is of finite mass, then we conclude
that so is (1 + | · |k)|f̂ |. The converse is even simpler: if f is k-admissible, then f̂ , as well as
w 7→ (iw)αf̂(w) for |α|1 = k, are majorized by a measure of finite mass (viz. (1+ | · |k)f̂), and hence
the Fourier transform of f and of all its derivatives of order k are measures of finite mass.

2.3. Upper bounds

We obtain upper bounds for the approximation order by considering approximation to expo-
nentials eθ, θ ∈ IRd. Our starting point is the following result from [R2]:

Result 2.5. Let θ ∈ IRd, and assume that the sequence {φh}h satisfies the following conditions:

(a) suppφh ⊂ B, for all h, and for some h-independent compact B.

(b) The functions {φh}h are uniformly bounded.

Then,

(2.6) ‖φh∗′ehθ − φ̃h(hθ)ehθ‖ ≤ cdist∞(ehθ, S(φh)).

The proof provided here will make use of the following condition, which is a consequence of
(a)+(b), but implies only (b):

(ab) suph ‖φh∗′‖ <∞.

Proof: Fix h, and let f ∈ S(φh). Since φh∗′g = g∗′φh for all g ∈ S(φh), by [B1], and also
eϑ∗′φh = φ̃h(ϑ)eϑ for any ϑ, we have

(2.7) ‖φh∗′ehθ − φ̃h(hθ)ehθ‖ ≤ ‖φh∗′ehθ − φh∗′f‖ + ‖f∗′φh − ehθ∗′φh‖ ≤ 2‖φh∗′‖ ‖ehθ − f‖.
Since f ∈ S(φh) was arbitrary, the result follows, with c = 2 suph ‖φh∗′‖.

Since the key to the above argument is the “flip” property: φ∗′f = f∗′φ, f ∈ S(φ), we
can extend the result to any φ, compactly supported or not, with that property. Our particular

definition of the space S(φ) was chosen primarily to ensure the “flip” property.

Flip Lemma 2.8. For every f ∈ S(φ),

φ∗′f = f∗′φ.

Proof: The argument follows the one given in [B1]. We fix f ∈ S(φ) and x ∈ IRd, and wish to
show that both φ∗′f(x) and f∗′φ(x) converge, and to the same limit. Since f = φ∗′a for some
sequence a, we write explicitly

(φ∗′f)(x) =
∑
α∈ZZd

φ(x− α)
∑
β∈ZZd

φ(α− β)a(β).
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By the definition of S(φ), this double sum is absolutely convergent, hence we may rearrange terms
(and replace α by α+ β) to get:∑

α∈ZZd

φ(α)
∑
β∈ZZd

φ(x− (α+ β))a(β) = f ∗′ φ(x).

Theorem 2.9. Assume that the operator φ∗′ is bounded. Then, for any θ ∈ IRd,

(2.10) ‖φ∗′ehθ − φ̃(hθ)ehθ‖ ≤ 2‖φ∗′‖dist∞(ehθ, S(φ)).

Proof: Repeat the proof of Result 2.5, but replace the reference to [B1] by a reference to Lemma
2.8.

Theorem 2.9 can be interpreted in two different ways. On the one hand, it suggests that a
‘near-optimal’ approximant for the exponential ehθ from

Sh := S(φh)

is provided by (the supposedly well-defined) φ̃h(hθ)−1φh∗′ehθ. The following corollary records this
fact.

Corollary 2.11. Assuming that φh∗′ is bounded and that φ̃h(hθ) 6= 0, we get

(2.12) ‖φ̃h(hθ)−1φh∗′ehθ − ehθ‖ ≤ 2
‖φh∗′‖
|φ̃h(hθ)|

dist∞(ehθ, Sh).

We note that the ratio ‖φh∗′‖/|φ̃h(hθ)| is independent of the way φh is normalized, and hence,
the right hand side of (2.12) is independent of the particular normalization we choose for φh. But
the estimate (2.12) is useful for the derivation of bounds for the approximation order only in case
the sequence {‖φh∗′‖/φ̃(hθ)}h is bounded.

Fortunately, Theorem 2.9 can be used directly to derive upper bounds. We simply observe that,
in case the operators {φh∗′}h are uniformly bounded, Theorem 2.9 shows that dist∞(ehθ, Sh) =
O(hk) only if the same holds for ‖φh∗′ehθ − φ̃h(hθ)ehθ‖, i.e., for ‖e−hθ(φh∗′ehθ) − φ̃h(hθ)‖ (since
|ehθ(x)| = 1 for every θ ∈ IRd and every x ∈ IRd). Since e−hθ(φh∗′ehθ) = (e−hθφh)∗′1, we obtain

(2.13) ‖(e−hθφh)∗′1 − φ̃h(hθ)‖ ≤ cdist∞(ehθ, Sh).

Thus, if we assume that we have approximation order k, then we must have

(2.14) ‖(e−hθφh)∗′1 − φ̃h(hθ)‖ = O(hk).

Since the function (e−hθφh)∗′1 is ZZd-periodic, (2.14) implies that its Fourier coefficients (excluding
the 0’th coefficient) must be of size O(hk). Furthermore, (2.14) implies, in particular, that

(2.15) ‖(e−hθφh)∗′1 − φ̃h(hθ)‖L2(C) = O(hk),
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which means that the 2-norm of the Fourier coefficient sequence for this periodic function is of
order O(hk). Since φ̃h(hθ) is part of the constant term of this function, these coefficients are
(e−hθφh)∗′1)̂(β) for β ∈ 2πZZd\0. We compute

(2.16)

((e−hθφh)∗′1)̂(β) =
∫
C

∑
α∈ZZd

e−hθ(t− α)φh(t− α)e−β(t) dt

=
∑
α∈ZZd

∫
C−α

e−hθ(t)φh(t)e−β(t) dt

=
∫

IRd

φh(t)e−hθ−β(t) dt = φ̂h(hθ + β),

where, for the second equality, the fact that φh ∈ L1 was used. Therefore, we conclude that∑
β∈2πZZd\0

|φ̂h(hθ + β)|2 = O(h2k).

As a matter of fact, nothing in the above arguments requires the approximation order to behave
like a power of h, and we thus obtain the following.

The Upper Bound Theorem 2.17. Assume that the φh∗′ are bounded, and let θ ∈ IRd. If

dist (ehθ, S(φh)) = O(ρθ(h))

for some (univariate) function ρθ, then, for every h,∑
β∈2πZZd\0

|φ̂h(hθ + β)|2 ≤ const‖φh∗′‖ρθ(h)2.

In particular, if we normalize {φh}h to obtain a uniformly bounded {φh∗′}h, then {S(φh)}h provides

approximation order k to the exponential function eθ , θ ∈ IRd, only if∑
β∈2πZZd\0

|φ̂h(hθ + β)|2 ≤ cθh
2k.

Note that the above implies that, in order to obtain k-approximation order, it is necessary to
have

(2.18) |φ̂h(hθ + β)| ≤ cθh
k, β ∈ 2πZZd\0, θ ∈ IRd.

It is this slightly weaker condition that we use throughout the paper in order to obtain upper
bounds on the approximation orders.

It is remarkable that the result avoids an application of Poisson’s summation formula (namely,
the convergence of the Fourier series of (e−hθφh)∗′1 was not required), and hence no smoothness
conditions were imposed on {φh}h. Also, no “regularity” condition was needed in the upper bound
theorem, i.e., neither {φ̂h(0)}h nor {φ̃h(0)}h were required to stay away from 0. (However, it is
plausible that, in the singular cases, this upper bound overestimates the actual approximation order
by the order of the zero of h 7→ φ̃h(hθ) at h = 0.)

The upper bounds were derived under the assumption that the exponential function eθ is
admissible, hence should be approximated well. Under a stronger assumption on the rates of decay
of each φh at ∞, we can show that the Upper Bound Theorem 2.17 remains valid even if we only
wish to approximate the test functions in D, i.e., infinitely smooth compactly supported functions.
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Theorem 2.19. Assume that {‖φh∗′‖}h is bounded and, in addition, {φh}h satisfies the condition

(2.20)
∑

|α|≥1/h

|φh(x− α)| ≤ chk, x ∈ C.

Then {S(φh)}h provides approximation order k to all functions in D only if, for every θ ∈ IRd and

every β ∈ 2πZZd\0,

|φ̂h(hθ + β)| ≤ cθh
k,

where cθ is independent of β.

Proof: We fix θ ∈ IRd, and choose f ∈ D with ‖f‖ = 1 such that f = eθ on some neighborhood
of 0, e.g., on 3C. Let x ∈ C, h ≤ 1, and set fh := f(h·). Then, since |α| ≤ 1/h implies that
C − α ⊆ 3C/h, we have fh(x− α) = ehθ(x− α) for |α| ≤ 1/h, and therefore

|(fh − ehθ)∗′φh(x)| ≤ 2
∑

|α|≥1/h

|φh(α)| = O(hk).

In a similar fashion, |φh∗′(fh − ehθ)(x)| = O(hk), too.
As in Result 2.5, we obtain that, for each g ∈ S(φh),

‖φh∗′fh − fh∗′φh‖ ≤ ‖φh∗′(fh − g)‖ + ‖(fh − g)∗′φh‖ ≤ 2‖φh∗′‖ ‖fh − g‖.

Therefore, for x ∈ C we obtain that

|(e−hθφh)∗′1(x) − φ̃h(hθ)| = |φh∗′ehθ(x) − φ̃h(hθ)ehθ(x)| = |φh∗′ehθ(x) − ehθ∗′φh(x)|
≤ |φh∗′fh(x) − fh∗′φh(x)| +O(hk) ≤ 2‖φh∗′‖dist∞(fh, Sh) +O(hk).

Since the function e−hθφh∗′1 is ZZd-periodic, and since we assume the boundedness of {φh∗′}h, we
conclude that

‖(e−hθφh)∗′1 − φ̃(hθ)‖ ≤ const dist∞(fh, Sh) +O(hk).

Finally, in the proof of the Upper Bound Theorem 2.17 we have observed that {φ̂(hθ+β)}β∈2πZZd are
the Fourier coefficients of the function (e−hθφh)∗′1, and therefore, if {Sh}h provides approximation
order k for f , we must have

|φ̂(hθ + β)| ≤ chk, β ∈ 2πZZd\0,

where c depends on f , i.e., on θ, but is independent of β.

10



Lower bounds

The upper bound analysis provides us with near-optimal approximants εhθ from Sh to the
exponential ehθ. We use closely related approximants to establish lower bounds on the approxima-
tion orders provided by {Sh}h. The idea of producing an approximant from Sh for the function
fh := f(h·) is very simple: we write

fh(x) = (2π)−d
∫

IRd

f̂(θ)ehθ(x) dθ,

hence can provide the approximant to fh in the form

(2π)−d
∫

IRd

f̂(θ)εhθ(x) dθ.

Of course, we still need to make sure that this approximant lies in Sh, and that f is “reasonable”
enough for the above integration to make sense. But, even in such a case, the above approximation
scheme is “too global” (in the sense that all the Fourier transform information of f is taken into
account), and therefore, in order to simplify our error analysis, we use a suitable nonnegative
continuous cut-off function σ with support near the origin. For convenience, we assume that suppσ
lies in the ball Bη = {x ∈ IRd : |x| ≤ η}, that σ is 1 on Bη/2, and that ‖σ‖ = 1. Furthermore,
since the approximation scheme should be applicable to any admissible function f , we only know
that f̂ is a measure, and therefore prefer the notation df̂(θ) to the notation f̂(θ) dθ. Thus, our
approximation scheme takes the form:

(2.21) fh(x) := f(hx) ≈ Rhf(x) := (2π)−d
∫

IRd

εhθ(x)σ(hθ)df̂(θ).

Then

(2.22)
(2π)d|Rhf − fh| ≤

∫
IRd

|εhθσ(hθ) − ehθ| |df̂ |(θ)

≤
∫

IRd

|σ(hθ) − 1| |df̂ |(θ) +
∫

IRd

σ(hθ)|εhθ/ehθ − 1| |df̂ |(θ).

If now f is k-admissible, then

(2h/η)−k
∫

IRd

(1 − σ(hθ)) |df̂ |(θ) ≤
∫

IRd

|θ|k(1 − σ(hθ)) |df̂ |(θ) −→
h→0

0

(since the integrand vanishes on Bη/(2h)), and therefore the first integral in the last line of (2.22)
is o(hk). For the second integral, we need to look more carefully at the ‘periodized’ error

(2.23) εhθ/ehθ − 1.

11



2.4. Lower bounds: analysis

With the assumption that φ̂h(hθ) 6= 0, we choose the ‘near optimal’ approximation εhθ from
Sh to ehθ in the form

(2.24) εhθ :=
φh∗′ehθ
φ̂h(hθ)

.

With this choice, the approximation Rhf takes the more explicit form

(2.25) Rhf := φh∗′f∗h ,

with f∗h the bounded analytic function

(2.26) f∗h(x) := (2π)−d
∫

IRd

eihx·θ

φ̂h(hθ)
σ(hθ) df̂(θ).

In particular, this makes clear that Rhf is indeed an element of Sh.
Further, the ‘periodized’ error takes the form

εhθ/ehθ − 1 =
(e−hθφh)∗′1
φ̂h(hθ)

− 1.

Recall from (2.16) that

((e−hθφh)∗′1)̂(β) = φ̂h(hθ + β), β ∈ 2πZZd.

Consequently the Fourier series of the periodized error has the form

∑
β∈2πZZd

φ̂h(hθ + β)

φ̂h(hθ)
eβ − 1 =

∑
β∈2πZZd\0

φ̂h(hθ + β)

φ̂h(hθ)
eβ ,

and it always converges to the periodized error, at least in a distributional sense. While the
estimates for this sum provided by summability methods seem to be hard to analyze, we can
expect that, for a smooth φh, the series will converge absolutely. In such a case, we obtain the
following important estimate.

Theorem 2.27. For any h, for which φh∗′ is bounded and φ̂h(hθ) 6= 0,

(2.28) ‖εhθ/ehθ − 1‖ = ‖φh∗
′ehθ

φ̂h(hθ)
− ehθ‖ ≤

∑
β∈2πZZd\0

|φ̂h(hθ + β)|
|φ̂h(hθ)|

.

It may seem surprising that we did not use here the approximation

(2.29) ehθ ≈ φh∗′ehθ
φ̃h(hθ)

12



derived during the discussion of upper bounds. The reason is simple. Recall from (1.1) that
φ̃h(hθ) = (φh∗′ehθ)(0) = (e−hθφh∗′1)(0), and this equals

∑
β∈2πZZd(e−hθφh∗′1)̂ (β). Therefore, by

(2.16), φ̃h(hθ) = φ̂h(hθ) +
∑
β∈2πZZd\0 φ̂h(hθ + β). Hence if one of the two sums

∑
β∈2πZZd\0

|φ̂h(hθ + β)|
|φ̃h(hθ)|

and
∑

β∈2πZZd\0

|φ̂h(hθ + β)|
|φ̂h(hθ)|

goes to zero with h, then they go to zero at exactly the same rate, since limh→0 φ̃h(hθ)/φ̂h(hθ) = 1
in such a case. This means that we lose nothing in the estimate (2.28) if we use the approximation
εhθ = φh∗′ehθ

φ̂h(hθ)
instead of φh∗′ehθ

φ̃h(hθ)
, but gain simplicity, since the Fourier transform φ̂h is usually more

readily accessible than the symbol φ̃h.
In the sequel we exclusively use the right hand side of (2.28) to bound ‖εhθ/ehθ − 1‖, hence

obtain positive approximation orders only when the right hand side of (2.28) tends to 0 with h.

2.5. Lower bounds: synthesis

With the bound (2.28) in hand, we return to the error estimate

(2.30) (2π)d|Rhf − fh| ≤
∫

IRd

(1 − σ(hθ)) |df̂ |(θ) +
∫

IRd

σ(hθ)|εhθ/ehθ − 1| |df̂ |(θ);

see (2.22). Having observed earlier that the first integral is o(hk) whenever f is k-admissible, we
now want to make the second integral O(hk). By Theorem 2.27, we have in hand the estimate

(2.31)
∫

IRd

σ(hθ)|εhθ/ehθ − 1| |df̂ |(θ) ≤
∫
Bη/h

∑
β∈2πZZd\0

|φ̂h(hθ + β)|
|φ̂h(hθ)|

|df̂ |(θ).

We know from the upper bound discussion that approximation order k requires that |φ̂h(hθ+β)|
|φ̂h(hθ)| =

O(hk) for fixed θ uniformly in β. This suggests the assumption that

‖
∑

β∈2πZZd\0

|φ̂h(· + β)|
|φ̂h|

‖L∞(Bη) = O(hk).

Unfortunately, except for the case of spectral approximation orders (see Section 3.3), not many
examples of interest satisfy this assumption. We choose instead the following more subtle condition,

in which we employ functions νh(x) to describe the behavior of |φ̂h(x+β)|
|φ̂h(x)| for x near 0. In fact, for

any indexed set {νh}h of positive functions on Bη, we have

(2.32)
∫
Bη/h

∑
β∈2πZZd\0

|φ̂h(hθ + β)|
|φ̂h(hθ)|

|df̂ |(θ) ≤
∑

β∈2πZZd\0
‖ φ̂h(· + β)

νhφ̂h
‖
L∞(Bη)

∫
Bη/h

νh(hθ) |df̂ |(θ).

Consequently,

(2.33)
∫

IRd

σ(hθ)|εhθ/ehθ − 1| |df̂ |(θ) ≤ A(ν, η)
∫
Bη/h

νh(hθ) |df̂ |(θ),

13



with

A(ν, η) := sup
h

∑
β∈2πZZd\0

‖ φ̂h(· + β)

νhφ̂h
‖
L∞(Bη)

.

The Synthesis Condition. We say that {φh}h satisfies the ν-synthesis condition if, for some

indexed set {νh}h of functions defined in some neighborhood of 0, and some η > 0, A(ν, η) is finite.

This means that the number

(2.34) A(ν) := inf
η
A(ν, η)

is finite.

Now notice that
∫
IRd(|hθ|k + hk) |df̂ |(θ) = hk‖f‖′k. This suggests the choice

(2.35) νh(x) := |x|k + hk.

We call the ν-synthesis condition with respect to this ν the synthesis condition of order k.
With this, we infer from (2.30) and (2.33) the following:

The Lower Bound Theorem 2.36. Assume that each φh∗′ is bounded, and that {φh}h satisfies

the synthesis condition of order k. Then, for every k-admissible f , ‖Rhf − f(h·)‖ = O(hk), with

Rhf defined as in (2.21). In particular, {S(φh)}h provides approximation order k.

As a matter of fact, the above discussion provides also the following significant information on
the constant in the O(hk) expression.

Corollary 2.37. Assuming the synthesis condition of order k, we have, for every k-admissible f ,

‖φh∗′f∗h − fh‖ ≤ (2π)−dhk‖f‖′kA(ν) + o(hk),

with A(ν) as defined in (2.34) (for νh(x) := |x|k + hk).

Stronger results can be obtained under more restrictive assumptions on the functions ν in the
synthesis condition. For example, if νh(x) is independent of x (but, of course, depends on h), then
(2.30) and (2.33) allow us to conclude the following improved version of the last corollary:

Corollary 2.38. If {φh}h satisfies the ν-synthesis condition, with each νh being a constant func-

tion, then, for every k-admissible function f ,

‖φh∗′f∗h − fh‖ ≤ (2π)−dνh(0)‖f‖′0A(ν) + o(hk).

In particular, if νh(0) = o(hk), then so is dist∞(fh, Sh).
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3. Applications

We apply here the general results of the previous section to the three main families of generating
functions: generating functions obtained by differencing another generating function, h-independent
generating functions, and generating functions which are compactly supported uniformly in h.
These families overlap, and many specific examples fall into two or three of these categories (e.g.,
polynomial box splines satisfy all of the above conditions).

3.1. The stationary case

We use the terminology “the stationary case” if the functions {φh}h are actually independent
of h. This means that all the spaces Sh = S(φh) are the same, or, in other words, that the original
spaces {sh}h are obtained by dilating S(φ) (with φ := φ1, say). In this case, it is convenient
to speak of the approximation order provided by φ and mean by this the approximation order
provided by {Sh = S(φ)}h. The upper bound theorem specializes in this case to the following.

Theorem 3.1. Let φ be a measurable function whose associated operator φ∗′ is bounded, and

whose Fourier transform is k times differentiable at every β ∈ 2πZZd\0 for some k ∈ ZZ+. Then φ

provides approximation order k only if φ̂ has a zero of order k at every β ∈ 2πZZd\0.

Proof: Since φh = φ for every h, we must have, by the Upper Bound Theorem 2.17,

φ̂(hθ + β) = O(hk), all θ ∈ IRd.

By assumption, φ̂(x + β) = p(x) + o(|x|k) for some p ∈ Πk. Therefore, by taking sufficiently (but
finitely) many θ’s, we conclude that p = 0, i.e., that φ̂ has a zero of order k at each β ∈ 2πZZd\0.

The stationary case was analyzed in great detail in the literature, especially for a compactly
supported φ, and the various results for this case are usually in terms of “Strang-Fix Conditions”,
[SF]. We record below the following version of these conditions, whose sufficiency follows from
[DM1] and [B1], while their necessity was proved in [R2] (and previously, in a weaker form, in
[BJ]).

Result 3.2. Assume that φ is a bounded measurable compactly supported function that satisfies

φ∗′1(0) 6= 0, and let k ∈ IN. Then, φ provides approximation order k for every f in the Sobolev

space W k
∞ if and only if Π<k ⊂ S(φ).

Exploiting the Upper Bound Theorem 2.17, we are able to extend the “only if” statement in
Result 3.2 as follows:

Theorem 3.3. Let φ be a bounded measurable compactly supported function. Then the ap-

proximation order provided by φ to functions in D cannot exceed the degree of the least degree

polynomial p that satisfies φ∗′p 6∈ Π.
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Proof: By Theorem 2.19, the Upper Bound Theorem 2.17 holds here (although only approxima-
tion to functions in D is required). Thus, by Theorem 3.1 (and the fact that φ̂ is entire), φ̂ must
have a zero of order k at each β ∈ 2πZZd\0, in case the approximation order is k. Now, it is known
(cf. e.g., [BR]) that, for a compactly supported distribution φ, φ∗′Π<k ⊂ Π if and only if φ̂ has a
zero of order k at each β ∈ 2πZZd\0. Thus the degree of the least degree polynomial p for which
φ∗′p 6∈ Π is an upper bound for the appoximation order.

In case φ̃(0) 6= 0, the above result reproduces the “only if” statement of Result 3.2, since it is
well-known (cf. [B1]) that in such a case φ∗′p ∈ Π if and only if p ∈ S(φ).

The above result does not admit a direct extension to the case of global support, since in
general the operator φ∗′ need not to be defined on polynomials in that case. However, we always
have the following:

Theorem 3.4. Assume that φ∗′ is bounded. Then the approximation order provided by φ is

positive only if φ∗′1 = const.

Proof: By Theorem 3.1, φ̂ vanishes on 2πZZd\0. Let {ηn} be an approximate identity, and define
τn := ηn ∗ φ. Then, for every n, τ̂n vanishes on 2πZZd\0, and hence, by Poisson’s summation
formula,

τn∗′1 =
∑

β∈2πZZd

τ̂n(β)eβ = φ̂(0).

Thus, ηn ∗ (φ∗′1) = φ̂(0) for every n, and by letting n→ ∞, we obtain φ∗′1 = φ̂(0).

Similar results can be obtained with respect to higher degree polynomials, if we assume that
φ∗′ is well-defined on such polynomials. We omit these details here.

We now turn to the synthesis condition, and examine the quotient φ̂(x+β)

φ̂(x)
. In many of the

examples, this ratio can be factored into two terms

φ̂(x+ β)

φ̂(x)
= K(x+ β)H(x),

where K(x) decays fast enough at ∞, while H(x) has a zero at the origin of high enough order. In
such a situation, we obtain the following result.

Theorem 3.5. Suppose that φ∗′ is bounded and φ̂(0) 6= 0. Suppose further that, for some

continuous K and smooth H,

φ̂(x+ β)

φ̂(x)
= K(x+ β)H(x),

and that, for some η > 0, ∑
β∈2πZZd\0

‖K(· + β)‖
L∞(Bη)

<∞.

If K(β) 6= 0 for some β ∈ 2πZZd\0, then the approximation order provided by φ equals the order

of the zero of H at the origin.
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Proof: Let β ∈ 2πZZd\0 be such that K(β) 6= 0. Let k be the exact order of the zero of H at the
origin. Since H is smooth at 0, there exists θ ∈ IRd\0 such that H(hθ) 6= o(hk), and consequently,

φ̂(hθ + β)

φ̂(hθ)
= K(hθ + β)H(hθ) 6= o(hk).

Since φ∗′ is bounded, we can appeal to the Upper Bound Theorem 2.17 to conclude that the relevant
approximation order is at most k.

Next, we show that the synthesis condition of order k holds: by the assumption on H, | · |−kH
is bounded in a neighborhood of the origin. Thus, for a small enough η and any x ∈ Bη,∑

β∈2πZZd\0

|K(x+ β)H(x)|
|x|k ≤ |H(x)|

|x|k
∑

β∈2πZZd\0
‖K(· + β)‖L∞(Bη) <∞.

This shows that the synthesis condition of order k holds here, and hence, by the Lower Bound
Theorem 2.36, the approximation order is at least k.

3.2. The differencing case

Almost all the generating functions now in the literature belong to this family. Here, one
starts with a function φ which has polynomial or even exponential growth at ∞, but for which
p(D)φ decays at ∞ for some linear differential operator p(D) with constant coefficients (e.g., φ is a
fundamental solution of p(D)). This means that, away from the zero set of p(i·), φ̂ coincides with
K/p(i·), for some smooth function K. To obtain from φ a function in (a suitable closure of) S(φ)
which decays at ∞ (namely, to localize φ), or, equivalently, to remove the singularities of φ̂, one
approximates the differential operator p(D) by a (finite- or infinite-) difference operator T which is
supported on ZZd, i.e., approximates the polynomial p(i·) by some periodic function u. In order to
make this process feasible and as simple as possible, the real variety of the polynomial p(i·) should
be extremely simple. For example, in the box spline case p is chosen as a product of (more or less
arbitrary) linear polynomials, while for typical radial basis (and related) functions, the operator
p(D) is elliptic (for this reason we will refer to the latter class of generating functions as belonging
to “the elliptic case”), hence one has only to resolve the singularity of φ̂ at the origin. For h > 0,
one replaces p(D) by the operator ph(D) := hdeg pp(h−1D), associates ph(D) with a function φh
in a way analogous to the case h = 1 (so that now ph(i·)φ̂h = K, for the same K as before),
and repeats the differencing process. In case p is homogeneous, ph does not change with h, hence
φh = φ, all h.

For box splines, one easily obtains in this way a compactly supported function Tφ ([BH], [R1]).
In contrast, in the (homogeneous) elliptic case, the major effort was devoted to the localization
process, aiming at constructing T in such a way that (Tφ)̂ be as smooth as possible and (Tφ)̂ − 1
have a high order zero at the origin. The simple approximation scheme then suggested (cf. e.g.,
[J], [Bu1-3], [DJLR], [P]) is f(h·) ≈ Tφ∗′f(h·), and the convergence rate is O(hk| log h|) where
k depends on the rate of decay of Tφ at ∞ and on the order of the zero of (Tφ)̂ − 1 at the
origin, but never exceeds deg p. Under further assumptions on the decay rates of Tφ at ∞, the
approximation rates were improved to O(hk), but in some cases it was proved that O(hk| log h|) is
the exact order of this approximation scheme. None of the above references provides upper bounds
on the approximation order. Details for specific cases are given in the next section.
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We show now that the exact approximation order in all elliptic cases in the literature is the

degree of the underlying differential operator p(D), regardless of the decay rates of Tφ at ∞, or

the smoothness of (Tφ)̂ at the origin.

Theorem 3.6. Let p(D) be a homogeneous elliptic operator of order k > d, d being the spatial

dimension. Assume that φ satisfies the equation

p(i·)φ̂ = K,

where K is a continuous bounded function, K(0) 6= 0, and K(β) 6= 0 for some β ∈ 2πZZd\0.

Assume that, for some sequence c of polynomial growth, the sum φ∗′c converges distributionally

to a function ψ whose corresponding ψ∗′ is bounded and whose Fourier transform does not vanish

at 0. Then the approximation order provided by ψ is (exactly) k.

Proof: By the definition of ψ,

(3.7) p(i·)ψ̂ = uK,

where u (the Fourier transform of c) is a 2πZZd-periodic tempered distribution. Since ψ∗′ is bounded
by assumption, ψ̂ is continuous (recall the remarks following Proposition 2.3). SinceK is continuous
and K(0) 6= 0 (and the left side of (3.7) is continuous), we conclude that u coincides, on some
neighborhood Ω of the origin, with some continuous function. Therefore

ψ̂ =
uK

p(i·) on 2πZZd + Ω\0.

Since p(D) is elliptic, |p| ≥ const| · |k for some const > 0, while const′| · |k ≥ |p| for some const′, by
the homogeneity of p. Thus, for small enough x and for β ∈ 2πZZd\0, by the periodicity of u,

| ψ̂(x+ β)

ψ̂(x)
| = | K(x+ β)p(ix)

p(i(x+ β))K(x)
| ≤ const|x|k|β|−k.

Since k > d, we see that ψ satisfies the synthesis condition of order k, hence (by the Lower Bound
Theorem 2.36) the approximation order is at least k.

Now, choose β ∈ 2πZZd\0 such that K(β) 6= 0. Since p(D) is homogeneous and elliptic of order
k, p(ihθ)/hk = ikp(θ) 6= 0. Hence, for any θ ∈ IRd\0,

h−k
ψ̂(hθ + β)

ψ̂(hθ)
= h−k

K(hθ + β)p(ihθ)
p(i(hθ + β))K(hθ)

−→
h→0

ik
K(β)p(θ)
p(iβ)K(0)

6= 0.

Since ψ̂ does not vanish on some neighborhood of the origin, the Upper Bound Theorem 2.17 applies
to yield that the approximation order is at most k.
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The extension of the above theorem to non-homogeneous elliptic operators is straightforward,
and is omitted only because of lack of examples of this type in the present literature. A discussion
of non-elliptic cases appears in the box spline section.

As mentioned before, in case ψ := Tφ decays only slowly at ∞, the lower bounds on the
approximation order now in the literature usually underestimate the actual approximation order.
To explain this, it is instructive to compare the approximation scheme suggested here in the lower
bound analysis with the simpler scheme

(3.8) f(h·) ≈ ψ∗′f(h·).
Assume, for simplicity, that f̂ ∈ D, hence f(hx) = (2π)−d

∫
IRd f̂(w)ehx(w) dw. The approximation

scheme here is of the form f(h·) ≈ (2π)−dψ∗′ ∫
IRd

f̂(w)

ψ̂(hw)
ehx(w) dw. Taking into account the fact

that the scheme here is proved to be optimal (in terms of approximation orders), the optimality
of (3.8) depends on the behaviour of the difference ψ̂ − 1 around the origin, or more precisely, on
the order of the zero which ψ̂ − 1 has at the origin. Indeed, the difference operator T is meant to
produce a high order zero, but, since φ̂ is smooth away from the origin, a high order zero of ψ̂ − 1
at the origin implies that ψ̂ is globally smooth, hence ψ decays fast at infinity, which is contrary
to the assumption here.

Furthermore, resolving the singularity of φ̂ at the origin with the aid of a trigonometric poly-
nomial or another smooth periodic function might be hard in case this singularity is not of integral
order (e.g., some log singularity or fractional singularity). This explains why in some cases it
was impossible to remove the log factor in the approximation order by further differencing ([Bu3],
[DJLR]).

3.3. Spectral approximation orders

The analysis of the stationary case shows that, for this case, the vanishing of φ̂ on 2πZZd\0 is
necessary for obtaining positive approximation orders. However, high approximation orders can at
times be obtained from spaces spanned by generating functions whose Fourier transform vanishes
nowhere on IRd, even though the function scale {φh}h involves the dilates of a single function.

Suppose that, for some function φ and some neighborhood Ω of the origin,

‖ φ̂(· + β/λ)

φ̂
‖L∞(Ω/λ)

decays fast to 0 not only as β → ∞, but also as λ→ 0. In this case, we may choose

φh := φ(λ(h)·)
for appropriately selected decreasing {λ(h)}h, with the only limit on the approximation order being

the rate of decay of ‖ φ̂(·+β/λ)

φ̂
‖L∞(Ω/λ) as λ→ 0.

To simplify the analysis, we assume throughout the discussion that φ satisfies the following
condition

(3.9) ρ(λ, β) := ‖ φ̂(· + β/λ)

φ̂
‖
L∞(Ω/λ)

≤ c(s, ε,Ω)e−(|β|−ε)s/λs

, β ∈ 2πZZd\0, λ > 0
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for some positive s, some sufficiently small ε, and some 0-neighborhood Ω. We have chosen this
particular condition since it is satisfied by functions whose Fourier transform decays exponentially
at infinity, as the following proposition shows. Other decay rates can be treated along the same
lines.

Proposition 3.10. Assume that φ̂ satisfies the condition

(3.11) 0 < c1 ≤ |φ̂(x)|e|x|s ≤ c2 <∞, x ∈ IRd,

for some positive s. Then φ satisfies (3.9) with the same s and for any ε < 2π, provided Ω = Bε/2.

Proof: It follows from (3.11) that, for any x ∈ Bπ, β ∈ 2πZZd\0, and λ > 0,

| φ̂((x+ β)/λ)

φ̂(x/λ)
| ≤ conste−(|x+β|s−|x|s)/λs ≤ conste−(|β|−2|x|)s/λs

,

since min|y|=|x|(|y+β|s−|y|s) = (|β|−|x|)s−|x|s ≥ (|β|−2|x|)s, using the fact that |β| ≥ 2π > 2|x|.
Thus, for any ε < 2π, (3.9) holds with Ω = Bε/2.

Assuming (3.9), we define φh := φ(λ(h)·) for some positive sequence {λ(h)}h. This implies
that, for β ∈ 2πZZd\0,

ρ(λ(h), β) = ‖ φ̂h(· + β)

φ̂h
‖
L∞(Ω)

≤ ce−(|β|−ε)s/λ(h)s

,

and we are led to the following result:

Theorem 3.12. Assume that φ(t·)∗′ is bounded for every t > 0, that φ̂ vanishes nowhere, and

that (3.9) holds for some neighborhood Ω of the origin, some ε < π/2, and some s > 0. Define

φh := φ(λ(h)·). If

(3.13) e−a/λ(h)s ≤ chm, with a := (2π − 3ε)s,

then the approximation order provided by {Sh = S(φh)}h is at least m, and dist∞(f(h·), Sh) ≤
c′hm‖f‖′0 + o(hk) for every k-admissible f in this case. In particular, if λ(h) = O(hr) for some

positive r, then dist∞(f(h·), S(φh)) = o(hk) for every k-admissible f and every k. Moreover, if

λ(h) = h, then dist∞(f(h·), Sh) = O(e−a/h
s

) for very smooth functions f (e.g., functions whose

Fourier transform is a compactly supported measure).

Proof: Since the argument here will be used also in the sequel, we prefer to provide the main
part of the proof in the form of a separate lemma:

Lemma 3.14. Let {φh}h be a sequence of functions, with corresponding positive bounded sequence

{λ(h)}h, which satisfy the following three conditions:

(a) Each φh∗′ is bounded;

(b) each φ̂h vanishes nowhere in some h-independent neighborhood Ω of the origin;
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(c) with ε and s as in Theorem 3.12,

(3.15) ‖ φ̂h(· + β)

φ̂h
‖L∞(Ω) ≤ c(s, ε,Ω)e−(|β|−ε)s/λ(h)s

, β ∈ 2πZZd\0.

Then {φh}h satisfies the conclusions of Theorem 3.12.

Proof of the Lemma: For β ∈ 2πZZd\0, let K(β) be the open ball of radius ε < π/2 centered
at β − 2ε β|β| . Then the balls K(β), β ∈ 2πZZd\0, while sharing the same volume b, are pairwise

disjoint, and their union is disjoint from B2π−3ε. Furthermore, with F (x) := e−|x|s/λ for some
λ > 0, we have

inf
x∈K(β)

F (x) = e−(|β|−ε)s/λ.

Therefore, for λ ≤ λ0,

(3.16)

∑
β∈2πZZd\0

e−(|β|−ε)s/λ ≤ 1/b
∑

β∈2πZZd\0

∫
K(β)

F (t) dt

≤ 1/b
∫

IRd\B2π−3ε

F (t) dt

= c(d)
∫ ∞

2π−3ε

rd−1e−r
s/λ dr

= c(ε, d, s, λ0)e−(2π−3ε)s/λ.

Using (3.16), we can now derive conditions on {λ(h)}h which ensure that the ν-synthesis condition
holds with νh(x) = hm. Since φ̂h vanishes nowhere on Ω and (3.15) holds, then, in view of (3.16), in
order to check that the ν-synthesis condition holds, we need only to verify that, for a = (2π− 3ε)s

and some constant c > 0 and for all small enough h,

e−a/λ(h)s ≤ chm,

which is (3.13), and the first claim of Theorem 3.12 then follows from Corollary 2.38. The second
claim follows from the first, since it is clear that (3.13) holds for any positive m (and sufficiently
small h) in case λ(h) = hr for some r > 0.

Finally, in the case λ(h) = h, the ν-synthesis condition holds even for νh(x) = e−a/h
s

. Substi-
tuting this into Corollary 2.38, and recalling that the o(hk) term there is the first term of (2.30),
we obtain the desired result since, for a band limited function, the first term of (2.30) is 0 for small
enough h.

To complete the proof of the theorem, we need to show that the assumptions on {φh}h made
in the theorem are stronger than those assumed in the lemma. Since any φh in the theorem is φ(λ·)
for some λ, conditions (a) and (b) in the lemma follow respectively from the assumptions in the
theorem that φ(t·)∗′ is bounded for any t > 0, and that φ̂ vanishes nowhere. As to condition (c) in
the Lemma, it is implied by (3.9), since now φ̂h = chφ̂(·/λ(h)).
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Proposition 3.10 describes a simple condition which implies (3.9). A simple condition which
guarantees the boundedness of φ(t·)∗′ for every t > 0 is that |φ(x)| = O(|x|−(d+δ)) for some δ > 0,
as x→ ∞. Thus we conclude the following.

Corollary 3.17. Assume that |φ(x)| = O(|x|−(d+δ)) at ∞ for some δ > 0, and that (3.11) holds

for some s > 0. Then the requirements of Theorem 3.12, whence its conclusions, hold.

So far, we have considered the case when φ∗′ is bounded. However, the analysis here applies
also to cases when φ∗′ is not bounded, but boundedness can be obtained by localization, i.e.,
by differencing the original φ. In this process a certain precaution is required: if φ is the non-
localized function and ψ := Tφ is its localization (with T involving only integer translates), then,
in general, it is not desirable to define our sequence {φh}h by scaling ψ, i.e., a definition of the form
φh := ψ(λ(h)·) should be avoided. The reason for this is that in this way we scale also the difference
operator, hence obtain a difference operator that involves non-integer translates (see the box spline
discussion, in which the deteriorating effect of non-integer translates on approximation orders is
detailed; furthermore, the zeros of the Fourier transform of T then prevent us from finding a domain
Ω where none of the φh vanish). What can be done is to generate first a sequence φh := φ(λ(h)·),
and then to localize each φh separately with the aid of a difference operator Th (each of which
employs only integer translates). Here is a typical result in this direction.

Corollary 3.18. Assume that, for a given φ, φ̂ coincides with some non-vanishing function on

IRd\0, and that 1/φ̂ extends to a continuous function on all of IRd. Assume further that φ satisfies

(3.9) for some s, ε and Ω. Let λ(h) be decreasing in h, and let {Th}h be a set of difference

operators (each using only integer translates) such that, with φh := Thφ(λ(h)·), the operators φh∗′
are bounded, and such that the functions φ̂h vanish nowhere on Ω. Then, all the results stated in

Theorem 3.12 hold with respect to this {φh}h.

Proof: The result follows from Lemma 3.14 as soon as we verify all the conditions specified there.
The boundedness of each φh∗′ as well as the nonvanishing of φ̂h on Ω are assumed here. It remains
therefore to consider the ratios

φ̂h(· + β)

φ̂h

in order to verify (3.15). Let uh be the Fourier transform of Th. Then uh is 2πZZd-periodic, and

therefore φ̂h(·+β)

φ̂h

= φ̂((·+β)/λ(h))

φ̂(·/λ(h))
. Thus, (3.15) is implied by (3.9), which is assumed here.

Specific generating functions, for which one is able to obtain infinite approximation orders are
discussed in [M], [MN2] and [BuD1,2], and our interest in this topic was stimulated by a discussion
with N. Dyn. We remark that Madych and Nelson derived their results in the more general context
of scattered translates.
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3.4. Box splines

Let Ξ ∈ IRd×m be of full rank d and with no 0 column. We will also consider Ξ as the multiset
{ξ : ξ ∈ Ξ} of its columns and therefore mean by Y ⊂ Ξ that Y is a matrix obtained from Ξ by
omitting some columns. Let λ := {λξ}ξ∈Ξ be an arbitrary set of complex scalars. The (exponential)
box spline M := MΞ,λ is defined via its Fourier transform as follows:

(3.19) M̂(w) :=
∏
ξ∈Ξ

∫ 1

0

e(λξ−iξ·w)t dt,

i.e., it is the convolution product of the functionals

Mξ : f 7→
∫ 1

0

eλξtf(tξ) dt, ξ ∈ Ξ.

In general, M is a measure supported in Ξ[0 d1]m. Since we assumed that rank Ξ = d, the box
spline M is a bounded function, of global smoothness k(Ξ) − 2, with

(3.20) k := k(Ξ) := min{#Y : Y ⊂ Ξ, rank(Ξ\Y ) < d}.

For a generic choice of λ ∈ Cm, M is a piecewise-exponential function (called an exponential
box spline, or simple exponential box spline); otherwise, it is a piecewise-exponential-polynomial
function. Piecewise-polynomials are obtained by the choice λ = 0 (polynomial box splines, or box
splines). As might be anticipated from their definition, box splines are obtained by differencing a
specific fundamental solution of the equation p(D)f = δ, with

p(x) :=
∏
ξ∈Ξ

(λξ − ξ · x),

and thus (cf. the discussion in the section on the differencing case), polynomial box splines are
refined by scaling, i.e., Mh := M , while, for general box splines, Mh is defined by

(3.21) M̂h(w) :=
∏
ξ∈Ξ

∫ 1

0

e(hλξ−iξ·w)t dt.

The point of this refinement is that in this way the local structure is preserved, i.e., the pieces of
{Mh(·/h)}h (for fixed Ξ and λ) all belong to the same finite-dimensional exponential-polynomial
space. It is important to note that box splines fall into the differencing case (as defined in §3.2) only
when Ξ ∈ ZZd×m, since otherwise the difference operator used in the localization of the fundamental
solution employs translations in non-integer directions.
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Results on approximation orders for box splines can be found in [BD], [BH], [DM1], (Ξ ∈
ZZd×m, λ = 0, see also [BHR]), [R1], [DR], [LJ] (same Ξ, general λ), [RS] (general Ξ, λ = 0).
Neither upper bounds nor lower bounds on the approximation order are known for general Ξ and
λ. In what follows, we will derive upper bounds for the approximation order of any box spline
(i.e., general Ξ and λ), and, in case the spline is smooth enough, will provide also matching lower
bounds. Since the integral case (i.e., Ξ ∈ ZZd×m) is the one mostly explored in the literature, and
since our results apply to this case almost directly, we found it instructive to begin with this special
case. Before doing that, we remark that the operator sequence {Mh∗′}h (Ξ and λ fixed) is always
uniformly bounded. This follows from the fact that suppMh ⊂ Ξ[0 d1]m and that the functions
{Mh}h≤1 are uniformly bounded. The latter claim can be verified as follows ([DR]): let N be the
box spline associated with the same direction set Ξ, but with λ = 0. From the definition of the box
spline Mh, it follows that, as a linear functional,

Mh : f 7→
∫

[0 d1]m
ehλ·tf(Ξt) dt, f ∈ C(IRd),

and thus, for h ≤ 1,
|Mh(f)| ≤ cλN(|f |) ≤ cλ‖N‖ ‖f‖L1(Ξ[0 d1]m).

Consequently, ‖Mh‖ ≤ cλ‖N‖, all h ≤ 1. For later reference, we record this fact below.

Proposition 3.22. For a box spline M , {Mh∗′}h≤1 is uniformly bounded.

3.5. Box splines: integral case

We assume here Ξ ∈ ZZd×m (and rank(Ξ) = d).
To start with, we note that (3.21) implies that {1/M̂h}h is uniformly bounded in a neighbor-

hood Ω of the origin. This means that, for the analysis of upper bounds on the approximation
order, we may replace the quantities {M̂h(hθ + β)}h in the Upper Bound Theorem 2.17 by the
ratios

(3.23)
M̂h(hθ + β)

M̂h(hθ)
=

∏
ξ∈Ξ

h(λξ − iξ · θ)
h(λξ − iξ · θ) − iξ · β , β ∈ 2πZZd\0.

Here we have used the fact that ξ ∈ ZZd and β ∈ 2πZZd implies that ξ ·β ∈ 2πZZ, i.e., that e−iξ·β = 1.
We now fix θ ∈ IRd such that λξ − iξ · θ 6= 0, all ξ ∈ Ξ. By the definition (3.20) of k(Ξ), there
exists Y ⊂ Ξ such that rank(Y ) < d, #(Ξ\Y ) = k(Ξ) and rank(Y ∪ {ξ}) = d, all ξ ∈ (Ξ\Y ). Since
rank(Y ) < d and Y ⊂ Ξ ∈ ZZd×m, we can find β ∈ 2πZZd\0 such that Y Tβ = 0. Then, since
rank(Y ∪ {ξ}) = d for ξ ∈ (Ξ\Y ), we must have ξ · β 6= 0 such ξ. Therefore,

h−k(Ξ) M̂h(hθ + β)

M̂h(hθ)
=

∏
ξ∈(Ξ\Y )

λξ − iξ · θ
h(λξ − iξ · θ) − iξ · β −→

h→0

∏
ξ∈(Ξ\Y )

λξ − iξ · θ
−iξ · β 6= 0.

Invoking the Upper Bound Theorem 2.17 (which is applicable due to Proposition 3.22), we thus
obtain the following result, which was first established in [LJ] by different means:
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Theorem 3.24. Let {Sh}h be the spline spaces spanned by the integer translates of the box

splines {Mh}h (resp.) as defined in (3.21). Assume that Ξ is integral. Then the approximation

order provided by {Sh}h does not exceed the number k(Ξ) defined in (3.20).

The fact that the approximation order from the box spline spaces {Sh}h is at least k(Ξ) was
proved in [DR]. The following theorem reproduces this result, but only for sufficiently smooth box
splines.

Theorem 3.25. Let {Sh} be box spline spaces as in Theorem 3.24. For every β ∈ 2πZZd\0, define

(3.26) Lβ := {ξ ∈ Ξ : |ξ · β| 6= 0}.

Assume that

(3.27)
∑

β∈2πZZd\0

∏
ξ∈Lβ

1
|ξ · β| <∞.

Then the approximation order provided by the spaces {Sh}h is k(Ξ).

Proof: By Theorem 3.24, we only need to show that the approximation order is at least k(Ξ).
Firstly, note that #Lβ ≥ k(Ξ) for every β ∈ 2πZZd\0. Secondly, all factors in (3.23) with ξ · β = 0
equal 1, hence

M̂h(w + β)

M̂h(w)
=

∏
ξ∈Lβ

(hλξ − iξ · w)
(hλξ − iξ · w) − iξ · β .

Since β ∈ 2πZZd\0 and Lβ ⊂ ZZd\0, it follows that |ξ · β| ≥ 2π for every ξ ∈ Lβ . Thus, choosing
η := min{ 1

|ξ| : ξ ∈ Ξ}, we conclude that for small enough h (e.g., h ≤ minξ(π − 1)/λξ) and all
w ∈ Bη,

|M̂h(w + β)

M̂h(w)
| ≤

∏
ξ∈Lβ

h|λξ| + |ξ||w|
|ξ · β|/2 ≤const(h+ |w|)#Lβ

∏
ξ∈Lβ

1
|ξ · β|

≤const(h+ |w|)k(Ξ)
∏
ξ∈Lβ

1
|ξ · β| .

Since we assume (3.27), it follows that {Mh}h satisfies the synthesis condition of order k(Ξ),
and the desired result thus follows from the Lower Bound Theorem 2.36.

Remark. It should be noted that the condition (3.27) in the theorem above is active, namely,
it does exclude box splines of low smoothness, and in this regard the theorem is weaker than the
original result in [DR]. For example, if d = 1, then Lβ = Ξ for every β ∈ 2πZZ\0, and therefore
condition (3.27) holds if and only if m := #Ξ > 1. For a general d, it is easy to see that the
condition k(Ξ) ≥ d + 1 implies (3.27) but not vice versa. It would be nice to know whether the
arguments in the theorem can be extended to box splines of low smoothness, particularly since a
similar gap appears below in the non-integer extension of Theorem 3.25.
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3.6. Box splines: non-integral directions

In case Ξ ∈ ZZd×m, the condition ξ · β 6= 0 (used in the definition (3.26) of Lβ) is equivalent
to ξ · β ∈ 2πZZ\0, thus leading to the simple formula (3.23) for the ratio M̂h(hθ + β)/M̂h(hθ). For
general Ξ, we obtain such a simple expression only for the factors corresponding to ξ in

Kβ := {ξ ∈ Ξ : ξ · β ∈ 2πZZ\0}.
As it turns out, the factors corresponding to ξ ∈ Lβ\Kβ are of no help for the approximation order.
In particular, the approximation order is now given by

(3.28) k′(Ξ) := min{#Kβ : β ∈ 2πZZd\0}
rather than by the possibly larger k(Ξ) = min{#Lβ : β ∈ 2πZZd\0} (cf., (3.20) and (3.26)). The
following result has been proved in [RS]:

Result 3.29. The approximation order provided by any polynomial box spline M (i.e., λ = 0)

equals the integer k′(Ξ) defined in (3.28).

Result 3.29 generalizes the original result from [BH] in which polynomial box splines with
integral direction set were considered. Both proofs are based on the identification of the polynomials
in S(M) (cf. Result 3.2). Furthermore, the extensions of the result of [BH] to arbitrary λ’s made
use of the exponential-polynomial space in S (lower bounds, [DR]), and the local structure of the
box spline M (upper bounds, [LJ]). However, for a non-integral Ξ and nonzero λ, the study of the
exponential-polynomials in S or the local structure of M seems to fall short: the approximation
properties of the relevant exponential-polynomial space provide lower bounds on the approximation
order which, in some cases, underestimate the correct order, and the local structure of M provides
upper bounds on the approximation order which, usually, overestimate the correct order.

In contrast, the analysis here of the approximation orders for general box splines follows the
outline of the analysis, given in the preceding section, for a box spline with integer directions, with
some necessary modifications. In this way, the results of the preceding section are shown to hold for
a general Ξ, with k′(Ξ) replacing k(Ξ) (which is a true generalization since we have k′(Ξ) = k(Ξ)
for Ξ ∈ ZZd×m).

Let β ∈ 2πZZd\0. A straightforward computation then shows that, for any θ ∈ IRd and
ξ ∈ Ξ\Kβ , ∫ 1

0

e(hλξ−iξ·(β+hθ))t dt −→
h→0

∫ 1

0

e−iξ·βt dt 6= 0.

On the other hand, if ξ ∈ Kβ and θ ∈ IRd satisfies λξ − iξ · θ 6= 0, then we get that, for this ξ,

h−1

∫ 1

0

e(hλξ−iξ·(β+hθ))t dt −→
h→0

λξ − iξ · θ
−iξ · β 6= 0.

If we now choose β ∈ 2πZZd\0 for which #Kβ = k′(Ξ), and choose θ ∈ IRd such that λξ − iξ · θ 6= 0
for every ξ ∈ Kβ , we conclude from the above arguments that

|M̂h(hθ + β)| 6= o(hk
′(Ξ)).

Furthermore, Proposition 3.22 ensures that {Mh∗′}h is uniformly bounded, and therefore, via the
Upper Bound Theorem 2.17, we finally arrive at the following generalization of Theorem 3.24.
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Theorem 3.30. For each h > 0, let Sh = S(Mh) be the spline space spanned by the integer

translates of the box spline Mh defined in (3.21). Then the approximation order provided by {Sh}h
does not exceed k′(Ξ) (as given in (3.28)).

In an analogous way, Theorem 3.25 can be generalized to non-integral Ξ as follows:

Theorem 3.31. Let {Sh} be box spline spaces as in Theorem 3.30. For every β ∈ 2πZZd\0, define

(3.32) Lβ := {ξ ∈ Ξ : |ξ · β| 6= 0}.

Assume further that Ξ ∈ QQd×m and that

(3.33)
∑

β∈2πZZd\0

∏
ξ∈Lβ

1
|ξ · β| <∞.

Then the approximation order provided by the spaces {Sh}h is k′(Ξ).

Proof: Since we know, by Theorem 3.30, that the approximation order is at most k′(Ξ), we need
only to prove that it is at least k′(Ξ). Since {|M̂h|−1} is uniformly bounded in some neighborhood of
the origin (for small enough h), it suffices, for an application of the Lower Bound Theorem 2.36, to
consider the quantities M̂h(·+ β), β ∈ 2πZZd\0 and h small (rather than the ratio M̂h(· + β)/M̂h).
We now fix β ∈ 2πZZd\0 and consider three different cases of ξ ∈ Ξ:

Case ξ · β = 0 (i.e., ξ ∈ Ξ\Lβ): In this case, for sufficiently small h and for every w ∈ IRd,
we have

|
∫ 1

0

e(hλξ−iξ·w)t dt| < 2.

Case ξ · β 6∈ 2πZZ (i.e, ξ ∈ Lβ\Kβ): Here we use the estimate

(3.34) |
∫ 1

0

e(hλξ−iξ·(w+β))t dt| < 3
|hλξ − iξ · (w + β)| ,

valid for all w and sufficiently small h. Now, since Ξ ∈ QQd×m, there exists n ∈ ZZ such that
nΞ ∈ ZZd×m, and thus, since ξ · β 6= 0 (and β ∈ 2πZZd\0), we have |ξ · β| ≥ 2π/n. Thus, (3.34)
shows that for sufficiently small h and w,

|
∫ 1

0

e(hλξ−iξ·(w+β))t dt| < 4
|ξ · β| .

Case ξ · β ∈ 2πZZ\0 (i.e, ξ ∈ Kβ): In this final case,

(3.35) |
∫ 1

0

e(hλξ−iξ·(w+β)t dt| =
|ehλξ−iξ·w − 1|

|hλξ − iξ · (w + β)| .

The denominator in the right hand side of (3.35) can be estimated as in the previous case, while
the numerator, for sufficiently small h and |w|, can be bounded by c (h + |w|), hence we finally
obtain in this case the estimate

|
∫ 1

0

e(hλξ−iξ·w)t dt| ≤ c
h+ |w|
|ξ · β| .
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Combining all these estimates, we obtain that, for some β-independent neighborhood Ω of the
origin and for some β-independent constant c we have, for small enough h (where the “smallness”
of h is again β-independent) and all w ∈ Ω,

|M̂h(w + β)| ≤ c (h+ |w|)#Kβ

∏
ξ∈Lβ

1
|ξ · β| ≤ c (h+ |w|)k′(Ξ)

∏
ξ∈Lβ

1
|ξ · β| .

Application of the Lower Bound Theorem 2.36, in view of the assumption (3.33), then completes
the proof.

4. Examples

Example 4.1. Assume that φ satisfies the following conditions: (a) φ̂ ∈ C(IRd\0); (b) for some
δ > 0, |φ̂(x)| = O(|x|−d−δ) as x→ ∞; (c) for some µ ≥ 0, |φ̂(x)| ∼ |x|−µ as x→ 0. Under various
additional conditions on φ, (φ is radially symmetric, φ̂ vanishes nowhere, and others; cf. [Bu3;pp.
72-74]), it is shown in [Bu3] that there exists c : ZZd → C such that φ∗′c converges absolutely and
uniformly on compact sets to a function χ which decays like |x|−d−µ at ∞, and which is a cardinal

function, i.e., satisfies χ(α) = δα,0, α ∈ ZZd. [Bu3] then proceeds to show that the error in the
approximation scheme

f(h·) ≈ χ∗′f(h·)
behaves like O(h−µ) or O(h−µ| log h|), depending on the decay rate of χ at ∞ and the type of µ
(non-integer, integer, even integer), and that in some cases these rates are sharp (for the above
approximation scheme); cf. [Bu3;Cor. 5-12]. Our result in this regard is the following:

Theorem 4.2. Assume that χ is a function for which χ∗′ is bounded, and χ̂(0) 6= 0. Assume

further that χ̂ can be factored,

χ̂ = uφ̂,

with u a 2πZZd-periodic distribution which coincides with some bounded continuous function on a

neighborhood Ω of the origin, and φ̂ a distribution which coincides with a continuous function on

(2πZZd + Ω)\0. Assume, finally, that φ̂ satisfies the following conditions:

(4.3)
∑

β∈2πZZd\0
‖φ̂(· + β)‖L∞(Ω) <∞;

and

c|φ̂(x)| ≥ |x|−µ, x ∈ Ω.

Then the approximation order provided by χ is at least µ. Moreover, if for some θ ∈ IRd\0, hµφ̂(hθ)
is bounded for small enough h, and φ̂(β) 6= 0 for some β ∈ 2πZZd\0, then the approximation order

provided is exactly µ.

Proof: The proof is very similar to that of Theorem 3.6. By assumption, φ̂ is a well-defined
function on (2πZZd + Ω)\0, and

‖ χ̂(· + β)
| · |µ χ̂ ‖L∞(Ω) = ‖ φ̂(· + β)

| · |µ φ̂
‖L∞(Ω) ≤ c‖φ̂(· + β)‖L∞(Ω).
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In view of assumption (4.3), we therefore conclude that the synthesis condition of order µ holds
here, and consequently, by the Lower Bound Theorem 2.36, the approximation order is at least µ.

For the sake of upper bounds, we adopt the additional assumptions in the theorem, and note

that then, for the same β as in the theorem, we have |h−µφ̂(hθ+β)

φ̂(hθ)
| ≥ c > 0, for small enough h. On

the other hand, |h−µφ̂(hθ+β)

φ̂(hθ)
| = |h−µχ̂(hθ+β)

χ̂(hθ)
|, and since χ̂ is continuous and does not vanish at 0,

we conclude that |h−µχ̂(hθ+ β)| ≥ c1 > 0. Application of the Upper Bound Theorem 2.17 implies
that the approximation order is at most µ.

As in the differencing case, the above result shows that approximation orders provided by S(χ)
are essentially independent of the localization process (i.e., the type of periodic function u which
connects φ̂ and χ̂). The only requirements on χ are that χ̂(0) 6= 0 and that χ∗′ be bounded. For
this reason, we will refer in what follows to such approximation orders as “the approximation orders
provided by φ”. Here are some specific examples which are covered by the last theorem. These
examples were treated by several authors under various restrictions on the underlying parameter γ
(see below) and the parity d of the spatial dimension. A partial list of references includes [J], [M],
[MN1,2], [DJLR], [Bu1-4] and [P]. These references provide localization processes as well as lower
bounds on the approximation order, the latter being of the form d+ k or O(hd+k| log h|) for some
k ≤ γ whose value depends on the quality of the localization process. Here are the details.

(1): φ = | · |γ , γ ∈ IR+\2ZZ+. Since φ̂ = c| · |−d−γ in the complement of the origin, φ satisfies
the assumptions of Theorem 4.2 with µ := d+ γ, hence, indeed, this theorem shows that, whatever
localization process is employed, the approximation order is exactly d+ γ.

(2): φ = | · |γ log | · |, γ ∈ 2IN. In this case, φ̂ coincides on IRd\0 with the function c| · |−(d+γ)

(and so, this case complements the previous one). Since φ satisfies the assumptions of Theorem
4.2, with µ := d+ γ, this theorem shows that d+ γ is the exact approximation order, regardless of
the localization process and the parity of d.

(3): φ := (| · |2 + λ2)γ/2, γ > −d, γ 6∈ 2ZZ+. Here, φ̂ = c| · |−(d+γ)K, with c 6= 0, K continuous,
vanishing nowhere, and decaying exponentially to 0 at ∞. Thus, φ satisfies the assumptions of
Theorem 4.2 with µ := d + γ. Further consideration of this φ, in which λ depends on h to obtain
spectral orders, will be given later.

(4): φ = (| · |2 + λ2)γ/2 log(| · |2 + λ2), γ ∈ 2ZZ+, d even. In this case, φ̂ admits a similar
expression to that of the previous case, and again we obtain approximation order d+ γ.

Example 4.4. We discuss here several examples in which spectral approximation orders are ob-
tained.

(1) The Gaussian kernel: φ = e−|·|2/4. It was proved in [Bu3] that cardinal interpolation
using this function does not allow reproduction of any polynomials. Theorem 3.1 here shows that
further, since φ̂ = ce−|·|2 vanishes nowhere, the approximation order provided by φ is 0. However,
employing Corollary 3.17, we see that Theorem 3.12 applies here (with s = 2). In particular, we
obtain the following result, which corresponds to the choice λ(h) =

√
h in Theorem 3.12.
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Corollary 4.5. For the choice φh := e−h|·|
2
, we have dist∞(f(h·), Sh) ≤ ckh

k‖f‖′0 + o(hk) for

every k-admissible f and for every k.

Note that, in terms of the original generating functions {ψh}h (i.e., prior to the scale-up), the
above corollary suggests the choice ψh = e−|·|2/h.

An identical analysis can be made with respect to other smooth functions. E.g., we can take
φ = (| · |2 + 1)−(d+1)/2. In this case, φ̂ = ce−|·|, and Corollary 3.17, hence Theorem 3.12, apply,
with s = 1, so that we get, for example, the following result.

Corollary 4.6. The conclusion of Corollary 4.5 holds also for φh := (| · |2 + hr)−(d+1)/2, for any

negative r.

Proof: We only need to observe, in the application of Theorem 3.12, that, for this φ, φ(λ·) =
c(λ)(| · |2 + λ−2)−(d+1)/2.

Example 4.7. We continue with spectral orders: In the two examples above, the operator φ∗′
was bounded. However, as Corollary 3.18 suggests, our analysis also applies to cases when φ∗′
is not bounded. For instance, we can take either ψλ := (| · |2 + λ−2)γ/2, γ > −d, γ 6∈ 2ZZ+, or
ψλ = (| · |2 + λ−2)γ/2 log(| · |2 + λ−2), γ ∈ 2ZZ+, d even; (note that these functions have been
considered before, but in a different context). In both cases ψ̂λ = cλK(·/λ)| · |−d−γ on IRd\0, where
K ∈ C∞(IRd\0), K(x) ∼ e−|x|(1+ |x|(d+γ−1)/2) on all of IRd, all derivatives of K of orders < 2d+γ
are in L1(IRd), and derivatives of K of any order (regarded as functions on IRd\0) are rapidly
decaying at ∞ (all these properties can be derived from the known properties of the modified
Bessel functions [AS], since K = | · |(d+γ)/2K(d+γ)/2, with Kν being the modified Bessel function of
third kind and order ν). Now, assume that φh is a localization of ψλ(h), namely, φ̂h = uhψ̂λ(h) for
some 2πZZd-periodic uh, and φh∗′ is bounded. Since the only singularity of ψ̂λ(h) is at the origin,
we can assume that uh does not vanish on some punctured h-independent neighborhood Ω\0 of
the origin (this, in turn, forces the use of an infinite-difference operator, except in some special
cirumstances). This ensures that φ̂h does not vanish on Ω\0, and we further assume that uh is
chosen such that φ̂h(0) 6= 0. If, at this point, we prefer to fix λ(h), i.e., if we do not change φh
with h, then we obtain a special example of the stationary case, and in such a case the factor in
φ̂h which determines the approximation order is | · |−(d+γ), as can be observed from Theorem 4.2.
However, if we change λ(h) with h, as we do in the context of spectral orders, the dominant factor
in φ̂h becomes K(·/λ(h)). In such a case, Corollary 3.18 implies the following:

Corollary 4.8. Let {ψλ(h)}h be as above, and let φh, h > 0, be a localization of ψλ(h), namely,

φ̂h = uhψ̂λ(h) for some 2πZZd-periodic function uh, and φh∗′ is bounded. Assume further that

uh vanishes nowhere on some h-independent punctured neighborhood Ω\0 of the origin and that

φ̂h(0) 6= 0. Then all results stated in Theorem 3.12 hold with respect to this {φh}h and with s = 1.

Proof: We wish to apply Corollary 3.18, hence need to verify that all the conditions required
there hold in our case. By assumption, the operators {φh∗′}h are bounded. Also, the various
assumptions on the zeros of uh and φ̂h, together with the fact that φ̂ vanishes nowhere (on IRd\0),
imply that φ̂h vanishes nowhere on Ω. Thus, in order to apply Corollary 3.18, it remains to verify
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that φ := (| · |2 + 1)γ/2 (or φ := (| · |2 + 1)γ/2 log(| · |2 + 1)) satisfies (3.9). For this, we note that the
fact that K ∼ e−|·|(1 + | · |(d+γ−1)/2) implies that

φ̂((x+ β)/λ)

φ̂(x/λ)
≤ const

e−|(x+β)/λ|

e−|x/λ|

for sufficiently small x and λ and for all β ∈ 2πZZd\0. This implies, as in Proposition 3.10, that φ̂
satisfies (3.9) with s = 1.

Some improvements of the above result are available. First, we have neglected the “positive”
role of the factor | · |−(d+γ). In fact, let φh := ψλ(h) as before. Then, for x ∈ Bε and β ∈ 2πZZd\0
(and, say, with λ(h) ≤ 1), the estimate

1 + ( |x+β|λ(h) )(d+γ−1)/2

|x+ β|d+γ (1 + |x/λ(h)|)(d+γ−1)/2)
≤ constλ(h)−(d+γ−1)/2 |β|−(d+γ+1)/2

holds (for the case d+ γ ≥ 1; otherwise, the factor λ(h)−(d+γ−1)/2 can be removed from the above
bound and the subsequent analysis becomes simpler). Thus, for the case d+ γ ≥ 1, we get that

φ̂h(x+ β)

φ̂h(x)
=

K(x+βλ(h) ) |x|d+γ
K(x/λ(h)) |x+ β|d+γ

≤ const |x|d+γ
e−|(x+β)/λ(h)| (1 + ( |x+β|λ(h) )(d+γ−1)/2)

e−|x/λ(h)| |x+ β|d+γ (1 + (|x/λ(h)|)(d+γ−1)/2)

≤ const |x|d+γ e−(|β|−2ε)/λ(h)/λ(h)(d+γ−1)/2.

We can estimate the sum
∑
β∈2πZZd\0 e

−(|β|−2ε)/λ(h) as in the proof of Lemma 3.14 to obtain
that, for a := 2π − 6ε,

∑
β∈2πZZd\0

‖ φ̂h(· + β)

| · |d+γ φ̂
‖
L∞(Bε)

≤ const e−a/λ(h)/λ(h)(d+γ−1)/2.

By changing a if needed, and assuming that λ(h) is small enough, we can replace e−a/λ(h)/λ(h)(d+γ−1)/2

by e−a/λ(h), which means the ν-synthesis condition holds here with

νh(x) = e−a/λ(h)|x|d+γ.

Substituting these {νh}h into (2.33) and combining (2.33) with (2.30), we get the following:

Theorem 4.9. Let {φh}h be as in Corollary 4.8. If the sequence {λ(h)}h satisfies e−a/λ(h) ≤ chm

for some non-negative m and some a < 2π, then for every k-admissible function f , and every

j ≤ min{d+ γ, k},

(4.10) dist∞(f(h·), S(φh)) ≤ const hm+j‖f‖′j + o(hk).
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In particular, if k ≥ d+ γ, then

dist∞(f(h·), S(φh)) ≤ const hm+d+γ‖f‖′d+γ + o(hk).

Here the constant is independent of f and h.

The last theorem implicitly suggests the optimal choice of {λ(h)}h: if f is k-admissible, then
one should choose m to be any number larger than k−min{d+γ, k}, for that would make the first
term in (4.10) go to 0 faster than the second one.

A second remark here concerns the type of difference operators that can be used in the lo-
calization process leading to the sequence {φh}h. As previously explained, we cannot scale T1 to
obtain Th, namely (assuming without loss that λ(1) = 1), we cannot take uh := u1(·/λ(h)). On
the other hand, in the present context, the singularity of φ̂ at the origin is homogeneous, i.e., the
product of φ̂ by a homogeneous function G (viz. | · |d+γ) is a continuous function which does not
vanish at 0 (nor anywhere else, for that matter). This suggests that the same difference operator
that is used to localize φ, can also be used to localize any scale of φ. Here is a sample statement in
this direction:

Proposition 4.11. Let φ be as in Corollary 4.8, and assume that d + γ ≥ 1. Let u be a smooth

2πZZd-periodic function such that | · |−(d+γ)u has bounded derivatives in a neighborhood of the

origin up to order d+1 inclusive. Assume that ψ is a function which satisfies ψ̂ = uφ̂(·/λ) for some

positive λ. Then ψ∗′ is bounded.

Proof: Recall that φ̂(·/λ) = cK(·/λ)| · |−(d+γ), where all derivatives of K, hence of K(·/λ), up to
any order < 2d+γ, are in L1. Combining this with the present assumption on u (and using the fact
that 2d+γ > d+1 here), we conclude that the derivatives of ψ̂ = cuK(·/λ)| · |−(d+γ) of orders up to
d+1 are integrable around the origin. Further, away from the origin, all derivatives of K, hence of
K(·/λ), are rapidly decaying, while the derivatives of u are bounded (by virtue of the smoothness
and periodicity of this function) and the derivatives of |·|−(d+γ) are of (at most) polynomial growth.
This proves that all derivatives of ψ̂ up to order d+1 are in L1(IRd). Consequently, ψ = o(|·|−(d+1))
at ∞, which implies that ψ∗′ is bounded, as claimed.

References

[AS] Abramowitz, M. and I. Stegun, A Handbook of Mathematical Functions, Dover, (1970).

[B1] C. de Boor, The polynomials in the linear span of integer translates of a compactly supported
function, Constructive Approximation 3 (1987), 199–208.

[B2] C. de Boor, Quasiinterpolants and approximation power of multivariate splines. In Compu-
tation of curves and surfaces, M. Gasca and C. A. Micchelli eds., Dordrecht, Netherlands:
Kluwer Academic Publishers, (1990), 313–345.

[Bu1] M.D. Buhmann, Multivariate interpolation in odd-dimensional Euclidean spaces using multi-
quadrics, Constructive Approximation 6 (1990), 21–34.

32



[Bu2] M.D. Buhmann, Multivariate interpolation with radial basis functions, Constructive Approxi-
mation 6 (1990), 225–256.

[Bu3] M.D. Buhmann, Multivariate interpolation using radial basis functions, Ph. D. Thesis, Uni-
versity of Cambridge, England, May 1989.

[Bu4] M.D. Buhmann, On quasi-interpolation with radial basis functions, ms. (1991).

[BAR] A. Ben-Artzi and A. Ron, On the integer translates of a compactly supported function: dual
bases and linear projectors, SIAM J. Math. Anal. 21 (1990), 1550–1562.

[BF] C. de Boor and G. Fix, Spline approximation by quasi-interpolants, J. Approx. Theory 8
(1973), 19–45.
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